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Abstract 

Background  Human vision has inspired significant advancements in computer vision, yet the human eye is prone 
to various silent eye diseases. With the advent of deep learning, computer vision for detecting human eye diseases 
has gained prominence, but most studies have focused only on a limited number of eye diseases.

Results  Our model demonstrated a reduction in inherent bias and enhanced robustness. The fused network 
achieved an Accuracy of 0.9237, Kappa of 0.878, F1 Score of 0.914 (95% CI [0.875–0.954]), Precision of 0.945 (95% 
CI [0.928–0.963]), Recall of 0.89 (95% CI [0.821–0.958]), and an AUC value of ROC at 0.987. These metrics are notably 
higher than those of comparable studies.

Conclusions  Our deep neural network-based model exhibited improvements in eye disease recognition metrics 
over models from peer research, highlighting its potential application in this field.

Methods  In deep learning-based eye recognition, to improve the learning efficiency of the model, we train and fine-
tune the network by transfer learning. In order to eliminate the decision bias of the models and improve the cred-
ibility of the decisions, we propose a model decision fusion method based on the D-S theory. However, D-S theory 
is an incomplete and conflicting theory, we improve and eliminate the existed paradoxes, propose the improved D-S 
evidence theory(ID-SET), and apply it to the decision fusion of eye disease recognition models.
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Introduction
The human eye, the most relied upon of the five senses, 
processes over 80% of external information through vision. 
With its unique capabilities, the human visual system 
excels in classification, detection, and recognition. Recent 
advancements in computer vision, inspired by biologi-
cal vision systems, have bridged the gap between biologi-
cal and computer vision research, particularly through the 
functional analysis of deep hierarchical structures in pri-
mate visual systems [1]. However, individuals may suffer 
from various eye diseases that impair their vision, and in 
severe cases, these conditions may even lead to complete 
vision loss [2], such as glaucoma, often referred to as the 
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thief of human vision. A study reported that by 2013, 64.3 
million people aged 40 and 80 had glaucoma, and estimates 
suggested this figure would rise to 76 million by 2020, and 
further to 111.8 million by 2040 [3]. Other eye diseases 
include cataracts, diabetic retinopathy, AMD, myopia, 
and hypertensive retinopathy. The National Eye Institute 
conducted simulated experiments to illustrate the vision 
of individuals with these conditions [4, 5], as depicted [6] 
in Fig. 1. The World Health Organization emphasizes the 
early detection of eye diseases as crucial for preventing 
and treating visual impairment and blindness, affecting 
2.2 billion people globally [8, 9]. The human visual sys-
tem is essential, yet eye diseases often progress unnoticed, 
and their detection can be complex and time-consuming. 
With the advancements in computer vision, mirroring 
human vision, we can apply this technology to detect eye 
diseases. Prompt detection is vital, and color fundus pho-
tographs are preferred in eye disease screening for their 
effectiveness and affordability [10]. With advances in com-
puter-aided technology, deep neural networks (DNNs) are 
increasingly utilized in diagnosing eye diseases, exhibiting 
high accuracy in identifying individual conditions through 
color fundus photographs, thus serving as valuable tools 
for medical professionals. Furthermore, it has been dem-
onstrated that existing deep learning models surpass medi-
cal personnel in medical image recognition [4, 11, 12].

Deep learning (DL), a subfield of machine learning, is 
extensively applied in artificial intelligence [13]. Among 

its most effective techniques is the convolutional neu-
ral network (CNN), which excels in automatic feature 
extraction and learning [14, 15]. CNN employs convolu-
tion kernels to analyze images in small perceptual fields, 
significantly reducing computational demands. Unlike 
fully connected neural networks, CNNs train only fil-
ter weights, which are reused. This efficiency allows for 
deeper neural networks and more intricate tasks. Percep-
tual fields enable the inference, perception, and generali-
zation of high-level features like texture, structure, and 
gradients, leading to enhanced accuracy in image detec-
tion, classification, and clinical image classification based 
on disease conditions [16]. Different eye diseases cause 
distinct alterations in the retinal nerve fiber layer, mak-
ing them identifiable through the texture features of reti-
nal fundus images [17], thus rendering CNNs suitable for 
feature extraction from these images. CNNs create sparse 
connections through weight sharing and local connectiv-
ity, drastically reducing parameter count and harness-
ing local correlations between adjacent-layer neurons. 
Modern deep neural networks (DNNs) further deepen 
CNNs by layering convolution layers, as seen in archi-
tectures like VGGNet [18], ResNet [19], and GoogLeNet 
[20–22]. DNNs have demonstrated significant potential 
in various applications, notably in image classification 
and speech recognition [23, 24]. DL demands substantial 
computing memory and power., necessitating large data 
sets and graphics processing units (GPUs). While GPUs 

Fig. 1  Visual simulation of normal vision alongside common eye diseases. In diabetic retinopathy, black patches obstruct vision. Glaucoma 
is characterized by a darkening peripheral field while maintaining central vision. In AMD, central vision is impaired, whereas peripheral vision 
remains intact. Retinitis pigmentosa leads to a complete loss of the visual field around the periphery, with only central vision preserved. Cataracts 
and myopia both result in blurred vision, but there is a difference between the two. The entire field of view of the cataract is completely blurred, 
and the field of view of myopia is partially clear [7]. The images are provided by the National Eye Institute (NEI) and are publicly available (https://​
media​libra​ry.​nei.​nih.​gov/​search?​keywo​rds=​&f%​5B0%​5D=​categ​ory%​3A8)

https://medialibrary.nei.nih.gov/search?keywords=&f%5B0%5D=category%3A8
https://medialibrary.nei.nih.gov/search?keywords=&f%5B0%5D=category%3A8
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are generally accessible, acquiring extensive labeled data 
can be costly, requiring significant financial and material 
resources. To address these challenges, researchers have 
adopted “transfer learning” (TL). TL enables the appli-
cation of previously acquired knowledge to new tasks, 
substantially reducing training time and lessening the 
dependency on large data volumes.

For eye disease recognition, Aamir et al. utilized multi-
level deep neural networks to classify four states of glau-
coma, employing two CNNs: one to distinguish between 
normal and glaucomatous eyes, and another to catego-
rize glaucoma into advanced, moderate, and early stages 
[25]. Dinç et  al. demonstrated exceptional performance 
in glaucoma detection using local convolution [26]. The 
AG-CNN model by Li et al. is currently the most advanced 
in glaucoma detection and pathologic region localiza-
tion [27]. Thakoor et al. applied an OCT-based CNN with 
transfer learning for glaucoma identification [28]. He et al. 
developed the AUB-Net to recognize eight eye diseases 
on the ODIR-5 K dataset, uniquely addressing multiple 
eye diseases concurrently, incorporating left and right eye 
attention mechanisms, unlike other methods that focus 
on a single disease [10]. Similarly, Sun et  al. introduced 
AEye Doctor, an automated diagnostic system based on 
ODIR-5 K, enhancing diagnostic precision with patient 
interaction and an adjustable saliency heatmap [29], which 
underscores key areas in retinal images for diagnosis [30]. 
Zhou et  al. implemented an inductive transfer learning 
approach with a multiscale transfer (MTC) for improved 
feature extraction, and a domain-specific adversarial adap-
tation (DSAA) module, balancing disease differentiation 
and adaptation to target and source data distributions [31].

In our research, we utilize deep neural networks for 
transfer learning and an enhanced D-S evidence theory 
to recognize eye diseases. Given that we focused on seven 
classes of diseases with overlapping characteristics, and 
considering the escalating complexity in performance 
enhancement as the number of diseases increases [29], 
we use ResNet50[18]and ResNet101 [19] as subnetworks 
for transfer learning. These form classification networks, 
serving as two basic probability assignment functions m1, 
m2, respectively. Ultimately, we use ID-SET for evidence 
fusion to obtain the final recognition results. The specific 
contributions are as detailed follows.

(1)	 We incorporate non-negative monotone softmax 
functions into D-S evidence theory, resolving the four 

inherent paradoxes in D-S theory. We introduce an 
improved D-S evidence theory (ID-SET) and apply it 
to decision fusion within deep neural networks.

(2)	 To enhance model learning and convergence, we 
integrate an image enhancement strategy and trans-
fer learning with ResNet models of varying depths. 
These models are used to identify different eye 
diseases, applying the improved D-S theory to the 
decision fusion of the two models.

(3)	 Experimental evaluation demonstrate that our model 
fusion strategy notably enhances accuracy, thereby 
validating the effectiveness of our proposed approach.

This paper is organized as follows: Section  1 offers an 
introductory overview, outlining the research questions 
and current study status; Section 2 describes our research 
methodology; Section 3 discusses relevant data; Section 4 
details the experiments and result analysis; and Section 5 
provides a comprehensive discussion and conclusion.

Material and methods
D‑S evidence theory
In the context of mathematical and uncertainty theories, 
D-S evidence theory presents advantages over Bayesian 
theory due to its ability to handle uncertain and unknown 
information under less stringent conditions. Compared 
to traditional probability theory, D-S evidence theory 
demonstrates superior performance in data fusion-based 
classification and is extensively applied in domains such 
as fault diagnosis [32, 33], engineering technology [34], 
target recognition and tracking [35, 36], and information 
fusion [37].

The D-S evidence theory framework operates a set 
Θ = {A1, A2, ⋯, Aφ}, Ai = (i ∈ [1, φ], φ <  + ∞) denotes a propo-
sition or hypothesis, Θ is called the recognition framework, 
A1, A2, ⋯, Aφ are independent of each other, and the map-
ping function m : 2Θ → [0, 1] is called the basic probability 
assignment function and satisfies the following equation.

D-S evidence theory provides a robust method for evi-
dence fusion, integrating evidence from multiple sources. For 
proposition A ⊂ Θ, in the recognition framework Θ, there are 
a finite number of basic probability assignment functions m1, 
m2, m3, …ml. The fusion formula is defined as follows:

(1)











m(ϕ) = 0
m(A) ∈ [0, 1], ∀A ⊂ �

�

A⊂�

m(A) = 1

(2)(m1 ⊕m2 · · · ⊕ml)(A) =
1
(1−k) ×

A1∩A2...Aφ=A

m1(A1)m2(A2) . . .ml Aφ
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where:

k represents the conflict factor, which indicates the level 
to which the evidence contradicts each other, and (1 − k) is 
the normalization coefficient.

The traditional D-S theory is an effective evidence fusion 
theory, but it will fail under certain circumstances. For 
example, when the conflict factor k → 1, it will fail. There 
are four typical paradoxes: complete conflict paradox, 0 
trust paradox, 1 trust paradox, and high conflict paradox 
[38]. As shown in Table  1, these four paradoxes are D-S 
theory failure conditions. In Table 1, m1, m2, m3, m4, m5 are 
the basic probability assignment functions, and the propo-
sitions F, G, H, I, J ⊂ Θ.

In the identified four paradoxes, k = 1 is determined in 
the completely conflict paradox, resulting in a zero denom-
inator. Consequently, the D-S fusion rule ibecomes entirely 
ineffective. k = 0.99 is also determined in the 0 trust para-
dox, apply (2)(3), and the fusion result is as follows:

Since m3(F) = 0, resulting in m(F) = 0, no matter the 
strength of other supporting evidence, the final outcome 

(3)k =
∑

A1∩A2...Aφ=ϕ

m1(A1)m2(A2) . . .ml

(

Aφ

)

= 1−
∑

A1∩A2...Aφ �=ϕ

m1(A1)m2(A2) . . .ml

(

Aφ

)

(4)
m(F) = 0

m(G) = 0.73

m(H) = 0.27

for the proposition F is 0. This shows that the fusion rule 
has the defect of one-vote veto. k = 0.9998 is calculated in 
the 1 trust paradox, and the fusion result is:

Despite all basic probability assignment functions 
assigning the proposition G a small BPA, the final fusion 
result considers G to be a correct proposition. Clearly, 
this outcome is illogical and impractical for engineering 
applications. k = 0.99986 is calculated in the high conflict 
paradox, and the fusion result is:

The basic probability assignment functions m1, m3, m4 
and m5 all give proposition F a large BPA, the final result 
inaccurately dismisses the proposition F as incorrect. 
This indicates that highly conflicting evidence can lead to 
erroneous conclusions.

(5)
m(F) = 0
m(G) = 1
m(H) = 0

(6)

m(F) = 0

m(G) = 0.3571

m(H) = 0.4286

m(I) = 0

m(J ) = 0.2143

Table 1  BPA for four typical common paradoxes

Paradoxes Evidence Propositions

F G H I J

Complete
Conflict
paradox

m1 1 0 0 \ \

m2 0 1 0 \ \

m3 0.8 0.1 0.1 \ \

m4 0.8 0.1 0.1 \ \

0 trust
paradox

m1 0.5 0.2 0.3 \ \

m2 0.5 0.2 0.3 \ \

m3 0 0.9 0.1 \ \

m4 0.5 0.2 0.3 \ \

1 trust
paradox

m1 0.9 0.1 0 \ \

m2 0 0.1 0.9 \ \

m3 0.1 0.15 0.75 \ \

m4 0.1 0.15 0.75 \ \

High conflict
paradox

m1 0.7 0.1 0.1 0 0.1

m2 0 0.5 0.2 0.1 0.2

m3 0.6 0.1 0.15 0 0.15

m4 0.55 0.1 0.1 0.15 0.1

m5 0.6 0.1 0.2 0 0.1
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Due to k → 1 and the high conflict among BPAs, D-S 
theory proves inadequate for evidence fusion. The essen-
tial reason is that a certain BPA → 0 or the distance 
between BPAs is too large, and the conflict is high. To 
address this issue, we improve the D-S theory.

Improved D‑S evidence theory (ID‑SET)
Because BPA → 0 or the distance between BPAs is too 
large, the D-S theory becomes ineffective for evidence 
fusion in the face of high conflict. To address this limita-
tion, various researchers have proposed different fusion 
rules [39–41], with most methods addressing the issue by 
modifying the fusion rules.

Our proposed method aims to mitigate the conflict by 
altering the dimension of BPAs. We map BPAs to another 
dimension, effectively reducing the distance between 
them, ensuring ∀BPA > 0 but without altering their com-
parative magnitudes. For this, we found an exponential 
function f(x) = exp(x) because it is an increasing function 

and f(x) > 0, it meets our requirements, but we know 
m(A) ∈ [0, 1], 

∑

A⊂�

m(A) = 1 , exp(m(A)) ≥ 1, so we have to 

normalize it as follows.

(7) constitutes the crux of our enhanced algorithm, 
designed to diminish the distance between m(A) and 
make m(A) ∈ (0, 1) but will not change the size relation-
ship between them, which maintains the validity of (2) 
because without changing their size relationship, we can 
still effectively and intuitively select the high probability 
fusion result when fusing the evidence. Experimental 
tests reveal that in scenarios where m(A) = 0, employing 
(7) successfully resolves the paradox noted in Table 1, as 
demonstrated in Table 2.

In summary, the algorithmic framework of our ID-SET 
is as follows, outlined in Algorithm 1.

(7)m’(Aα) =
exp (m(Aα))

/

φ
∑

i

exp (m(Ai))

Table 2  The ID-SET for BPA

Paradoxes Evidence Propositions

F G H I J

Complete
Conflict
paradox

m
’
1

0.576 0.212 0.212 \ \

m
’
2

0.212 0.576 0.212 \ \

m
’
3

0.502 0.249 0.249 \ \

m
’
4

0.502 0.249 0.249 \ \

m’ 0.748 0.184 0.068 \ \

0 trust
paradox

m
’
1

0.391 0.289 0.32 \ \

m
’
2

0.391 0.289 0.32 \ \

m
’
3

0.219 0.539 0.242 \ \

m
’
4

0.391 0.289 0.32 \ \

m’ 0.385 0.382 0.233 \ \

1 trust
paradox

m
’
1

0.539 0.242 0.219 \ \

m
’
2

0.219 0.242 0.539 \ \

m
’
3

0.252 0.265 0.483 \ \

m
’
4

0.252 0.265 0.483 \ \

m’ 0.192 0.105 0.703 \ \

High conflict
paradox

m
’
1

0.3182 0.1746 0.1746 0.1580 0.1746

m
’
2

0.1614 0.2661 0.1971 0.1783 0.1971

m
’
3

0.2915 0.1768 0.1859 0.1599 0.1859

m
’
4

0.279 0.178 0.178 0.187 0.178

m
’
5

0.2914 0.1767 0.1953 0.1599 0.1767

m’ 0.598 0.127 0.109 0.066 0.099
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Algorithm 1.  The ID-SET

The values in Table 2 were derived using Algorithm 1 
from the data in Table 1. Examination of Table 2 reveals 
that with the resolution of the complete conflict para-
dox, k = 0.959, the resultant fusion is as follows:

Upon fusion, proposition F is deemed correct. This out-
come aligns with preal-world applications and addresses 
the issue of the fusion rule becoming invalid when the 
denominator is zero; following the rectification of the 0 
trust paradox, the conflict factor k = 0.966, the fusion 
outcome is:

After fusion, the proposition F is considered to be 
the correct proposition, and the result is logical. This 
method eliminates the defect of one-vote veto. With 
the resolution of the 1 trust paradox, the conflict factor 
k = 0.961, the fusion result is:

(8)
m’(F) = 0.748

m’(G) = 0.184

m’(H) = 0.068

(9)
m’(F) = 0.385

m’(G) = 0.382

m’(H) = 0.233

(10)
m’(F) = 0.192

m’(G) = 0.105

m’(H) = 0.703

The fusion outcome discards the erroneous asser-
tion that proposition G is the correct, ultimately deter-
mining proposition H as the accurate one, which is 
consistent with practical engineering scenarios; after 
addressing the high conflict paradox, the conflict fac-
tor k = 0.998, and the fusion result obtained is:

The fusion result corrects proposition F to be the cor-
rect proposition and eliminates the erroneous result 
caused by the high conflict between the evidence.

Our proposed algorithm’s enhancements effectively 
eliminate the four prevalent paradoxes in the D-S the-
ory. The improved D-S evidence theory fusion results 
are logical and in harmony with practical engineering 
applications, signifying its efficacy as an improvement.

Overall framework
In this study, we employ DNNs combined with ID-SET to 
identify 7 classes of fundus images, using ResNet50 [19] as 
m1 and ResNet101 [19] as m2 to generate BPAs. ResNet, 
recognized as one of the most innovative convolutional 
neural networks, is selected for its robust fitting capabil-
ity and ease of implementation. Despite originating from 
the same architecture, ResNet50 and ResNet101 differ in 

(11)

m’(F) = 0.598

m’(G) = 0.127

m’(H) = 0.109

m’(I) = 0.066

m’(J ) = 0.099
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depth, which translates to varied fitting capabilities and the 
production of distinct BPAs. While D-S evidence theory is 
a potent tool for data fusion, its classical D-S evidence the-
ory has the limitation that when a certain BPA → 0, it will 
cause a conflict factor k → 1; thus, in this case, traditional 
D-S evidence theory cannot be applied to evidence fusion. 
Our work employs the enhanced D-S theory, previously 
utilized in sensor data fusion in numerous studies [38, 42–
44], for the decision fusion of neural network outputs. This 
decision fusion process is illustrated in Fig. 2.

Related data
Introduction of the dataset
The fundus images were sourced from the ODIR-5 K data-
set [45], comprising 5000 patients’ details, including color 
fundus photographs of both eyes and physicians’ diag-
nostic keywords, collected from various medical institu-
tions in China. This dataset features images captured by 
different photographic devices, such as Kowa, Zeiss, and 
Canon. Patient identifiers have been omitted, and descrip-
tions are provided by trained professionals. They cat-
egorize eye diseases into eight labels: N, D, G, C, AMD, 
H, M, and O. Given that ‘O’ is not a specific disease and 

encompasses multiple conditions [46], we focused on the 
other seven categories: N, D, G, C, AMD, H, and M. After 
excluding images of poor quality, those with lens stains, 
lacking visibility of the optic disc, without fundus photos, 
with image misalignments, and containing laser spots, a 
total of 5258 fundus images representing seven types of 
single eye diseases were selected. The distribution of each 
type is presented in Table  3, and the characteristics of 
each type disease category are depicted in Fig. 3.

Data augmentation
To enhance the dataset’s diversity and minimize the risk 
of overfitting, we employed data augmentation tech-
niques [16]. Data augmentation helps prevent learning 
biases caused by the dataset’s limited size and enhances 
generalization by altering the positions of blood ves-
sel and the optic disc [23, 47]. Moreover, fundus images 
often contain redundant elements in disease recognition, 
with pathological areas typically located in or around the 
optic disc and cup, or adjacent to blood vessels and optic 
nerves [27, 34]. By resizing images to 512 × 512 × 3 pix-
els, we removed some redundant content, consequently 
reducing the computational demands of neural network 

Fig. 2  The comprehensive framework for eye disease recognition. Fundus images are used as the common input data. ResNet50 
and ResNet101generate BPAs for their respective basic probability assignment functions, which are subsequently fused using our ID-SET to yield 
the final diagnostic outcomes. The red boxes represent the basic probability assignment function m1, m2; The purple boxes are the recognition 
framework Θ, and the values of its elements correspond to the basic probability assignment BPAs

Table 3  The number of fundus images of various types

Eye disease N D G C AMD H M

number 2818 1385 218 262 237 104 234
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parameters and shortening processing time. Common 
data augmentation methods include translation, rota-
tion, cropping, flipping, and label-preserving transfor-
mations to increase the number of images [48, 49]. Our 
approach incorporates random rotation, horizontal 
and vertical mirroring, and altering the RGB channel 
sequence to RBG and BGR, effectively expanding the 
dataset to six times its original size. Post-augmentation, 
the dataset comprised 31,548 fundus images. Altering 

the RGB channel order affects the brightness and con-
trast of the images without changing their structure [50], 
thus enhancing dataset diversity. We use this method to 
improve the diversity of the dataset. The fundus image 
after channel replacement is shown in Fig. 4.

We divided the dataset randomly into a training set and a 
test set in an 8:2 ratio. The training set includes 25,336 fun-
dus images, and the test set comprises 6212 images. Table 4 
displays the classification of the augmented fundus images.

Fig. 3  Seven types of fundus images, where N is the normal fundus, D is diabetic retinopathy, G is glaucoma, C is cataract, AMD is age-related 
macular degeneration, H is hypertension, and M is myopia

Fig. 4  Fundus image after RGB replacement. The left picture is the fundus image of the RBG channel, and the right picture is the fundus image 
of the BGR channel. The RGB coordinate system is a Cartesian coordinate system. Replacing the order of the channels will not change the structure 
of the image, but it will change the brightness and contrast of the image, so we use data augmentation
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Experiment and results
Our experiment was conducted on a computer equipped 
with Intel(R) Core(TM) i9-109,200X CPU @ 3.5 GHz, 32G 
RAM, NVIDIA GeForce RTX 3080 10G GPU. The entire 
experiment was carried out using Python (version 3.7.9).

We input the training data into ResNet50 and 
ResNet101, loaded the pretrained models, and trained 
them to obtain the basic probability assignment func-
tions m1, m2. Both ResNet50 and ResNet101 were trained 
for 50 epochs, with their corresponding training and test-
ing losses presented in Fig. 5, and the resulting confusion 
matrices depicted in Fig. 6.

To assess the performance of the proposed model, we 
evaluated it based on six performance indices: Preci-
sion, Recall, Specificity, F1 Score, Kappa coefficient, and 
the area under the curve (AUC) of the receiver operating 
characteristic curve (ROC).

(12)

Precision = TP
/

(TP+FP)

Recall = TP
/

(TP+FN )

Specificity = TN
/

(TN+FP)

F1Score = 2(Precision×Recall)
/

(Precision+Recall)

TP, TN, FP, and FN are the numbers of true-positive 
samples, true-negative samples, false-positive samples, 
and false-negative samples, respectively.

We performed a statistical analysis of each metric at a 
95% confidence level. As indicated in Table 5, each met-
ric of the fusion model surpasses the corresponding met-
ric value of the two independent models, demonstrating 
the efficacy of our proposed method. Furthermore, we 
plotted the AUC curves for ResNet50, ResNet101, and 
the fusion model, observing that the AUC area for the 
fusion model exceeds the respective areas for ResNet50 
and ResNet101. These ROC curves are shown in Fig.  7. 
The ablation analysis in Table  5 and Fig.  7, alongside 
comparative experiments, confirm that our model fusion 
approach is effective, with the fused models exhibiting 
enhanced characterization and decision-making capabili-
ties compared to the individual models.

To further validate our approach, we conducted sup-
plementary experiments on the diabetic retinopathy 
detection(DRD) dataset [51]. The results, as displayed in 
Table  6, reveal that the transfer learning-based method 
surpasses the directly trained method in diabetic retin-
opathy grade recognition. In this context, ResNet and 

Table 4  The number of various fundus images after data augmentation

Eye disease N D G C AMD H M

Training set 13,588 6665 1046 1260 1138 497 1142

Test set 3320 1645 262 312 284 127 262

Total 16,908 8310 1308 1572 1422 624 1404

Fig. 5  Training loss and test loss. The left panel shows the training loss and test loss for ResNet50. The right panel shows the training loss and test 
loss for ResNet101
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ViT from [52], which were directly trained, demonstrated 
lower recognition accuracy compared to our transfer 
learning-enhanced ResNet. Additionally, both ResNet50 
and ResNet101, when based on transfer learning, exhib-
ited lower recognition accuracy than their combined 
fusion model, further affirming the efficacy of our pro-
posed model.

In further analysis using the same ODIR-5 K data-
set, we compare our work with other researchers’ find-
ings, as illustrated in Table  7. In terms of recognition 
accuracy and F1 score, our method outperforms most, 
except for the approach [31]. Across other metrics, our 
method consistently achieved superior performance. A 
series of ablation experiments and comparative analyses 

Fig. 6  Confusion matrices. The top left, top right and bottom figures are the confusion matrices of ResNet50, ResNet101, and the fusion model, 
respectively. The test accuracy of the fused model is 92.37%, which is an improvement of 0.46% on ResNet50 and 2.3% on ResNet101

Table 5  Six evaluation metrics for 3 models

Abbreviations: CI confidence interval

Model %(95% CI)

Precision Recall Specificity F1 Score kappa Accuracy

ResNet50 93.4(91.5–95.2) 89.5(83.9–95.1) 98(95.3–100) 91.3(87.9–94.7) 0.872 0.915

ResNet101 91.2(88.3–94.1) 86.3(78.1–94.4) 97.5(94.2–100) 88.5(82.9–94) 0.845 0.903

Fusion model 94.5(92.8–96.3) 89(82.1–95.8) 98(95–100) 91.4(87.5–95.4) 0.878 0.9237
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underscore the effectiveness and potential of our pro-
posed approach, providing valuable insights for multi-
model fusion and decision-making processes.

Conclusion
Computer vision is advancing rapidly, yet eye dis-
eases often progress unnoticed. Early detection and 
treatment are critical for managing these conditions. 

Recently, DL has emerged as a valuable tool for medical 
professionals, particularly in fundus image recognition. 
We proposed a method for recognizing eye diseases 
using DNNs for transfer learning and ID-SET, focusing 
on seven types of fundus images within the ODIR-5 K 
dataset for training and testing. To mitigate the risk of 
overfitting, we employed data augmentation technol-
ogy, notably using RGB channel replacement to alter 

Fig. 7  The ROC curves for ResNet50, ResNet101 and the fused model. The two models are fused by D-S theory and the AUC values in the fused 
model are higher than that of the two independent models

Table 6  Experimental results and comparison on DRD dataset

Paper ID dataset Disease labels Method used Accuracy

[52] DRD No DR, Mild NPDR, Moderate 
NPDR, Severe NPDR, PDR

ResNet50(Direct training) 0.888

ResNet101(Direct training) 0.889

ViT_B_16 0.905

ViT_L_32 0.914

This paper DRD No DR, Mild NPDR, Moderate 
NPDR, Severe NPDR, PDR

ResNet50(Transfer learning) 0.916

ResNet101(Transfer learning) 0.922

ResNet50 + ResNet101 + ID-SET 0.927
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the brightness and contrast of fundus images, effec-
tively increasing the dataset size sixfold. Additionally, 
we implemented l2 regularization. The hyperparameter 
values λ for the ResNet50 and ResNet101 models were 
set at 3e-5, with a learning rate of 5e-4. After loading 
pretrained models on ResNet50 and ResNest101, we 
used the two models as m1 and m2 to generate their 
own BPAs, and output the final recognition results after 
ID-SET fusion. The final results demonstrated an Accu-
racy of 92.37%, an AUC value of 0.987, an F1 Score of 
0.914 (95% CI [0.875–0.954]), and a Kappa coefficient 
of 0.878, outperforming related work on the same 
dataset. For future studies on eye diseases, we aim to 
explore multimodal feature extraction and fusion uti-
lizing D-S theory.
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Table 7  Comparison of different works under the same dataset

Paper ID dataset Disease labels Method used Performance

[10] ODIR-5 K N,D,G,C,AMD,H,M,O Attention-based unilateral and bilat-
eral feature weighting and fusion 
network(AUB-Net)

Kappa: 0.640,
F1 Score: 0.913,
AUC value: 0.934

[29] ODIR-5 K N,D,G,C,AMD,H,M ResNet Accuracy: 0.93,
Sensitivity: 0.84,
Specificity: 0.95,
AUC value: 0.90

[46] ODIR-5 K N,D,G,C,AMD,H,M,O Deep CNN F1 Score: 0.85,
Kappa score: 0.31,
AUC value: 0.805

[53] ODIR-5 K N,C,AMD,M CNN + 2 Fully Connected Layers Accuracy: 0.883(95CI (0.812–0.955))
Precision: 0.769(95%CI (0.638–0.901))
Recall: 0.769(95%CI (0.62–0.918))
F1 Score: 0.384(95%CI (0.315–0.454))

CNN + 5 Fully Connected Layers Accuracy:0.766
Precision: 0.573(95%CI (0.322–0.825))
Recall: 0.542(95%CI (0.361–0.723))
F1 Score: 0.271(95%CI (0.174–0.368))

[31] ODIR-5 K N,D,G,C,AMD,H,M,O DenseNet+multiscale transfer connec-
tion (MTC) + domain-specific adversarial 
adaptation (DSAA)

Accuracy: 0.945(95%CI (0.904–0.985))
AUC value: 0.938(95%CI (0.928–0.949))
F1 Score: 0.929(95%CI (0.917–0.941))
Kappa: 0.697(95%CI (0.663–0.732))

This paper ODIR-5 K N,D,G,C,AMD,H,M ResNet50 + ResNet101 + ID-SET Accuracy: 0.9237
Precision: 0.945(95% CI (0.92.8–0.963))
Recall: 0.89(95%CI (0.821–0.958))
Specificity: 0.98(95%CI (0.95–1))
AUC value:0.987
F1 Score: 0.914(95%CI (0.875–0.954))
Kappa: 0.878

https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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