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Abstract
Background The gold standard to diagnose fatty liver is pathology. Recently, image-based artificial intelligence (AI) 
has been found to have high diagnostic performance. We systematically reviewed studies of image-based AI in the 
diagnosis of fatty liver.

Methods We searched the Cochrane Library, Pubmed, Embase and assessed the quality of included studies by 
QUADAS-AI. The pooled sensitivity, specificity, negative likelihood ratio (NLR), positive likelihood ratio (PLR), and 
diagnostic odds ratio (DOR) were calculated using a random effects model. Summary receiver operating characteristic 
curves (SROC) were generated to identify the diagnostic accuracy of AI models.

Results 15 studies were selected in our meta-analysis. Pooled sensitivity and specificity were 92% (95% CI: 90–93%) 
and 94% (95% CI: 93–96%), PLR and NLR were 12.67 (95% CI: 7.65–20.98) and 0.09 (95% CI: 0.06–0.13), DOR was 182.36 
(95% CI: 94.85-350.61). After subgroup analysis by AI algorithm (conventional machine learning/deep learning), 
region, reference (US, MRI or pathology), imaging techniques (MRI or US) and transfer learning, the model also 
demonstrated acceptable diagnostic efficacy.

Conclusion AI has satisfactory performance in the diagnosis of fatty liver by medical imaging. The integration of AI 
into imaging devices may produce effective diagnostic tools, but more high-quality studies are needed for further 
evaluation.
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Background
Fatty liver disease has become more and more prevalent 
in recent years [1], making it the most common chronic 
liver disease in the world. Fatty liver can lead to steato-
hepatitis, liver fibrosis, cirrhosis, and even hepatocellular 
carcinoma, early detection and treatment may stop or 
even reverse the progression of fatty liver [2]. The best 
reference for diagnosis and classification of hepatic ste-
atosis is the liver biopsy [3]. Nevertheless, the high cost 
[4], sampling errors [5, 6], and procedure-related mor-
bidity and mortality [7] make it unsuitable for screening. 
Therefore, it is urgent and necessary to develop non-
invasive diagnostic tools to assess hepatic steatosis.

Imaging is a useful tool to assist decisions of diagno-
sis, staging, and treatment in clinical practice. Currently, 
the main diagnostic modalities by medical imaging for 
fatty liver include magnetic resonance imaging (MRI), 
ultrasound (US), and computed tomography (CT). Con-
ventional US is cheap, safe, and non-invasive, so it is the 
most commonly used modality for clinical screening [8]. 
But the diagnostic accuracy in the US is largely depen-
dent on personal judgment which may be susceptible to 
many factors. CT can effectively detect fatty liver without 
the influence of abdominal fat. But it is radioactive and 
expensive, besides, the classification of fatty liver by CT 
value may be too rough. MRI has high soft tissue reso-
lution and can quantify intrahepatic fat at the molecu-
lar level, so it is the main modality for the non-invasive 
quantification of hepatic steatosis [9]. However, the high 
cost and difficult operation may limit its clinical applica-
tion. In institutions with limited medical resources, the 
lack of imaging equipment and experts will make it chal-
lenging to obtain the accurate and immediate diagnosis 
through medical imaging [10].

Artificial intelligence(AI) has made significant 
advances since the 21st century, especially in medical 
imaging diagnosis [11], such as conventional machine 
learning(ML) and deep learning(DL). Concerning the 
application of AI in medical imaging, a large number of 
quantitative features can be extracted from radiological 
images using sophisticated image processing techniques, 
which are subsequently analyzed by traditional biosta-
tistical or AI models to diagnose or assess therapeutic 
responses. Several AI-assisted diagnostic models have 
been developed for fatty liver, such as Han et al. [12] who 
developed a classifier for the diagnosis of nonalcoholic 
fatty liver disease(NAFLD), obtaining 97% for sensitiv-
ity and 94% for specificity. The model was established by 
DL using US radio frequency (RF) data with reference to 
MRI-derived proton density fat fraction (PDFF). Many 
scholars are trying to improve the diagnostic efficacy of 
AI models by optimizing image quality, expanding sam-
ple size, and modifying algorithms.

To date, little meta-analysis has been conducted to 
evaluate the diagnostic performance of image-based AI. 
The study aimed to perform a systematic review and 
meta-analysis to assess the performance of image-based 
AI in the diagnosis of fatty liver.

Methods
Protocol registration and study design
The study was registered in the 
PROSPERO(CRD42023388607). The meta-analysis took 
the Preferred Reporting Items for Systematic Review and 
Meta-Analysis (PRISMA) guideline [13] as the reference.

Search strategy
We searched Embase, Pubmed, and Cochrane library for 
studies of image-based AI in fatty liver until December 
24, 2022. The search terms were as follows: “artificial 
intelligence”, “deep learning”, “machine learning”, “fatty 
liver”, “NAFLD”, “non-alcoholic fatty liver disease”, “ste-
atohepatitis”, “metabolic dysfunction-associated fatty 
liver disease” and “diagnosis, computer-assisted”. The 
detailed search strategies for each database were sum-
marised in Table S1.

Inclusion and exclusion criteria
We included all articles that used AI in the imaging 
diagnosis of hepatic steatosis. The inclusion criteria: (1) 
participants underwent fatty liver-related imaging; (2) 
references were accurately described. The exclusion cri-
teria: (1) duplicate publications; (2) non-English articles; 
(3) reviews, meta-analyses, comments, editorials, guide-
lines, and conference abstracts; (4) non-human samples; 
(5) pathological images, combined with non-image infor-
mation, without AI models; (6) studies without enough 
information to calculate true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) values. 
The titles and abstracts were independently screened 
according to the eligibility criteria by two reviewers 
(L-YD and Z-Q), and subsequently downloaded and 
reviewed the full text.

Data extraction
Two authors (L-YD and Z-Q) conducted the data extrac-
tion independently. Any disagreements about the data 
were determined with the third author(Y-XJ). Data 
extraction included authors, years, countries, study 
design, eligibility criteria, age, sample size, data source 
and range, imaging technique, reference, AI algorithm, 
and TP, FP, TN, FN values, which were used to calcu-
late sensitivity and specificity. For studies that developed 
more than one AI model, we selected the one with the 
best overall performance for analysis.
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Quality assessment
Two independent evaluators (L-YD and Z-Q) assessed 
the quality of all selected studies by the Quality Assess-
ment of Diagnostic Accuracy Studies-AI (QUADAS-AI) 
criteria [14]. The guideline includes four domains in the 
risk of bias and three domains of applicability (Table S2). 
The new tool, a combination of QUADAS-2 [15] and 
QUADAS-C [16], was specifically designed to assess the 
risk and suitability of bias in AI associated studies. All 
disagreements were discussed with a third collaborator 
(Y-XJ).

Statistical analysis
The quality of all selected studies was assessed by Rev-
Man using QUADAS-AI, the risk of publication bias was 
assessed by Stata software (version 17.0) and all other 
statistical analysis was conducted in Meta-disc (version 
1.4). Spearman’s correlation coefficient between the log 
of sensitivity and the log of (1-specificity) was calculated 
to test the threshold effects, and heterogeneity was tested 
using the I2 statistic. A random effects model was used 
to calculate pooled sensitivities, specificities, negative 
likelihood ratios (NLR), positive likelihood ratios (PLR), 
diagnostic odds ratios (DOR), and their 95% confidence 
intervals(CI) based on crude values of TP, TN, FP and 
FN values for each study. Summary receiver operating 
characteristic curves (SROC) were fitted to assess the 
accuracy of the AI models. The low, medium, and high 
accuracy were defined as the area under the curve (AUC) 
values of 0.5–0.7, 0.7–0.9, and 0.9-1 respectively [17]. 
Subgroup analyses were then performed: (1) AI algo-
rithm (conventional ML or DL); (2) region; (3) whether 
transfer learning was performed; (4) reference (US, MRI 
or pathology); (5)imaging techniques (conventional US, 
elastography or MRI). The risk of publication bias was 
assessed by Deeks funnel plots. Fagan plots were drawn 
to calculate the pre-test and post-test probabilities to 
evaluate the clinical value. P-values < 0.05 were then con-
sidered statistically significant.

Results
Study selection
The flow of searching and selecting articles was shown in 
Fig. 1. Finally, 15 articles [12, 18–31] were taken into the 
quantitative analysis. The description of all selected stud-
ies was presented in Table 1.

Quality assessment
The detailed results of quality assessments of included 
studies were presented in Figure S1. The risk of bias was 
shown in more than half of the studies for patient selec-
tion (n = 8) and index test (n = 15) because of the lack of 
detailed descriptions of included patients and appropri-
ate external validation.

Overall performance of AI models
The detailed information on contingency tables and per-
formance of AI models from 15 included studies was 
shown in Table S3. The meta-analysis indicated that 
image-based AI models were effective to diagnose liver 
steatosis with pooled sensitivity and specificity of 92% 
(95% CI: 90–93%) and 94% (95% CI: 93–96%), PLR and 
NLR of 12.67 (95% CI: 7.65–20.98) and 0.09 (95% CI: 
0.06–0.13), DOR of 182.36 (95% CI: 94.85-350.61), and 
SROC of 0.98. (Fig. 2).

Subgroup meta-analysis
We performed the subgroup analysis of AI algorithm, 
region, reference, imaging technique and transfer learn-
ing. In AI algorithm, the pooled sensitivity and speci-
ficity of 9 conventional ML studies were 94% (95% CI: 
91–96%) and 91% (95% CI: 87–94%), and were 91% 
(95% CI: 88–93%) and 97% (95% CI: 95–98%) in 6 DL 
studies. For different regions, 6 studies were conducted 
in Asia with pooled sensitivity and specificity of 96% 
(95% CI: 93–98%) and 92% (95% CI: 87–96%), 9 stud-
ies were in Europe and America with pooled sensitivity 
and specificity of 90% (95% CI: 88–92%) and 95% (95% 
CI: 93–97%). For different references, the sensitivities 
of US, pathology and MRI were 92%, 91% and 92%, and 
the specificities were 97%, 88%, and 90% respectively. For 
different imaging techniques, the sensitivities of conven-
tional US, elastography and MRI were 94%, 89% and 93%, 
and the specificities were 94%, 96%, and 81%. Two stud-
ies employed transfer learning with pooled sensitivity 
and specificity of 88% (95% CI: 85–91%) and 98% (95% 
CI: 97–99%), 13 studies did not perform transfer learn-
ing with pooled sensitivity and specificity of 95% (95% CI: 
92–96%) and 92% (95% CI: 89–94%). The details of sub-
group analysis were shown in Table S4.

Heterogeneity analysis
There was substantial heterogeneity between the 
included studies, with I2 = 60.1% (p = 0.001) for sensitivity, 
I2 = 63.8% (p < 0.001) for specificity, I2 = 65.8% (p < 0.001) 
for PLR, I2 = 41.0% (p = 0.049) for NLR, I2 = 47.2% 
(p = 0.022) for DOR. The Spearman correlation coeffi-
cient was − 0.148 (p = 0.598), indicating that there was no 
threshold effect. And the heterogeneity was reduced after 
subgroup analysis which were presented in Table S4.

Clinical value and publication bias
The post-test probability of image-based AI for the diag-
nosis of hepatic steatosis was 94%, much higher than the 
pre-test probability (50%), indicating that image-based 
AI is valid for the diagnosis of hepatic steatosis (Fig. 3a). 
And the Deeks funnel plot revealed no obvious publica-
tion bias of included studies (P = 0.38) (Fig. 3b).
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Discussion
AI has been widely used in medical imaging in recent 
years, so more and more AI models have been established 
to diagnose various liver diseases [32, 33]. We conducted 
an extensive literature search in medical databases, which 
was carefully screened and critically assessed by QUA-
DAS-AI. Ultimately, we found that AI models performed 
well in identifying liver steatosis by medical imaging.

AI aims to simulate, extend and expand human intel-
ligence [34]. Conventional ML is the method to achieve 
AI, which can use features extracted from various kinds 
of data to build prediction models through different algo-
rithms. However, it requires manual extraction of features 
[35] and the ability of conventional ML to learn from the 
data was limited [36]. DL is the advanced classification 

of conventional ML which can utilize multiple layers of 
deep neural networks for a deeper understanding of the 
data [37]. However, DL is prone to overfitting and usu-
ally requires more data [38]. Our subgroup analysis of 
the different algorithms showed that the sensitivity was 
higher in conventional ML, but the specificity, PLR, DOR 
and SROC were higher in DL. The results revealed the 
potential advantages of DL in the image-based diagnosis 
of liver steatosis.

Machine learning is commonly employed in biomedi-
cal fields. However, due to insufficient labeled data, the 
application of advanced machine learning algorithms in 
clinical settings is limited. Collecting labeled data is time-
consuming, energy-draining, and requires professional 
expertise. To address this problem, transfer learning can 

Fig. 1 The flow of searching and selecting articles
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transfer the acquired knowledge and models from one 
related task to another, leading to enhanced performance 
and generalization of the target task [39]. For instance, a 
recent study utilized transfer learning to diagnose corona 
virus disease (COVID-19) automatically through CT 
images with a remarkable accuracy of 99.60% [40]. In our 
subgroup analysis, we found that transfer learning led 
to higher specificity, PLR, and DOR, which highlighted 
the significance of transfer learning in image-based AI 
diagnosis of hepatic steatosis. However, only two studies 

exploited transfer learning, further studies are needed to 
confirm its effectiveness.

The gold standard for the diagnosis of hepatic steatosis 
is pathology, but there are diagnostic errors in the liver 
biopsy due to the limitation of sampling. The EASL Clini-
cal Practice Guideline [41] demonstrated that the MRI-
PDFF was the most accurate non-invasive method for 
detecting and quantifying steatosis. So the articles which 
used experts diagnostic US or MRI-PDFF as references 
were also selected in our study. We further conducted the 
subgroup analysis of different reference standards. The 

Fig. 2 Forest plot of all AI models. (a) The pooled sensitivity; (b) The pooled specificity; (c) The pooled positive likelihood ratio (PLR); (d) The pooled nega-
tive likelihood ratio (NLR); (e) The pooled diagnostic odds ratio (DOR); (f) The summary receiver operating characteristic curves (SROC)
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results showed a higher sensitivity and lower specificity 
in studies taking pathology as the reference compared to 
US and MRI. This result indirectly demonstrated the pre-
viously mentioned limitations of pathology in terms of 
sampling error. Only part of the liver tissues was taken 
for pathological examination. When steatosis was slight 
or focal, false negatives were likely to occur, resulting in 
low specificity of AI model diagnosis. Therefore, there 
is an urgent need for image-based AI models with high 
diagnostic efficacy, which can be integrated into imaging 
examination equipment.

For the imaging technique, conventional US, elastogra-
phy and MRI were included in the selected citations. The 
subgroup analysis of different imaging techniques showed 
that the sensitivity and DOR was higher in conventional 
US than elastography and MRI, which demonstrated that 
AI seems to be more useful in the conventional US. How-
ever, the researches on elastography and MRI were too 
limited, and the source of the data were different. In the 
future, further researches are needed to explore the AI-
assistant efficacy of different imaging techniques.

Additionally, in our subgroup analysis of different 
regions, we found the sensitivity, DOR and SROC were 
higher in Asia, the specificity and PLR were higher in 
Europe and America, which suggested that the regions 
of included population may influence the diagnostic effi-
cacy of AI for the diagnosis of hepatic steatosis. Most 
of the studies we included were based on US images, 
which are susceptible to body size and visceral fat [42]. 

Westerners are fatter than Asians with greater differences 
between populations, which may affect the accuracy of 
AI diagnosis. In the future, an accurate description such 
as body size and visceral fat of included populations will 
be needed, so that we can explore the potential influences 
on the diagnostic efficacy of AI for hepatic steatosis.

There are some advantages in our study. Our study 
shows the high efficacy of image-based AI in diagnosing 
hepatic steatosis without publication bias and may pro-
vide a reference for future clinical practice. Compared 
with the previous systematic review of AI-assistant in 
NAFLD [43], our study mainly explore the diagnostic 
performance of image-based AI for liver steatosis rather 
than fibrosis. The number of cited papers (15 citations) 
was increased and the subgroup analysis of different 
imaging techniques, AI algorithm, regions and so on may 
be helpful for future researches. In addition, we employed 
the new tool QUADAS-AI involve in AI-specific meth-
odology in our study. In the past, the most frequently 
utilized quality assessment tool for the diagnostic meta-
analysis was QUADAS-2. However, it does not involve 
in AI-specific methodology, such as generalizability and 
diversity in patient selection, development of training, 
validation and testing datasets, as well as definition and 
evaluation of an appropriate reference standard [44]. This 
new tool QUADAS-AI14 is an AI-specific extension of 
QUADAS-2 and QUADAS-C, includes four domains in 
the risk of bias and three domains in applicability con-
cerns, which is more comprehensive and suitable for AI 

Fig. 3 Clinical value and publication bias: (a) Fagan plot; (b) Deeks’ funnel plot
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associated studies. Some studies [45–47] related to AI 
models have also employed this new tool.

However, our study has some limitations: firstly, most 
of the studies were retrospective and did not clearly 
describe the participants, making it difficult to con-
trol many confounding factors. Secondly, none of the 
included studies underwent suitable external validation, 
so whether the model can be applied to other populations 
requires further validation. Finally, there was heteroge-
neity in our meta-analysis, but no significant threshold 
effects were found according to Spearman’s correlation 
coefficient and the heterogeneity was reduced in the sub-
groups which might be the potential resources of the het-
erogeneity. In the future, we hope that more prospective 
AI studies with external validation based on large sample 
sizes can accurately assess the performance of image-
based AI in diagnosing liver steatosis.

Conclusion
This meta-analysis suggested that AI had vast potential 
for image-based diagnosis of hepatic steatosis. The inte-
gration of AI into imaging devices may produce effec-
tive diagnostic tools, but more high-quality studies are 
needed for sufficient validation.
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