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Image-based Al diagnostic performance &0
for fatty liver: a systematic review and meta-
analysis
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Abstract

Background The gold standard to diagnose fatty liver is pathology. Recently, image-based artificial intelligence (Al)
has been found to have high diagnostic performance. We systematically reviewed studies of image-based Al in the
diagnosis of fatty liver.

Methods We searched the Cochrane Library, Pubmed, Embase and assessed the quality of included studies by
QUADAS-AI. The pooled sensitivity, specificity, negative likelihood ratio (NLR), positive likelihood ratio (PLR), and
diagnostic odds ratio (DOR) were calculated using a random effects model. Summary receiver operating characteristic
curves (SROC) were generated to identify the diagnostic accuracy of Al models.

Results 15 studies were selected in our meta-analysis. Pooled sensitivity and specificity were 92% (95% Cl: 90-93%)
and 94% (95% Cl: 93-96%), PLR and NLR were 12.67 (95% Cl: 7.65-20.98) and 0.09 (95% Cl: 0.06-0.13), DOR was 182.36
(95% Cl: 94.85-350.61). After subgroup analysis by Al algorithm (conventional machine learning/deep learning),
region, reference (US, MRI or pathology), imaging techniques (MRl or US) and transfer learning, the model also
demonstrated acceptable diagnostic efficacy.

Conclusion Al has satisfactory performance in the diagnosis of fatty liver by medical imaging. The integration of Al
into imaging devices may produce effective diagnostic tools, but more high-quality studies are needed for further
evaluation.
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Background

Fatty liver disease has become more and more prevalent
in recent years [1], making it the most common chronic
liver disease in the world. Fatty liver can lead to steato-
hepatitis, liver fibrosis, cirrhosis, and even hepatocellular
carcinoma, early detection and treatment may stop or
even reverse the progression of fatty liver [2]. The best
reference for diagnosis and classification of hepatic ste-
atosis is the liver biopsy [3]. Nevertheless, the high cost
[4], sampling errors [5, 6], and procedure-related mor-
bidity and mortality [7] make it unsuitable for screening.
Therefore, it is urgent and necessary to develop non-
invasive diagnostic tools to assess hepatic steatosis.

Imaging is a useful tool to assist decisions of diagno-
sis, staging, and treatment in clinical practice. Currently,
the main diagnostic modalities by medical imaging for
fatty liver include magnetic resonance imaging (MRI),
ultrasound (US), and computed tomography (CT). Con-
ventional US is cheap, safe, and non-invasive, so it is the
most commonly used modality for clinical screening [8].
But the diagnostic accuracy in the US is largely depen-
dent on personal judgment which may be susceptible to
many factors. CT can effectively detect fatty liver without
the influence of abdominal fat. But it is radioactive and
expensive, besides, the classification of fatty liver by CT
value may be too rough. MRI has high soft tissue reso-
lution and can quantify intrahepatic fat at the molecu-
lar level, so it is the main modality for the non-invasive
quantification of hepatic steatosis [9]. However, the high
cost and difficult operation may limit its clinical applica-
tion. In institutions with limited medical resources, the
lack of imaging equipment and experts will make it chal-
lenging to obtain the accurate and immediate diagnosis
through medical imaging [10].

Artificial intelligence(AI) has made significant
advances since the 21st century, especially in medical
imaging diagnosis [11], such as conventional machine
learning(ML) and deep learning(DL). Concerning the
application of AI in medical imaging, a large number of
quantitative features can be extracted from radiological
images using sophisticated image processing techniques,
which are subsequently analyzed by traditional biosta-
tistical or Al models to diagnose or assess therapeutic
responses. Several Al-assisted diagnostic models have
been developed for fatty liver, such as Han et al. [12] who
developed a classifier for the diagnosis of nonalcoholic
fatty liver disease(NAFLD), obtaining 97% for sensitiv-
ity and 94% for specificity. The model was established by
DL using US radio frequency (RF) data with reference to
MRI-derived proton density fat fraction (PDFF). Many
scholars are trying to improve the diagnostic efficacy of
AI models by optimizing image quality, expanding sam-
ple size, and modifying algorithms.
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To date, little meta-analysis has been conducted to
evaluate the diagnostic performance of image-based AL
The study aimed to perform a systematic review and
meta-analysis to assess the performance of image-based
Al in the diagnosis of fatty liver.

Methods
Protocol registration and study design
The study was registered in the

PROSPERO(CRD42023388607). The meta-analysis took
the Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) guideline [13] as the reference.

Search strategy

We searched Embase, Pubmed, and Cochrane library for
studies of image-based Al in fatty liver until December
24, 2022. The search terms were as follows: “artificial
intelligence’; “deep learning’, “machine learning’; “fatty
liver’, “NAFLD’, “non-alcoholic fatty liver disease”, “ste-
atohepatitis”, “metabolic dysfunction-associated fatty
liver disease” and “diagnosis, computer-assisted” The
detailed search strategies for each database were sum-
marised in Table S1.

Inclusion and exclusion criteria

We included all articles that used AI in the imaging
diagnosis of hepatic steatosis. The inclusion criteria: (1)
participants underwent fatty liver-related imaging; (2)
references were accurately described. The exclusion cri-
teria: (1) duplicate publications; (2) non-English articles;
(3) reviews, meta-analyses, comments, editorials, guide-
lines, and conference abstracts; (4) non-human samples;
(5) pathological images, combined with non-image infor-
mation, without Al models; (6) studies without enough
information to calculate true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) values.
The titles and abstracts were independently screened
according to the eligibility criteria by two reviewers
(L-YD and Z-Q), and subsequently downloaded and
reviewed the full text.

Data extraction

Two authors (L-YD and Z-Q) conducted the data extrac-
tion independently. Any disagreements about the data
were determined with the third author(Y-XJ). Data
extraction included authors, years, countries, study
design, eligibility criteria, age, sample size, data source
and range, imaging technique, reference, Al algorithm,
and TP, FP, TN, EN values, which were used to calcu-
late sensitivity and specificity. For studies that developed
more than one Al model, we selected the one with the
best overall performance for analysis.
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Quality assessment

Two independent evaluators (L-YD and Z-Q) assessed
the quality of all selected studies by the Quality Assess-
ment of Diagnostic Accuracy Studies-AI (QUADAS-AI)
criteria [14]. The guideline includes four domains in the
risk of bias and three domains of applicability (Table S2).
The new tool, a combination of QUADAS-2 [15] and
QUADAS-C [16], was specifically designed to assess the
risk and suitability of bias in Al associated studies. All
disagreements were discussed with a third collaborator
(Y-X]).

Statistical analysis

The quality of all selected studies was assessed by Rev-
Man using QUADAS-A], the risk of publication bias was
assessed by Stata software (version 17.0) and all other
statistical analysis was conducted in Meta-disc (version
1.4). Spearman’s correlation coefficient between the log
of sensitivity and the log of (1-specificity) was calculated
to test the threshold effects, and heterogeneity was tested
using the I statistic. A random effects model was used
to calculate pooled sensitivities, specificities, negative
likelihood ratios (NLR), positive likelihood ratios (PLR),
diagnostic odds ratios (DOR), and their 95% confidence
intervals(CI) based on crude values of TP, TN, FP and
EN values for each study. Summary receiver operating
characteristic curves (SROC) were fitted to assess the
accuracy of the Al models. The low, medium, and high
accuracy were defined as the area under the curve (AUC)
values of 0.5-0.7, 0.7-0.9, and 0.9-1 respectively [17].
Subgroup analyses were then performed: (1) Al algo-
rithm (conventional ML or DL); (2) region; (3) whether
transfer learning was performed; (4) reference (US, MRI
or pathology); (5)imaging techniques (conventional US,
elastography or MRI). The risk of publication bias was
assessed by Deeks funnel plots. Fagan plots were drawn
to calculate the pre-test and post-test probabilities to
evaluate the clinical value. P-values <0.05 were then con-
sidered statistically significant.

Results

Study selection

The flow of searching and selecting articles was shown in
Fig. 1. Finally, 15 articles [12, 18—31] were taken into the
quantitative analysis. The description of all selected stud-
ies was presented in Table 1.

Quality assessment

The detailed results of quality assessments of included
studies were presented in Figure S1. The risk of bias was
shown in more than half of the studies for patient selec-
tion (n=8) and index test (n=15) because of the lack of
detailed descriptions of included patients and appropri-
ate external validation.
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Overall performance of Al models

The detailed information on contingency tables and per-
formance of Al models from 15 included studies was
shown in Table S3. The meta-analysis indicated that
image-based Al models were effective to diagnose liver
steatosis with pooled sensitivity and specificity of 92%
(95% CI: 90-93%) and 94% (95% CIL: 93-96%), PLR and
NLR of 12.67 (95% CI: 7.65-20.98) and 0.09 (95% CL
0.06-0.13), DOR of 182.36 (95% CI: 94.85-350.61), and
SROC of 0.98. (Fig. 2).

Subgroup meta-analysis

We performed the subgroup analysis of Al algorithm,
region, reference, imaging technique and transfer learn-
ing. In AI algorithm, the pooled sensitivity and speci-
ficity of 9 conventional ML studies were 94% (95% CI:
91-96%) and 91% (95% CI: 87-94%), and were 91%
(95% CI: 88-93%) and 97% (95% CI: 95-98%) in 6 DL
studies. For different regions, 6 studies were conducted
in Asia with pooled sensitivity and specificity of 96%
(95% CIL: 93-98%) and 92% (95% CI: 87-96%), 9 stud-
ies were in Europe and America with pooled sensitivity
and specificity of 90% (95% CI: 88—92%) and 95% (95%
CIL: 93-97%). For different references, the sensitivities
of US, pathology and MRI were 92%, 91% and 92%, and
the specificities were 97%, 88%, and 90% respectively. For
different imaging techniques, the sensitivities of conven-
tional US, elastography and MRI were 94%, 89% and 93%,
and the specificities were 94%, 96%, and 81%. Two stud-
ies employed transfer learning with pooled sensitivity
and specificity of 88% (95% CI: 85-91%) and 98% (95%
CL: 97-99%), 13 studies did not perform transfer learn-
ing with pooled sensitivity and specificity of 95% (95% CI:
92-96%) and 92% (95% CI: 89—-94%). The details of sub-
group analysis were shown in Table S4.

Heterogeneity analysis

There was substantial heterogeneity between the
included studies, with I*=60.1% (p=0.001) for sensitivity,
1>=63.8% (p<0.001) for specificity, 1°=65.8% (p<0.001)
for PLR, I12°=41.0% (p=0.049) for NLR, 1*=47.2%
(p=0.022) for DOR. The Spearman correlation coeffi-
cient was —0.148 (p=0.598), indicating that there was no
threshold effect. And the heterogeneity was reduced after
subgroup analysis which were presented in Table S4.

Clinical value and publication bias

The post-test probability of image-based Al for the diag-
nosis of hepatic steatosis was 94%, much higher than the
pre-test probability (50%), indicating that image-based
Al is valid for the diagnosis of hepatic steatosis (Fig. 3a).
And the Deeks funnel plot revealed no obvious publica-
tion bias of included studies (P=0.38) (Fig. 3b).
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3251 records identified
1382 from Pubmed
1626 from Embase

243 from Cochrane

2463 of records after duplicates removed
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2463 of records screened [,

2387 of records excluded
non-English 70

Irrelevant topics 2018

Review, editorial and meta 265

Letters, case report and conference abstract 34

‘86 of full-text articles assessed for eligibility]_.. unsiutable paticipants 2

| 15 of studies included in meta-analysis ’

Fig. 1 The flow of searching and selecting articles

Discussion

AI has been widely used in medical imaging in recent
years, so more and more Al models have been established
to diagnose various liver diseases [32, 33]. We conducted
an extensive literature search in medical databases, which
was carefully screened and critically assessed by QUA-
DAS-AL Ultimately, we found that AI models performed
well in identifying liver steatosis by medical imaging.

Al aims to simulate, extend and expand human intel-
ligence [34]. Conventional ML is the method to achieve
Al which can use features extracted from various kinds
of data to build prediction models through different algo-
rithms. However, it requires manual extraction of features
[35] and the ability of conventional ML to learn from the
data was limited [36]. DL is the advanced classification

71 of full-text articles excluded
Unavailable for full text 3

not only imaging 3

no Al model 32

no original data 31

of conventional ML which can utilize multiple layers of
deep neural networks for a deeper understanding of the
data [37]. However, DL is prone to overfitting and usu-
ally requires more data [38]. Our subgroup analysis of
the different algorithms showed that the sensitivity was
higher in conventional ML, but the specificity, PLR, DOR
and SROC were higher in DL. The results revealed the
potential advantages of DL in the image-based diagnosis
of liver steatosis.

Machine learning is commonly employed in biomedi-
cal fields. However, due to insufficient labeled data, the
application of advanced machine learning algorithms in
clinical settings is limited. Collecting labeled data is time-
consuming, energy-draining, and requires professional
expertise. To address this problem, transfer learning can
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a Sensitivity (95% CI) b Specificity (95% Cl)
Li 2008 0.97 (0.90 - 1.00) #—— | Li2008 0.84 (0.64-0.95)
Héjek 2011 0.93 (0.80-0.98) —@—— | | Héjek2011 0.81 (0.65-0.92)
Acharya 2012 0.87 (0.60-0.98) ® Acharya 2012 1.00 (0.69 - 1.00)
Minhas 2012 0.93 (0.78-0.99) — M Minhas 2012 0.97 (0.87 - 1.00)
Ribeiro 2012 0.86 (0.70 - 0.95) —— | Ribeiro 2012 0.95 (0.83-0.99)
Ribeiro 2014 094 (0.81-0.99) ——®-—| Ribeiro 2014 092 (0.79-0.98)
Owjimehr 2015 1.00 (0.88 - 1.00) —— | Owjimehr 2015 095 (0.83-0.99)
Saba 2016 0.98 (0.90 - 1.00) -l Saba2016 0.97 (0.90 - 1.00)
Kuppili 2017 0.89 (0.74-0.97) ®—— | Kuppili 2017 0.85 (0.66-0.96)
Biswas 2018 1.00 (0.90 - 1.00) ——# Biswas 2018 1.00 (0.87 - 1.00)
8 Sharma 2018 0.98 (0.88 - 1.00) ——M—| Sharma 2018 0.93 (0.82-0.99)
— M| Han 2020 0.97 (0.90 - 1.00) ——@—| Han 2020 094 (0.79-0.99)
- Constantinescu 2021 0.89 (0.85-0.92) - Constantinescu 2021 0.98 (0.96-0.99)
— - Byra 2022 086 (0.78-0.92) ®—| Byra2022 092 (0.75-0.99)
——®-— | Destrempes 2022 0.89 (0.75-0.97) ] D pes 2022 0.79 (0.60-0.92)
® | Pooled Sensitivity = 0.92 (0.90 to 0.93) @ | pooled Specificity = 0.94 (0.93 to 0.96)
Chi-square = 35.12; df = 14 (p = 0.0014) Chi-square = 38.69; df = 14 (p = 0.0004)
0 0.2 0.4 0.6 0.8 1 Inconsistency (I-square) = 60.1 % 0 0.2 04 0.6 0.8 1 Inconsistency (l-square) = 63.8 %
Sensitivity Specificity
c Positive LR (95% CI) d Negative LR (95% CI
—— Li 2008 6.07 (2.47-14.91) - Li2008 0.04 (0.01-0.14)
—-- Hajek 2011 489 (2.49-9.58) — Hajek 2011 0.09 (0.03-0.28)
#——{| Acharya2012 1856 (1.23 - 280.74) . Acharya 2012 0.16 (0.05-0.51)
= ®—{| Minhas 2012 36.40 (5.25-252.55) ——— Minhas 2012 0.07 (0.02-0.26)
——®—— | Ribeiro 2012 17.14 (4.41-66.63) N Ribeiro 2012 015 (0.07-0.34)
— Ribeiro 2014 11.96 (4.03 - 35.54) — Ribeiro 2014 0.06 (0.02-0.23)
— Owjimehr 2015 15.74 (4.74 - 52.32) - Owijimehr 2015 0.02 (0.00-0.27)
——m—| Saba2016 3531 (9.00 - 138.54) G-m Saba 2016 0.02 (0.00-0.14)
N Kuppili 2017 6.00 (2.41-14.93) i Kuppili 2017 013 (0.05-0.33)
®-)| Biswas 2018 55.24 (3.54 - 861.75) - Biswas 2018 0.01 (0.00-0.22)
——— Sharma 2018 14.67 (4.91-43.80) — Sharma 2018 0.02 (0.00-0.17)
———— | Han2020 16.54 (4.06 - 59.51) —m—— Han 2020 0.03 (0.01-0.12)
~—l—| Constantinescu 2021 43.98 (19.90 - 97.20) | 1] Constantinescu 2021 0.11 (0.08-0.15)
— Byra 2022 1121 (2.95-42.54) - Byra 2022 0.15  (0.09-0.24)
—l— Destrempes 2022 431 (2.10-887) —a— Destrempes 2022 0.14 (0.05-0.35)
Lo Random Effects Model .; Random Effects Model
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tive likelihood ratio (NLRY); (e) The pooled diagnostic odds ratio (DOR); (f) The summary receiver operating characteristic curves (SROC)

transfer the acquired knowledge and models from one
related task to another, leading to enhanced performance
and generalization of the target task [39]. For instance, a
recent study utilized transfer learning to diagnose corona
virus disease (COVID-19) automatically through CT
images with a remarkable accuracy of 99.60% [40]. In our
subgroup analysis, we found that transfer learning led
to higher specificity, PLR, and DOR, which highlighted
the significance of transfer learning in image-based Al
diagnosis of hepatic steatosis. However, only two studies

exploited transfer learning, further studies are needed to
confirm its effectiveness.

The gold standard for the diagnosis of hepatic steatosis
is pathology, but there are diagnostic errors in the liver
biopsy due to the limitation of sampling. The EASL Clini-
cal Practice Guideline [41] demonstrated that the MRI-
PDFF was the most accurate non-invasive method for
detecting and quantifying steatosis. So the articles which
used experts diagnostic US or MRI-PDFF as references
were also selected in our study. We further conducted the
subgroup analysis of different reference standards. The
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Fig. 3 Clinical value and publication bias: (a) Fagan plot; (b) Deeks'funnel

results showed a higher sensitivity and lower specificity
in studies taking pathology as the reference compared to
US and MRL This result indirectly demonstrated the pre-
viously mentioned limitations of pathology in terms of
sampling error. Only part of the liver tissues was taken
for pathological examination. When steatosis was slight
or focal, false negatives were likely to occur, resulting in
low specificity of AI model diagnosis. Therefore, there
is an urgent need for image-based Al models with high
diagnostic efficacy, which can be integrated into imaging
examination equipment.

For the imaging technique, conventional US, elastogra-
phy and MRI were included in the selected citations. The
subgroup analysis of different imaging techniques showed
that the sensitivity and DOR was higher in conventional
US than elastography and MRI, which demonstrated that
Al seems to be more useful in the conventional US. How-
ever, the researches on elastography and MRI were too
limited, and the source of the data were different. In the
future, further researches are needed to explore the Al-
assistant efficacy of different imaging techniques.

Additionally, in our subgroup analysis of different
regions, we found the sensitivity, DOR and SROC were
higher in Asia, the specificity and PLR were higher in
Europe and America, which suggested that the regions
of included population may influence the diagnostic effi-
cacy of Al for the diagnosis of hepatic steatosis. Most
of the studies we included were based on US images,
which are susceptible to body size and visceral fat [42].

plot

Westerners are fatter than Asians with greater differences
between populations, which may affect the accuracy of
Al diagnosis. In the future, an accurate description such
as body size and visceral fat of included populations will
be needed, so that we can explore the potential influences
on the diagnostic efficacy of Al for hepatic steatosis.
There are some advantages in our study. Our study
shows the high efficacy of image-based Al in diagnosing
hepatic steatosis without publication bias and may pro-
vide a reference for future clinical practice. Compared
with the previous systematic review of Al-assistant in
NAFLD [43], our study mainly explore the diagnostic
performance of image-based Al for liver steatosis rather
than fibrosis. The number of cited papers (15 citations)
was increased and the subgroup analysis of different
imaging techniques, Al algorithm, regions and so on may
be helpful for future researches. In addition, we employed
the new tool QUADAS-AI involve in Al-specific meth-
odology in our study. In the past, the most frequently
utilized quality assessment tool for the diagnostic meta-
analysis was QUADAS-2. However, it does not involve
in Al-specific methodology, such as generalizability and
diversity in patient selection, development of training,
validation and testing datasets, as well as definition and
evaluation of an appropriate reference standard [44]. This
new tool QUADAS-AI' is an Al-specific extension of
QUADAS-2 and QUADAS-C, includes four domains in
the risk of bias and three domains in applicability con-
cerns, which is more comprehensive and suitable for Al
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associated studies. Some studies [45-47] related to Al
models have also employed this new tool.

However, our study has some limitations: firstly, most
of the studies were retrospective and did not clearly
describe the participants, making it difficult to con-
trol many confounding factors. Secondly, none of the
included studies underwent suitable external validation,
so whether the model can be applied to other populations
requires further validation. Finally, there was heteroge-
neity in our meta-analysis, but no significant threshold
effects were found according to Spearman’s correlation
coefficient and the heterogeneity was reduced in the sub-
groups which might be the potential resources of the het-
erogeneity. In the future, we hope that more prospective
Al studies with external validation based on large sample
sizes can accurately assess the performance of image-
based Al in diagnosing liver steatosis.

Conclusion

This meta-analysis suggested that Al had vast potential
for image-based diagnosis of hepatic steatosis. The inte-
gration of Al into imaging devices may produce effec-
tive diagnostic tools, but more high-quality studies are
needed for sufficient validation.
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