
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Guo et al. BMC Medical Imaging          (2023) 23:209 
https://doi.org/10.1186/s12880-023-01174-4

BMC Medical Imaging

*Correspondence:
Desen Cao
caodesen2012@126.com
1Department of Biomedical Engineering, Chinese PLA General Hospital, 
Beijing 100853, P.R. China

Abstract
Purpose  Development and assessment the deep learning weakly supervised algorithm for the classification and 
detection pneumonia via X-ray.

Methods  This retrospective study analyzed two publicly available dataset that contain X-ray images of pneumonia 
cases and normal cases. The first dataset from Guangzhou Women and Children’s Medical Center. It contains a total 
of 5,856 X-ray images, which are divided into training, validation, and test sets with 8:1:1 ratio for algorithm training 
and testing. The deep learning algorithm ResNet34 was employed to build diagnostic model. And the second public 
dataset were collated by researchers from Qatar University and the University of Dhaka along with collaborators from 
Pakistan and Malaysia and some medical doctors. A total of 1,300 images of COVID-19 positive cases, 1,300 normal 
images and 1,300 images of viral pneumonia for external validation. Class activation map (CAM) were used to location 
the pneumonia lesions.

Results  The ResNet34 model for pneumonia detection achieved an AUC of 0.9949 [0.9910–0.9981] (with an accuracy 
of 98.29% a sensitivity of 99.29% and a specificity of 95.57%) in the test dataset. And for external validation dataset, the 
model obtained an AUC of 0.9835[0.9806–0.9864] (with an accuracy of 94.62%, a sensitivity of 92.35% and a specificity 
of 99.15%). Moreover, the CAM can accurately locate the pneumonia area.

Conclusion  The deep learning algorithm can accurately detect pneumonia and locate the pneumonia area based on 
weak supervision information, which can provide potential value for helping radiologists to improve their accuracy of 
detection pneumonia patients through X-ray images.

Key points
1. Two publicly available datasets were used for model training and validation, and achieved very good pneumonia 
detection performance on independent external public data.
2. The DL model based on weak supervision information that can accurately locate the pneumonia area.
3. There is no COVID-19 pneumonia data in the training data, but the DL model can effectively detect COVID-19 
pneumonia in independent external public data.
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Introduction
Pneumonia is a symptom of inflammation of the lungs, 
and can be caused by bacteria, viruses, or fungi. It 
accounts for more than 15% of deaths in children under 
5-year [1, 2]. Especially in developing and underdevel-
oped countries, pneumonia are more likely to occur 
due to severe environmental pollution, unsanitary liv-
ing conditions and inadequate medical infrastructure 
[3]. And pneumonia could be extremely dangerous and 
life-threatening if not be detected in the early stages [4]. 
Therefore, early diagnosis and interventional manage-
ment are extremely important for patients with pneumo-
nia. It can prevent the disease from becoming fatal.

And in clinical practice for screening pneumonia, chest 
X-ray imaging is the most commonly used method for 
diagnosing pneumonia. Because it is fast, low-invasive, 
low-cost, and simple to implement, X-ray imaging has 
become the standard method of screening pneumonia [5, 
6]. However, the chest X-ray examinations for pneumo-
nia screening is challenging. Radiologists with different 
experience may miss and misdiagnose due to subjective 
variability [7, 8]. Therefore, there is an urgent need for 
an accurate and automated computer-aided diagnosis for 
pneumonia detection.

Deep learning is a new technology used in image recog-
nition, natural language processing, speech recognition 
and other fields. In recent years, deep learning algorithm, 
especially convolutional neural networks (CNNs) were 
used in medical image analysis. And achieved remarkable 
performance in different tasks, such as, medical image 
classification, lesion segmentation, lesion detection, etc. 
Specifically, deep learning has been used in brain tumor 
segmentation [9], breast cancer diagnosis [10], lung nod-
ule detection [11–13], abdominal disease diagnosis [14, 
15], and bone disease diagnosis and measurement [16, 
17]. Moreover, there has been some studies on pneumo-
nia detection [18–22]. Many studies are used to diagnose 
COVID-19 pneumonia, and some studies only classify 
different pneumonias, and cannot use limited informa-
tion to complete the localization of pneumonia areas.

Therefore, in this study, we developed a DL model for 
automatic and accurate pneumonia detection using weak 
supervision information. The model can not only detect 
pneumonia cases from normal cases, but also localize 
areas of pneumonia. Furthermore, we evaluated model 
performance using independently public dataset and per-
formed well.

Materials and methods
Data sets
Two separate publicly open and available sources datas-
ets were used for this study [18]. The first public dataset 
(cohort 1) is from Kermany dataset (https://www.kaggle.
com/paultimothymooney/chest-xray-pneumonia) [23]. 

The dataset includes both pneumonia and normal chest 
X-ray images, with a total of 5856 images in JPEG for-
mat sourced from Guangzhou Women and Children’s 
Medical Center. These images were obtained as part of 
routine clinical care for patients. To ensure data quality, 
all images were initially screened and any low-quality 
or unreadable scans were removed. Diagnostic results 
were determined by two expert physicians. Addition-
ally, the second public dataset used in the analysis was 
sourced from the RAIG dataset (cohort 2). Research-
ers from Qatar University and the University of Dhaka, 
along with collaborators from Pakistan and Malaysia and 
some medical doctors, collated a database of chest X-ray 
images for COVID-19 positive cases, as well as normal 
and viral pneumonia images. These chest X-ray images 
were selected from the database for analysis [24]. There 
are a total of 3900 X-ray images in cohort 2.

Deep learning algorithm
We utilized the ResNet-34 deep learning algorithm for 
pneumonia detection in our study. This algorithm was 
chosen because it simplifies the training of deeper neural 
networks. ResNet-34 was selected for its unique architec-
ture, particularly its depth and skip connections. Unlike 
traditional deep networks, ResNet-34 employs residual 
blocks that facilitate the training of very deep networks. 
The skip connections allow the gradient to flow more 
easily during backpropagation, mitigating the vanish-
ing gradient problem. This makes ResNet-34 well-suited 
for tasks where capturing intricate features or patterns 
is crucial, as is often the case in medical image analysis. 
The ResNet-34 model was pretrained on the ImageNet 
dataset [25, 27], a large classification dataset, and then 
fine-tuned for our specific task. This process is com-
monly known as ‘transfer learning‘ [26]. The final layer of 
the model was modified to include two neurons, allowing 
for the distinction between pneumonia cases and normal 
cases.

When the CNN processes the classification task, the 
ability to locate the pneumonia will be lost due to the 
fully connected layer. In our study, we use global aver-
age pooling (GAP) in CNN for generating CAM. GAP 
outputs the average of the feature map at the last convo-
lutional layer. The weighted sum of those values is used 
to generate the final output [27]. Similarly, we compute 
a weighted sum of the feature maps of the last convolu-
tional layer to obtain CAM. And, the CAM for a particu-
lar category indicates the discriminative image regions 
used by the CNN to identify the pneumonia area. The 
algorithm flow chart is shown in Fig. 1.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Training and validation
Image processing
The raw images provided by the public dataset are con-
verted to PNG or JPEG format. The images were resized 
to 224*224. Because deep learning models usually require 
a lot of data for training. In general, the more the data, 
the better the performance of the model. Deep learn-
ing models cannot learn the pattern or function from 
the data without enough training data. Therefore, in our 
study, we used data augmentation technical to increase 
out data, such as horizontal flip, vertical flip and rotation. 
And last, before the image enters the network, the pixel 
values of the images are normalized to [0–1].

Training details
The cohort 1 was divided into training set, validation set 
and test set according to the ratio of 8:1:1. The ResNet-34 
model was based on the PyTorch framework and trained 
on two NVIDIA TITAN XP graphics processing units. 
Stochastic gradient descent (SGD) with a weight decay of 
0.0001 and momentum of 0.9 to optimize the detection 
model. We train 100 epochs with image batch size 128 on 
GPU, and the learning rate was set 0.0001. The loss func-
tion was classic cross-entropy with softmax. The training 

process lasted for 19 h. The X-ray images from cohort 2 
were enrolled for independent external validation.

Statistical analysis
Statistical analysis was performed using R software 
(version 3.5.2, R Foundation for Statistical Computing, 
Vienna, Austria). The area under curve (AUC) with 95% 
confidence intervals, accuracy, sensitivity and specific-
ity were selected as performance metrics for the deep 
learning model. And, in order to compare the detection 
performance of the model for viral pneumonia, bacterial 
pneumonia and COVID-19 pneumonia, the identification 
accuracy was used for evaluation. And proportion test 
(prop.test() in R) was used for significance test. P < 0.05 
indicated statistical significance.

Results
Data characteristics
The characteristics of X-ray images that from two pub-
lic datasets are shown in Table 1. Cohort 1 includes 1493 
viral pneumonia cases, 2780 bacterial pneumonia cases, 
and 1583 normal cases. And cohort 2 (External valida-
tion) contains 2600 viral pneumonia cases, including 
1300 cases of new coronary pneumonia and 1300 cases of 

Fig. 1  The algorithm flow chart
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other viral pneumonia. There are 1300 cases in the nor-
mal group. And no bacterial pneumonia in cohort 2.

The performance of ResNet-34
The performance results on the chest x-ray image data-
set were evaluated on two cohorts. Cohort 1 was divided 
into training set, validation set and test set. The per-
formance analysis presented in Table  2 shows that our 
model achieved an AUC of 0.9998 with an accuracy of 
99.34% a sensitivity of 99.34% and a specificity of 99.37% 
in the training dataset. Our model also achieved an AUC 
of 0.9949 on the test dataset with an accuracy of 98.29%, 
a sensitivity of 99.29% and a specificity of 95.57% perfor-
mance. In particular, we collect another publicly available 
(cohort 2) dataset to evaluate the accuracy and robust-
ness of the model. Finally, the model achieved compara-
ble results on the external test dataset (cohort 2) with an 
AUC of 0.9835 with an accuracy of 94.62% a sensitivity 
of 92.35% and a specificity of 99.15%. The model in this 
study has good robustness and generalization ability to 
handle different data. The ROC curve of training set, vali-
dation set and test set is presented in Fig. 2.

Subgroup analysis of the model on the test dataset and 
external validation dataset
In our study, cohort 1 have different pneumonias, includ-
ing viral pneumonia and bacterial pneumonia. For cohort 
2, although there is no bacterial pneumonia, there is 
COVID-19 pneumonia and other viral pneumonia. The 
model can well differentiate between pneumonia cases 

and normal cases. To further investigate the diagnostic 
performance for different pneumonias, we performed 
subgroup analyses of different pneumonias in test data-
set and external validation dataset to see if there were 
differences. Table 3 shows the identification accuracy for 
different pneumonias. From Table 3 we can find that the 
identification accuracy of the model for bacterial pneu-
monia is higher than that for viral pneumonia in the test 
dataset (98.92%>94.63%, P = 0.0095). And in external vali-
dation dataset, the identification accuracy of the model 
for viral pneumonia is higher than that for COVID-19 
pneumonia (98.54%>83.54%, P < 0.0001). The ROC curve 
is presented in Fig. 3.

Localization of Pneumonia regions by weakly supervised 
algorithms
In our study, we only used image-level labels, i.e. pres-
ence or absence of pneumonia, to train the diagnostic 

Table 1  Characteristics of X-ray images in two cohorts
Train-
ing set

Valida-
tion 
set

Test 
set

External 
validation 
set

Pneumonia Viral 1195 149 149 1300 
(COVID-19)
1300 (Viral)

Bacterial 2224 278 278 -
Normal - 1267 158 158 1300
All - 4686 585 585 3900

Table 2  Diagnostic efficacy of ResNet-34
AUC AUC (95%CI) Accuracy Sensitivity Specificity

Training set 0.9998 0.9997–0.9999 99.34% 99.36% 99.37%
Validation set 0.9979 0.9961–0.9993 98.46% 98.59% 98.10%
Test set 0.9949 0.9910–0.9981 98.29% 99.29% 95.57%
External validation set 0.9835 0.9806–0.9864 94.62% 92.35% 99.15%

Table 3  Identification accuracy for different pneumonias
Dataset Type Number of correct Number of wrong Number Identification accuracy
Test set Viral 141 8 149 94.63%
Test set Bacterial 275 3 278 98.92%
External validation set Viral 1281 19 1300 98.54%
External validation set (COVID-19) 1086 214 1300 83.54%

Fig. 2  The ROC curve of training set, validation set and test set
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model. The localization information of pneumonia was 
not used when training the model. And, we make used 
of CAM to understand and clarify the overall impact of 
pneumonia regions in a given X-ray image as far as diag-
nostic decisions of the model. Therefore, the pneumonia 
regions can be located by significant feature areas in the 
X-ray images. And we randomly selected 6 images in the 

external test dataset to show the localization accuracy. 
It can be seen from Fig.  4 that the result of the CAM 
method shows the ROI of the ResNet-34 model over-
laps with the pneumonia area. Meanwhile, We randomly 
selected 20 images and invited chest radiology experts to 
annotate the pneumonia area, and then we calculated the 
Intersection over Union (IoU) of the annotate the pneu-
monia area and the heat map generated by the CAM. 
Finally, it was found that the average IoU of the area 
marked by the doctor and the pneumonia area reached 
0.82.

Comparisons with state-of-the-art methods
In contrast to some previous studies [33–35], the net-
work framework employed in our research is charac-
terized by its lightweight and concise nature, making it 
easier to implement in clinical practice. Furthermore, 
our model exhibits superior performance, aiding doc-
tors in making informed clinical decisions. Specifically, 
we trained the model utilizing a public database, followed 
by independent external testing on another public data-
base. The external testing results underscored our mod-
el’s robustness and generalization capabilities. To better 
replicate cutting-edge methods, we sought comparisons 
with open-source code methods. Employing the same 
data, we thoroughly trained the model and compared it 
against an external test set. We successfully replicated the 
methodologies of the three aforementioned studies, with 
their respective models achieving accuracies of 87.82% 

Fig. 4  The pneumonia detection result by the CAM method(Green: GT; Red: Predicted)

 

Fig. 3  ROC curve for diagnosing of different types of pneumonia
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[36], 82.33% [37], and 85.79% [38] in the external test 
data, falling short of our study. Our model’s exceptional 
performance demonstrates the potential of our proposed 
model in assisting clinical decision-making processes. In 
our study we also tried other networks, such as VGGNet, 
GoogLeNet, MobileNet, DenseNet and EfficientNet. The 
detailed results are shown in Table 4.

Discussion
In this study, we proposed a deep learning weakly super-
vised algorithm for pneumonia detection. The model 
we developed can not only distinguish between normal 
cases and pneumonia cases, but also localize pneumo-
nia regions using image-level information. The model 
achieved a high AUC of 0.9949, with a accuracy of 
98.29%, sensitivity of 99.29% and specificity of 95.87%. 
And in the cohort 2, we also achieved competitive result 
with an AUC of 0.9835.

There are already studies on the diagnosis of pneumo-
nia. Rohit Kundu et al. used an ensemble of deep learning 
methods on the two pneumonia datasets [1]. Many deep 
learning models are combined for pneumonia detection, 
so the research method is more complicated and requires 
higher computing speed and capacity. In our study, we 
simplified the deep learning algorithm and achieved 
state-of-the-art results on external datasets. Compared 
with this study [18], they conducted a differential diagno-
sis study of different pneumonias, including COVID-19, 
normal, Viral and Bacterial pneumonia. And many stud-
ies have designed different deep learning algorithms for 
the diagnosis of pneumonia, but using machine learning 
(ML) methods has several limitations, including com-
plexity, overfitting and poor performance while training 
with small dataset size [18, 19, 21, 22, 28–32]. Some stud-
ies in above studies, the models were not independently 
validated with external dataset, and some models can-
not locate the pneumonia area. Therefore, we proposed a 
simple deep learning algorithm for pneumonia detection 
and used image-level weakly supervised information to 
localize the pneumonia region, and achieved remarkable 
performance.

Compared with some others studies [33–35], the net-
work framework used in this study is lighter and more 
concise, more convenient to apply in clinical practice, 
and the model performance is better, which can assist 
doctors in making clinical decisions. Specifically, we 
trained the model using a public database and conducted 
independent external testing using another public data-
base. The results of external tests illustrate the good 
robustness and generalization ability of our model. In 
order to better reproduce the most advanced methods, 
we found methods with open source code for compari-
son. We fully trained the model using the same data and 
compared it on an external test set. We have reproduced 
the methods of these three studies, and the three models 
have achieved 87.82% [36], 82.33% [37] and 85.79% [38] 
accuracy respectively in the external test data, and lower 
than our study. Our model’s excellent performance illus-
trates the potential of this study’s model to assist clinical 
decision-making.

From Table 3, we can see that the identification accu-
racy of the model for bacterial pneumonia is higher than 
that for viral pneumonia in the test dataset. The reason 
for this situation may be due to the fact that there are 
more bacterial pneumonia cases than viral pneumonia 
cases in the training data. Since there are more bacterial 
pneumonia cases than viral pneumonia cases, the deep 
learning model can better learn the features of bacterial 
pneumonia, resulting in better identification of bacterial 
pneumonia cases by the model. The same situation hap-
pens with external validation dataset. In the external vali-
dation dataset, the identification accuracy of the model 
for viral pneumonia is higher than that for COVID-19 
pneumonia. Patients diagnosed with COVID-19 present 
symptoms similar to pneumonia. And, some of the find-
ings frequently encountered in COVID-19 pneumonia 
are: ground glass opacities (GGO), consolidation, crazy 
paving and enlargement of subsegmental vessels (diam-
eter greater than 3  mm) in areas of GGO [39–43]. It is 
not completely consistent with other pneumonia mani-
festations [44]. In the training set, because the model was 
not trained with COVID-19 data and could not learn the 
features of COVID-19, so the model had a low identifi-
cation accuracy for COVID-19. Although the accuracy of 
the model for the identification of COVID-19 pneumonia 
is relatively low, it also achieves an accuracy of 83.54%, 
which has good clinical value for preliminary screening 
of COVID-19 pneumonia.

Besides, the CAM experiment was conducted to test 
whether pneumonia regions could be accurately distin-
guished from other normal regions. After testing, we 
found that the CAM are quite useful to precisely and 
accurately locate pneumonia regions in provided X-ray 
images. Since deep learning is a black box, it cannot be 
well explained. However, we found that the diagnosis of 

Table 4  Identification accuracy for different pneumonias
Method Accuracy Sensitivity Specificity
Ahmed [36] 87.82% 88.31% 86.85%
Rahimzadeh [37] 82.33% 81.12% 84.77%
Pramanik [38] 85.79% 82.50% 92.38%
VGGNet 80.26% 85.42% 69.92%
GoogLeNet 82.59% 88.54% 70.69%
MobileNet 88.82% 90.96% 84.54%
DenseNet 87.13% 89.15% 83.08%
EfficientNet 89.69% 88.85% 91.38%
Our 94.62% 92.35% 99.15%
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this study’s model is not incomprehensible and is trust-
worthy. The model pays more attention to the lesion 
area than normal area in the pneumonia X-ray images. It 
also indicates that the model can effectively distinguish 
the pneumonia area from the none-pneumonia area. It 
proves that our model is based on the pneumonia region 
to complete the diagnosis work. At the same time, we can 
also use image-level information to complete the detec-
tion of pneumonia lesions and locate it.

Our study had some limitations. First, the model was 
only trained and test on public datasets, and no further 
validation was performed on data from actual hospital 
institutions. Second, there is no bacterial pneumonia 
in the external validation dataset, so the model cannot 
be further validated for the diagnostic performance of 
bacterial pneumonia. For the above two limitations, in 
future study, we will collect data from our hospital to fur-
ther validate the model’s performance. Third, we did not 
perform quantitative analysis. Only some images were 
randomly selected to show whether the model detected 
pneumonia is accurate. Therefore, in future research, we 
will compare whether the pneumonia area marked by 
the doctor is consistent with the pneumonia area iden-
tified by the model. Fourth, the method we proposed is 
to use the threshold set by the result of the CAM, which 
can obtain the specific location of pneumonia. However, 
this threshold is fixed, so there may be some deviations in 
locating pneumonia regions in some images. In our sub-
sequent studies, we plan to make this threshold a learn-
able parameter for the model to increase the accuracy of 
localization.

In conclusion, we proposed a deep learning algorithm 
can accurately detect pneumonia and locate the pneumo-
nia area based on weak supervision information, which 
can provide potential value for helping radiologists to 
improve their accuracy of detection pneumonia patients 
through X-ray images.
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