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Abstract 

Background Convolutional neural network-based image processing research is actively being conducted for pathol-
ogy image analysis. As a convolutional neural network model requires a large amount of image data for training, 
active learning (AL) has been developed to produce efficient learning with a small amount of training data. However, 
existing studies have not specifically considered the characteristics of pathological data collected from the workplace. 
For various reasons, noisy patches can be selected instead of clean patches during AL, thereby reducing its efficiency. 
This study proposes an effective AL method for cancer pathology that works robustly on noisy datasets.

Methods Our proposed method to develop a robust AL approach for noisy histopathology datasets consists 
of the following three steps: 1) training a loss prediction module, 2) collecting predicted loss values, and 3) sampling 
data for labeling. This proposed method calculates the amount of information in unlabeled data as predicted loss 
values and removes noisy data based on predicted loss values to reduce the rate at which noisy data are selected 
from the unlabeled dataset. We identified a suitable threshold for optimizing the efficiency of AL through sensitivity 
analysis.

Results We compared the results obtained with the identified threshold with those of existing representative 
AL methods. In the final iteration, the proposed method achieved a performance of 91.7% on the noisy dataset 
and 92.4% on the clean dataset, resulting in a performance reduction of less than 1%. Concomitantly, the noise selec-
tion ratio averaged only 2.93% on each iteration.

Conclusions The proposed AL method showed robust performance on datasets containing noisy data by avoiding 
data selection in predictive loss intervals where noisy data are likely to be distributed. The proposed method contrib-
utes to medical image analysis by screening data and producing a robust and effective classification model tailored 
for cancer pathology image processing in the workplace.

Keywords Active learning strategy, Noisy data, Cancer pathology images, Convolutional neural networks, Deep 
learning, Histopathology image analysis, Predicted loss

Background
Cancer is a major cause of death worldwide, character-
ized by high heterogeneity and significant barriers to 
extending human life expectancy [1, 2]. According to a 
World Health Organization survey, cancer is the leading 
or second leading cause of death [3]. The current stand-
ard for diagnosing cancer involves pathologists reviewing 
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glass slides with stained suspicious tissue under a high-
power microscope [4]. However, with an annual increase 
in cancer cases and a relatively scarce number of patholo-
gists, the workload of pathologists has increased, leading 
to approximately 3–9% of human errors in anatomical 
pathology [5, 6]. To reduce workload, there has been 
active research on deep learning (DL)-based models that 
analyze digitized whole-slide images (WSIs) [7–9].

To develop a DL-based model that analyzes WSIs, it is 
common to use “patch images,” which are relatively small 
images generated from WSIs [10–12]. WSIs are large dig-
ital images of actual slides created by a scanner, typically 
consisting of many gigapixels; up to 50,000 × 50,000 pix-
els. If we apply convolutional neural networks (CNNs), 
which are a representative DL architecture for image pro-
cessing, directly to WSI classification, there can be two 
significant drawbacks. First, down-sampling can result in 
the loss of detailed information, and second, CNNs can 
only learn some of the distinctive patterns that appear in 
multiple WSIs [13]. Therefore, it is advantageous to train 
a CNN with high-resolution patch images and predict a 
label for a WSI on the basis of patch-level information.

These high-performing CNN models require large 
amounts of labeled data [14]. The main challenge in build-
ing a high-quality dataset for CNN training is the labor-
intensive and time-consuming process of labeling medical 
images by expensive medical experts [15]. Recently, various 
methods, such as semi-supervision, transfer learning, and 
multi-instance learning, have been studied to overcome this 
labeling issue in medical image analysis [16]. Active learn-
ing (AL) is one approach that focuses on acquiring labels for 
the most informative data in an efficient manner, exploring 
how to efficiently acquire “real” labels. Unlike other meth-
ods, AL allows the DL model to actively select and preferen-
tially label the most informative data obtained from medical 
experts, to optimize the trade-off between labeling efforts 
and model performances [17]. The AL framework typically 
consists of a method for measuring the informativeness of 
each unlabeled data point, as shown in Fig. 1.

First, as shown in Fig. 1, the model selects informative 
data using a selection algorithm from an unlabeled data-
set and requests an oracle (i.e., medical expert) to label 
the queried images. Second, these labeled data are used 
to train the DL model. By repeating this process, the size 
of the labeled dataset gradually increases. Through this 
framework, a high-performance DL model can be trained 
at a low labeling cost.

In the context of AL, a model is initially trained with 
a small amount of labeled data (typically an arbitrary 
number selected by a researcher such as 40 [18], or 500 
[15]) and then repeatedly selects data to request labe-
ling from an oracle using an acquisition function (query), 
often based on the model’s uncertainty information [19]. 

Various AL strategies have been proposed for medi-
cal image analysis to reduce labeling costs. For instance, 
several studies have explored uncertainty in nuclear seg-
mentation within histopathological images, with some 
focusing on utilizing the posterior probability of the out-
put to compare model performance for breast and pan-
creatic cancer [20]. Another study introduced methods 
for measuring uncertainty using Bayesian CNNs spe-
cifically for skin cancer [19], while a more recent study 
proposed an uncertainty measurement approach that 
comprehensively considers both entropy and high confi-
dence scores in the context of breast cancer [21].

Recently, in the field of digital pathology, there have been 
studies that combine methods for removing false-labeled 
patch images with uncertainty-based AL strategies [22], 
or that consider both uncertainty and representation in 
patch-based analysis [15]. However, the use of an AL strat-
egy based on uncertainty can be challenging when dealing 
with noisy real-world industrial data, as most DL studies 
use clean or minimally noisy (dirty) publicly available data-
sets, potentially worsening performance when noisy sam-
ples are queried [23]. Noisy images can be generated in the 
workplace due to various issues, such as out-of-focus scan-
ning, missing tissue, air bubbles, poor staining, poor sec-
tioning, tissue artifacts, tissue folding, or poor dehydration 
[24, 25], leading to poor quality patch images. Therefore, 
there is a dire need to develop AL strategies that are suit-
able for noisy real-world industrial datasets.

In this study, we proposed a novel AL strategy for analyz-
ing histopathological images that minimize the selection of 
noisy data when querying data from an unlabeled set. The 
purpose of this study was to construct an AL strategy that 
can continuously improve the performance of histopatho-
logical patch classification models in situations where noisy 
data are included in the dataset. The proposed AL strategy 
was based on learning loss (LL) [26] and used a modified 
version of LossDiff [27] in the sampling stage of AL.

Methods
The primary goal of this research was to develop a robust 
AL approach for noisy histopathology datasets. The 
method consisted of three steps: 1) training a loss predic-
tion module (LPM), 2) collecting predicted loss values, 
and 3) sampling data for labeling (Fig. 2).

As shown in Fig. 2, in the training loss prediction mod-
ule (LPM) step, the backbone deep learning model and the 
LPM are trained. In the predicted loss values collection 
step, the predicted loss value of the correctly predicted 
data is collected to calculate the appropriate threshold val-
ues. Next, in the sampling step, the model calculates the 
prediction loss to select informative data from DU , which 
is filtered by the threshold value calculated in the training 
step, and then the high uncertainty data is sampled.
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Training LPM step
The first step of the proposed AL method was handled 
by the LPM. The LPM is attached to a deep network and 
trained with the backbone to predict the loss of input 
data. Therefore, LL is expected to be widely useful, as 
LPMs can be attached to any kind of DL networks. In 
this study we used Visual Geometry Group-16 (VGG-16, 
VGG Group, Oxford, UK) [28] as the backbone architec-
ture, without dropout. Figure 3 depicts a conceptual dia-
gram of the LPM, in which the second diagram depicts 
an expanded view of the first one.

To train the LPM simultaneously with the backbone 
model, we calculated the total loss value by summing 
the target model loss originating from the backbone 
and the loss of the LPM. The overall loss function is 
represented by Eq. (1).

In addition, it is recommended to use the margin-
ranking loss function to train the LPM for better 
performance [26]. The margin-ranking loss is a loss 
function that pairs samples within a batch to compare 
ranks. If the size of the mini-batch is B, we can create a 
B/2 data pair and train the LPM by considering the dif-
ferences between the loss prediction pairs. Therefore, 
the loss function for the LPM was defined as follows:

ε is the predefined positive margin and p is the pair of i, 
j. For example, if li is larger than lj and l̂i is greater than 

(1)Ltarget y, y + � · Lloss(l, l)

(2)
Lloss

(
l̂p, lp

)
= max

(
0,−�

(
li, lj

)
·

(
l̂i − l̂j

)
+ ε

)

s.t.�
(
li, lj

)
=

{
+1, if l̂i > l̂j
−1, otherwise

Fig. 1 Concept diagram of typical active learning (AL) framework. DL: deep learning
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l̂j+ε , the loss value is 0. By using this loss function, the 
LPM can learn to distinguish between informative and 
non-informative data and predict the loss value more 
accurately. The following Algorithm  1 represents the 
algorithm for training the LPM

Algorithm 1. Loss prediction module

Predicted loss collection step
One of the essential components of the proposed AL 
method is the predicted loss collection module (PLCM). 
The PLCM generates an appropriate threshold for each 
class based on the predicted loss value. Specifically, the 
PLCM observes the predicted loss ( bl ) based on the base-
line labeled dataset ( DL ). At this point, the loss results for 
instances that have been correctly classified as y = ŷ for 
each patch type (class) t , where y is the ground truth, ŷ is 
the model prediction, and t ∈ {D,M,N } , where D, M, N 
stands for a different disease class, respectively (the defini-
tions of these disease classes are provided in Dataset con-
struction Section), were recorded. For a batch b of m 
instances, the loss for correctly classified instances can be 
defined as bcl =

{
l̂c1, l̂c2, l̂c3 . . . l̂cn

}
 , where l̂cn denotes the 

predicted loss l of n correctly classified instances c . In addi-
tion, the loss for correctly classified instances and each 
patch type t within a batch were recorded and the average 
loss was obtained using the following Eq. (3):

(3)bcl(avg) =

(∑n
i=1lci

n

)

Fig. 2 The overall process of the proposed method
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where n is the total number of correctly classified 
instance c. Furthermore, while bcl(avg) was obtained from 
each batch, the final average value of bcl(avg)finalt was 
obtained by collecting all bcl(avg) from the last z epochs, 
as shown in Eq. (4), where k is the number of batches in 
each epoch.

In addition, it should be noted that bcl(avg)finalt has a 
different value depending on the patch type (i.e., D, M, 
N), thus if the number of the patch type is multiple t, 

(4)bcl(avg)final t ←

[(∑k
j=1bcl(avg)j

k

)

1

+

(∑k
j=1bcl(avg)j

k

)

2

+ · · · +

(∑k
j=1bcl(avg)j

k

)

z

]
1

z

bcl(avg)final= {bcl(avg)final1, bcl(avg)final2, . . . , bcl(avg)finalt  } . 
Finally, to avoid filtering out difficult cases, α was used 
as a hyperparameter and was multiplied to bcl(avg)finalt 
for generating a threshold that could be separately set 
for each patch type t, as shown in Eq. (5).

The following Algorithm  2 represents the algorithm 
for training predicted loss collection.

(5)thresholdt = at ∗ bcl(avg)final t

Fig. 3 A conceptual diagram of the Loss Prediction Module (LPM). GAP: global average pooling; FC: full connected layer; ReLU: Rectified Linear Unit
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Algorithm 2. Predicted loss collection

Sampling step
In the last step, the sampling module seeks to select 
informative samples, which is done by predicting the loss 
value in the LPM for all of the data contained in the DU . 
For a clean dataset, data with the highest predicted loss 
can be assumed to be the most informative. However, 
for a noisy dataset, this assumption may not hold. There-
fore, we sought to avoid selecting noisy data by remov-
ing those data with excessively high loss values from the 
selection candidates, based on the threshold calculated 
by the PLCM. Specifically, data with l̂  ≥ thresholdt for the 
predicated loss, were excluded from the selection candi-
dates [27]. In other words, our sampling module selected 
the top–k loss value data based on loss value among the 
data that satisfy “ ̂l  < thresholdt ,” where k is the number 
of samples selected for a particular class. Because each 
threshold and data selection were conducted based on 
the predicted patch type by the backbone model, the 
threshold for the predicted class was used to exclude 
noisy data, and the same amount of data was sampled 
for each prediction class. Finally, the sampled data were 
labeled by an oracle and utilized for model training. 
After the sampling step, we defined DUi+1 and DLi+1 , 
which were the datasets for the next iteration, as follows: 
DUi+1 = DUi - pl , DLi+1 = DLi + pl , where pl denotes the 
patches labeled by the oracle and can be defined as = 
{ pl1 , pl2 , pl3 , … pln}). A set of patches that maximize the 
sum of loss values when put into the loss prediction net-
work can be defined as selected patches, following Equa-
tion (6), in which Fl denotes loss prediction network and 
ps denotes selected (or sampled) patches. The following 
algorithm 3 represents the algorithm about the sampling 
for labeling.

Algorithm 3. Sampling for labeling

Experiment
Dataset construction
We constructed a large histopathology dataset extracted 
from stomach WSIs obtained from Seegene Medical 
Foundation, one of the largest diagnostic and pathology 
institutions in South Korea. These slides were stained 
with hematoxylin and eosin and scanned using a scan-
ner (Pannoramic Flash250 III, 3DHISTECH, Budapest, 
Hungary) at 200× magnification. The data were collected 
by the medical foundation and their use for research 
was approved by the Institutional Review Board (SMF-
IRB-2020-007) of Seegene Medical Foundation, as well 
as by the Institutional Review Board (KAIST-IRB-22-334, 
KH2020-116) of the Korea Advanced Institute of Science 
and Technology, the university that collaborated with the 
medical foundation. The medical foundation’s designated 
collection centers provided informed consent to use their 
tissue samples for clinical purposes. All experiments 
were performed in accordance with relevant guidelines 
and regulations provided by the two review boards. All 
patient records were completely anonymized, and all 
images were stored and analyzed only on the organiza-
tion’s server.

To train the model, two types of datasets are needed: 
the unlabeled dataset ( DU ) and the labeled dataset (DL) . 
The unlabeled dataset is a dataset containing all candi-
date patches that require labeling. Patches included in 

(6)argmaxS⊆DU ,|S|≤k

∑

s

Fl(ps)
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the unlabeled dataset cannot be used for training a model 
because they do not have labels (i.e., correct answers for 
classification). Therefore, in the process of AL, the model 
selects some patches with the highest amount of infor-
mation from the unlabeled dataset and asks an oracle 
for a label. On the contrary, the labeled dataset is a data-
set that includes labels assigned by an oracle. In order 
to build a labeled dataset, we randomly selected 1,000 
patches and used them in the first iteration in all experi-
ments. However, in subsequent iterations, the set of 
patches that made up the labeled dataset were changed as 
the amount of information of the patches changed while 
performing the AL experiment. Accordingly, the patches 
constituting the unlabeled dataset continuously changed.

To construct the unlabeled dataset, we collected 
600 WSIs from different patients, each of which was 
then converted into a number of 256 × 256-pixel-sized 
patches, resulting in a total of 118,531 patches. The over-
all process is depicted in the left box of Fig. 4. However, 
as mentioned earlier, poor-quality images can be gener-
ated due to scanning or slide quality issues, resulting 
in the generation of noisy (unclean) samples of patch 
images, as shown in the right box of Fig.  4. Out of the 
total patches, 6,920 were classified as noisy. In sum, the 
unlabeled dataset consisted of 111,611 clean patches and 
6,920 noisy patches.

For this study’s experiment, patch images used for 
training were restricted to three classes: 1) benign, 2) 
dysplasia, and 3) malignant. “Benign” refers to a diagnosis 
of non-neoplastic benign gastric mucosal lesions, includ-
ing gastritis and polyps. “Dysplasia” includes suspicious 
for (s/f ) and suspicious of (s/o) tubular adenoma with 
dysplasia of any grade (s/f, s/o); while ‘Malignant’ cov-
ers malignant neoplasms, including adenocarcinoma, 

(s/f, s/o) adenocarcinoma, (s/f, s/o) high-grade lym-
phoma, and any other (s/f, s/o) carcinoma or malig-
nant neoplasm. Thus, within the AL process, the model 
selected data from the DU , which could be classified into 
three classes or noisy images by an oracle. In addition, 
the test dataset for evaluating the trained model’s per-
formance with DL was constructed from images gener-
ated from 150 WSIs (50 per class), and a total of 30,523 
patch images (11,753 Benign, 8,281 Dysplasia, and 10,489 
Malignant) (Table 1).

Table 1 presents the dataset configuration, highlighting 
the DU inclusion of 118,531 patch images sourced from 
600 WSIs. Among them, certain images lacked sufficient 
meaningful information for classification into benign, 
dysplasia, or malignant categories, resulting in noisy 
patches labels. There was a total of 6,920 noisy patches, 
accounting for approximately 5.8% of all patches. As the 
experiment advanced, DL systematically increased the 
patch count, reaching a maximum of 10,000 in the final 
iteration. Each iteration involved the selection of 1,000 
samples. Additionally, test data, collected independently 
from DU , were used to evaluate the model’s performance.

Figure  5 shows examples of noisy and clean patches 
in DU . Figure 5(a) shows patches with no or little tissue 
components. During the scanning process, typical exam-
ples include the presence of blood and stain dust. In some 
cases, foreign substances located outside of the tissue 
were inadvertently captured by the scanner and trans-
formed into patches. Figure 5(b) specifically shows these 
patches, which presented difficulties in tissue capturing 
due to scanner errors or specific artifacts. Scanner focus-
out is a frequently encountered error that can impede tis-
sue capturing, and the presence of dust or air bubbles can 
also interfere with tissue capturing. In addition, there are 

Fig. 4 Patch image generation process. Generation using clean (black boxes) and noise (red boxes) patch images from a field pathology slide.
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patches that pose challenges in tissue classification due to 
folding that occurs during the slide creation process. In 
contrast, unlike the aforementioned noisy patches, clean 
patches contain sufficient tissue shape and information. 
Figure  5(c) displays these clean patches alongside their 
corresponding labels.

Implementation details
The proposed method was implemented in Python 
(Wilmington, DA, USA), using the PyTorch library on a 
server equipped with two NVIDIA RTX 3080 TI GPUs 
(Nvidia Corporation, Santa Clara, CA, USA). The goal of 
this study was to develop a robust AL strategy for indus-
trial applications using noisy data. In most AL studies, 
the efficacy of each AL method is typically assessed by 

Table 1 Summary of dataset construction

Slide Patch

DU Total 600 Clean 111,611

Noisy 6,920

Total 118,531

DL - 1st iteration 1,000

Available cost, k 1,000

Final iteration 10,000

Test Benign 50 Benign 11,753

Dysplasia 50 Dysplasia 8,281

Malignant 50 Malignant 10,489

Total 150 Total 30,523

Fig. 5 Examples of noisy and clean patches (a) noisy patches that occur during the imaging process, involving substances or objects that are 
irrelevant to the classification, or of no interest; b noisy patches where meaningful tissue imaging is hindered by scanner errors or the presence 
of other substances; c clean patches that contain sufficient information for an accurate classification by an oracle
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observing the model’s performance changes while vary-
ing data selection. Thus, tracking model performance 
changes associated with a chosen AL method is crucial. 
Because VGG16 possesses a relatively simpler structure 
than more advanced deep learning networks, it allowed 
us to easily track model performance. Moreover, instead 
of pretrained models, most AL research employs a learn-
ing method referred to as training from scratch, which 
involves training a neural network from the beginning. 
For these reasons, we chose VGG16 as our backbone 
model, training it from scratch. This CNN model was 
trained with the Stochastic Gradient Descent optimizer, 
and we set the batch size to 32, epoch size to 50, and 
learning rate to 0.001. Additionally, the backbone model 
used cross-entropy as a loss function, and the loss func-
tion of the LPM used the same margin-ranking loss as 
specified in Eq. (2).

Furthermore, we implemented 10 iterations of experi-
ments to examine the effectiveness of the AL method. 
The “available cost”  k,  which is the number of data 
selected for labeling by the AL method, was set to the 
value of 1,000. By repeating this 10 times, a total of 
10,000 patch images were selected in the last iteration. If 
noisy patches were selected during the AL process, they 
were excluded from the AL cycle because they could not 
be labeled. That is, pn is a set of noisy patches among the 
selected patches by the model, and pl is a set of label-
able patches. In each iteration, two sets pn and pl were 
excluded from DU , and pl was added to DL . Therefore, it 
can be represented as DUi+1 = DUi - pn - pl,DLi+1 = DLi + 
pl in the next iteration (i+1). In this experiment, because 
the model selects 1,000 patches in each iteration, the sum 
of the elements of the two sets pn and pl in each iteration 
was 1,000 (i.e., | pn| + | pl | = 1,000).

Comparison methods
To evaluate the effectiveness of the proposed method, 
we compared its performance by applying the proposed 
method and six different AL methods to the same back-
bone model. They were least confidence (LC), entropy, 
Bayesian AL by disagreement (BALD), LL, core-set, and 
random sampling (RS).

LC [29] queries the most uncertain examples with the 
lowest softmax confidence while predicting their labels. 
This method assumes that the model n-classes output 
nodes are denoted by −→z  and each output node is denoted 
by zj . Thus, j ∈[1, n-classes]. Then, for an output node zi 
from the model, the corresponding softmax is

(7)σ(zi) =
ezi∑
j e

zj

The softmax can then use the selected number of data 
points to select the label for which the model has the 
lowest confidence, as follows:

Entropy [30]-based AL computes the entropy from 
a softmax output vector. It is one of the basic AL meth-
ods that selects images for which the model is most 
uncertain. To quantify the uncertainty, entropy is used, 
and thus, images with maximum entropy are selected. 
While assuming the model has n-class output nodes and 
each output node is denoted by zj ( j ∈[1, n-classes]), the 
entropy can then be calculated as:

This algorithm selects k number of data points for label 
with the highest entropy.

BALD [19] is an AL method that operates under a 
Bayesian  setting and selects data that maximizes the 
mutual information between the predicted labels and 
model parameters. To implement BALD, dropout layers 
are added to the DL model so that it can be performed 
in a non-Bayesian setting. Stochastic forward passes are 
then performed through the dropout, and the difference 
in prediction entropy (mutual information) is measured. 
Finally, the data with the highest mutual information is 
selected for labeling.

LL [26] queries examples with the highest predicted 
loss by jointly learning an LPM. Unlike other existing 
uncertainty-based AL methods that rely on additional 
predictive loss information from the model, LL uses a 
dedicated module to predict the loss values and selects 
data based on these predictions.

Core-set [31] is the most popular representativeness-
based AL method, which places the data in a feature 
space and then selects the data that contain the most 
diverse samples as informative samples. Among the 
core-set-based methods, we used the k-greedy method. 
This method aims to select k data points that minimize 
the radius of the subgraph when placing data in the fea-
ture space and repeatedly selecting the furthest data 
point from one randomly selected data point to pro-
duce k subgraphs covering all data points. As a result, 
the core-set is a method for selecting the most diver-
gent k-examples with the highest coverage in a repre-
sentative space.

Finally, the RS method is a non-AL approach that ran-
domly selects data without considering their uncertainty 
or representativeness.

(8)argminS⊆DU ,|S|≤k

∑
S
(argmaxj(σ (

−→
z )))

(9)Entropy = −
∑

j

σ

(
zj
)
∗ log

(
σ

(
zj
))
.
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Results
Predicted loss value analysis
We first compared the predicted loss values of track-
able noisy data and clean data included in DU . Repre-
sentative types of distributions were chosen as typical 
examples from the distributions generated during three 
trials of the AL method (LL) with 10 iterations each, 
resulting in a total of 30 iterations for DU (Fig. 6). Most 
noisy data were found to have relatively high predicted 
loss values. Figure 6(a) shows the result of operating the 
LPM for the entire unlabeled data, while Fig. 6(b) shows 
the result of classifying the same data by the predicted 
class. We identified three main types of noisy data, with 
Type 1 showing a large distribution of noisy data in the 
middle position. When classifying them by predicted 
class and creating a distribution (Fig.  6[b]), each class 
still had a large number of distributions at a high-loss 
location. Therefore, we expected that different thresh-
olds would work for each class, as we proposed. Thus, 
the proposed method included the selection of clean 

and beneficial data below the threshold by computing 
different thresholds for each class.

Sensitivity analysis for alpha
Tables 2 and 3 present the results of a sensitivity analy-
sis based on alpha values, along with the correspond-
ing noise selection results. Alpha represents the weight 
value at that determines the threshold in Eq. (5). We 
evaluated the model’s performance and the ratio of 
noise selection by incrementally increasing this weight 
value from a low starting point. In the ‘no threshold’ 
case, the model had a high proportion (35%) of noisy 
data. Table 3 shows the average number of noise selec-
tions that occurred in 10 iterations and five trials. For 
instance, the value “353.1” means that, on average, 353 
out of 1,000 noisy samples were selected. As a result, the 
average performance was low, and the model’s perfor-
mance was relatively unstable. When we increased the 
alpha value, we observed that the rate of noise selection 
decreased. However, performance no longer improved 

Fig. 6 Example of the distribution of predicted loss values (a) Distribution types when predicting the loss with a trained LPM on the entire 
unlabeled dataset. Most of the noisy data aligns with the high-loss location similar to informative data. b Distribution obtained by predicting 
the loss with the same trained LPM as in (a) and classifying it into predicted classes. Within these predicted classes, it can be observed that noisy 
data are distributed in the higher loss location compared to informative data
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in larger alpha intervals (a = 1.1 and 1.2). As the alpha 
value increased, the model tended to select data with 
relatively low loss values, which reduced the benefits of 
the selected data and failed to effectively increase per-
formance. Nevertheless, the proposed method achieved 
high performance with a low noise selection ratio. We 
applied different alpha values for each class, using “1.0” 
for Benign, “1.1” for Dysplasia, and “1.0” for Malignant.

Table  3 shows the number of noise selections by the 
model in five trials. The “Total” item is the average of the 
total number of noise selections in the five trials. In each 
trial, the first iteration is excluded from the noise selec-
tion amount analysis because clean data are used fixedly 
at the first iteration. Therefore, the “mean” item is a value 
obtained by dividing the total item value by nine. The 
N-ratio refers to the percentage of noise selected, in other 
words, the ratio of noisy data out of the 1,000 data points 
selected by the model in each iteration.

Comparative performances of the AL methods
The performances of five alternative AL methods (i.e., 
LC, entropy, BALD, core-set, random, and proposed) 
were first evaluated by analyzing the mean and standard 
deviation of the accuracy obtained from each of the mod-
els. We compared the accuracies of the methods in clean 
and noisy datasets, and also compared and analyzed the 

amount of noisy data among the data selected by each of 
the AL methods. Figure  7 presents the accuracy meas-
urements of each AL method in an environment where 
real-world noise can be used. We measured the perfor-
mances at each iteration while increasing the size of the 
labeled data over 10 iterations. In the first iteration, we 
trained all models with the same clean data. Additionally, 
we conducted experiments five times for each method 
and calculated their means and variances. More spe-
cifically, Fig.  7(a) compares the uncertainty-based AL 
method (LC, entropy, BALD) with the proposed method. 
These AL methods operating on clean datasets had a per-
formance of over 90% in the 10th iteration, which was 
slightly lower than that of the proposed method. How-
ever, when we conducted the same experiment on the 
noisy dataset, the overall average performances of these 
AL methods decreased, and the variance increased. In 
contrast, the proposed method confirmed that the differ-
ence in tendency between the results of performing AL 
with clean data and the results of performing AL with 
noisy data was not noticeable and the variance remained 
low. Figure 7(b) compares the core-set and RS methods, 
which are representativeness-based methods, with the 
proposed method. The core-set method had a low over-
all performance due to the large amount of computa-
tion required. In the case of the RS method, it showed a 

Table 2 Sensitivity analysis for alpha (accuracy)

Table 2 shows the change in the accuracy of the model according to the change in the alpha value. We obtained the mean and standard deviation at each iteration 
after five trials for one alpha value. One trial includes 10 iterations and after 10 iterations, the next trial can be processed

LL Learning loss

Noisy dataset Clean dataset

a No threshold (LL) 0.5 0.8 1 Proposed 1.1 1.2 LL Proposed

1 0.810 ± 0.012 0.812 ± 0.010 0.808 ± 0.014 0.815 ± 0.015 0.803 ± 0.007 0.811 ± 0.009 0.808 ± 0.017 0.805 ± 0.004 0.809 ± 0.004

2 0.794 ± 0.040 0.861 ± 0.006 0.817 ± 0.028 0.850 ± 0.020 0.856 ± 0.027 0.833 ± 0.025 0.839 ± 0.023 0.786 ± 0.124 0.846 ± 0.010

3 0.821 ± 0.035 0.808 ± 0.137 0.847 ± 0.030 0.868 ± 0.014 0.864 ± 0.032 0.842 ± 0.034 0.863 ± 0.015 0.855 ± 0.042 0.873 ± 0.013

4 0.815 ± 0.064 0.866 ± 0.011 0.876 ± 0.020 0.880 ± 0.014 0.881 ± 0.026 0.863 ± 0.017 0.860 ± 0.019 0.897 ± 0.012 0.892 ± 0.011

5 0.857 ± 0.044 0.675 ± 0.222 0.892 ± 0.010 0.881 ± 0.013 0.893 ± 0.018 0.892 ± 0.005 0.876 ± 0.029 0.827 ± 0.098 0.902 ± 0.019

6 0.859 ± 0.018 0.898 ± 0.010 0.879 ± 0.015 0.885 ± 0.028 0.899 ± 0.009 0.897 ± 0.009 0.887 ± 0.012 0.894 ± 0.027 0.892 ± 0.031

7 0.843 ± 0.048 0.870 ± 0.027 0.879 ± 0.035 0.905 ± 0.005 0.897 ± 0.021 0.893 ± 0.014 0.888 ± 0.011 0.903 ± 0.007 0.910 ± 0.009

8 0.897 ± 0.019 0.894 ± 0.025 0.906 ± 0.004 0.901 ± 0.014 0.908 ± 0.007 0.892 ± 0.022 0.873 ± 0.020 0.907 ± 0.010 0.912 ± 0.015

9 0.882 ± 0.045 0.882 ± 0.033 0.894 ± 0.021 0.904 ± 0.015 0.914 ± 0.007 0.878 ± 0.045 0.895 ± 0.010 0.882 ± 0.033 0.908 ± 0.019

10 0.863 ± 0.062 0.890 ± 0.019 0.898 ± 0.014 0.917 ± 0.006 0.917 ± 0.004 0.899 ± 0.016 0.888 ± 0.008 0.896 ± 0.014 0.924 ± 0.005

Table 3 Sensitivity analysis for alpha (noise selection)

0 (LL) 0.5 0.8 1 Proposed 1.1 1.2

Mean 353.1 116.4 96.3 80 29.3 24.9 16.6

Total 3177.6 1047.4 866.6 720.4 263.4 224 149.6

N-Ratio 35.31% 11.64% 9.63 8.00% 2.93% 2.49% 1.66%
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higher variance when learning from a clean dataset and a 
decrease in stability when learning from a noisy dataset. 
Both methods showed poor performances, relative to the 
proposed method.

Figure  7 (b) shows that both the representativeness-
based method and the RS method, which induced the 
selection of various data, showed poor overall perfor-
mances, supporting the idea that selecting data with 
higher uncertainty than representativeness is more 

effective in improving the model’s performance in learn-
ing pathological tissue image classification. However, a 
relatively low variance was observed in the core-set and 
RS methods, indicating that learning various data with 
representations of the stability of model performance 
changes had a lasting effect on model training.

The entropy and the proposed methods had an accu-
racy of over 90% from the seventh iteration on the clean 
dataset and maintained a performance of more than 90% 

Fig. 7 Accuracy comparison over AL methods with clean and noisy datasets. a Comparison between the proposed and uncertainty-based 
methods. The results on a clean dataset are presented on the left, while the results on a noisy dataset are displayed on the right. In each 
experimental trial, there were 10 sampling iterations, and this process was repeated five times for each method to calculate the accuracy. The figure 
shows the average and standard deviation of each iteration from the five trials. b Comparison of random sampling, coreset, and proposed methods, 
using the same experimental setup as in (a). Abbreviations AL active learning, LC least confidence, BALD, Bayesian active learning by disagreement, 
LL: learning loss; std: standard deviation
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until the 10th iteration, the final iteration. Moreover, the 
proposed method showed a steady increase in perfor-
mance up to the 10th iteration, where it had its highest 
performance. For some AL methods, the performance 
did not increase gradually and, in general, we observed a 
higher variance than with the proposed method, imply-
ing that those models’ performances can be highly sensi-
tive to the data selected in each iteration.

Moreover, Fig.  7 provides a comparison of the per-
formance changes on the noisy dataset. Most AL mod-
els showed a decrease in average performance and an 
increase in variance. In contrast, the proposed method 
demonstrated robust performance against real-world 
noise, with only a slight performance reduction on the 
noisy dataset. Specifically, the proposed method had 
91.7% accuracy on the noisy dataset, revealing a perfor-
mance reduction of only 0.7% compared to when it was 
trained under the clean dataset condition. In contrast, 
other AL methods had a 2% to 7% performance reduction 
on the noisy dataset when compared to the clean dataset 
condition.

Comparative noise selection of the AL methods
To delve into the performance differences under the 
noisy conditions, we recorded the amount of noisy data 
selected by each AL method during the aforementioned 
experimental process and compared the results. The 
results are graphically summarized in Fig. 8.

Further, Fig. 8 shows the cumulative quantity of noisy 
data selected by each AL method in terms of iterative 
performance. Methods that measure uncertainty, such 
as BALD and entropy, consistently selected a significant 
amount of noise compared to other methodologies. The 
core-set and RS methods tended to select a relatively 
small amount of noisy data because various data were 
selected. Nevertheless, the proposed method, an AL 
method for selecting data, tended to select the smallest 

amount of data, except for intervals where noisy data 
were prevalent. Table  3 shows the average amount of 
noisy data selected in each iteration. For the first itera-
tion, the same 1,000 clean data points were used, thus it 
was not included in the average calculation. Additionally, 
the ratio of noise selected in each iteration was calculated 
and is presented in the N-Ratio row of Table 3. N-Ratio 
represents the ratio of the number of data correspond-
ing to noisy data among the 1,000 data points selected 
for each iteration and was calculated using the following 
equation.

As shown in Table  4, the proposed method selected 
an average of 29.3 noisy data points out of 1,000 data 
points in each iteration, resulting in an average noisy 
data ratio of 2.93% and a clean data selection ratio of 
97.07%. In contrast, the entropy method selected approx-
imately 4,000 noisy data points throughout the experi-
ment, which means that more than 400 noisy data points 
were selected per iteration. Therefore, the labeled data 
obtained by the entropy method only accounted for 
approximately 56% of the total data, which was signifi-
cantly lower than the proposed method’s labeling acquisi-
tion rate of approximately 97%. Additionally, in the case 
of the core-set or RS method, various data were selected, 
resulting in a noisy data ratio of approximately 6%, which 
was similar to the 5.8% ratio of the total data.

Comparisons of performance in the final iteration
Table  5 presents the accuracy scores of all of the afore-
mentioned methods obtained in the final iteration for 
clean and noisy datasets. The methods that measure 
uncertainty, such as BALD and entropy, consistently 
selected a significant amount of noise compared to the 
other methods. The core-set and RS methods tended to 

(10)N − Ratio =
(mean of noise slection)

1000
× 100

Fig. 8 A cumulative graph depicting the number of noise data selections over iterations by alternative AL methods. AL: active learning; LC: least 
confidence; BALD: Bayesian active learning by disagreement; RS: random sampling; LL: learning loss
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select a relatively small amount of noisy data because a 
large number of noisy data was distributed in sections 
of relatively high uncertainty values and various levels of 
data were selected by the two methods. Nevertheless, the 
proposed method tended to select the smallest amount 
of noisy data, except for intervals where noisy data were 
prevalent. Table 6 also shows the number and proportion 
of noisy data selected by each method. A high N-ratio 
means that more noisy data is included in the selected 
data. The proposed method showed the lowest level of 
noise selection among the alternative AL methods.

Discussion
The objective of this study was to develop a robust AL 
method against a noisy histopathological dataset. Con-
structing a CNN-based DL system requires a pathologist 

to perform image-labeling tasks [15, 20, 27]. AL has been 
studied to reduce the workload of the labeling by selec-
tively labeling data that are more effective for learning, 
which lowers labeling costs and reduces the workload of 
an oracle [7, 22, 32]. However, in real-world industrial 
environments, various forms of noisy data are included 
in WSIs [24, 25, 33]. If the model selects noisy data, an 
oracle’s workload is not effectively reduced. To address 
this problem, this paper proposes a new method to select 
data with predictive losses below a certain threshold to 
develop a robust AL method.

Pathological datasets can be noisy for a variety of rea-
sons, such as interference during image capture or data 
conversion, mislabeled data, or out-of-distribution 
samples. Previous studies have addressed this issue by 
removing noise from the images or separating the noisy 

Table 4 Number of noisy data selections by the AL methods in each iteration

LC Least confidence, BALD Bayesian active learning by disagreement, LL Learning loss, RS Random sampling, N-Ratio Noise-ratio

Iteration LC Entropy BALD LL RS Core-set Proposed

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 38.2 191.0 114.6 878.4 60.3 326.3 15.2

3 132.0 660.0 396.0 626.4 57.8 55.0 28.2

4 86.1 430.6 258.3 667.8 61.8 17.7 20.4

5 114.3 571.4 342.8 558.4 57.5 30.3 36.0

6 74.6 373.0 223.8 161.2 53.3 101.3 25.8

7 50.7 253.4 152.0 115.2 60.0 9.3 31.0

8 148.2 740.8 444.5 35 65.5 7.7 33.8

9 88.5 442.6 265.6 62 60.5 7.7 37.0

10 67.0 335.2 201.1 73.2 59.0 6.0 36.0

Mean 88.8 444.2 266.5 353.1 59.5 62.36 29.3

Total 799.6 3998 2398.8 3177.6 535.5 561.3 263.4

N-Ratio 8.9% 44.4% 26.7% 35.3% 6.0% 6.2% 2.93%

Table 5 Accuracy and standard deviation scores obtained in the final iteration for clean and noisy datasets

Abbreviations LC Least confidence, BALD Bayesian active learning by disagreement, RS Random sampling

Dataset LC Entropy BALD RS Core-set LL Proposed

Clean 0.912 ± 0.014 0.909 ± 0.013 0.916 ± 0.007 0.907 ± 0.012 0.859 ± 0.017 0.896 ± 0.014 0.924 ± 0.005

Noisy 0.878 ± 0.027 0.877 ± 0.028 0.838 ± 0.094 0.886 ± 0.021 0.850 ± 0.018 0.863 ± 0.062 0.917 ± 0.004

Table 6 Total noise selection by each AL method

Abbreviations AL Active learning, LC Least confidence, BALD Bayesian active learning by disagreement, RS Random sampling

LC Entropy BALD RS Core-set LL Proposed

Mean 88.8 444.2 266.5 59.5 62.36 353.1 29.3

Total 799.6 3998 2398.8 535.5 561.3 3177.6 263.4

N-Ratio 8.90% 44.40% 26.70% 6.00% 6.20% 35.3% 2.93%
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data. There are studies aimed at alleviating the interfer-
ing image problems by utilizing generative model-based 
methods and removing perturbations that occur within 
the image [34–37]. On the other hand, there are stud-
ies that have also been conducted to separate noisy data. 
These studies utilize the features of noisy data in a data-
set to perform different processing on noisy vs. clean 
data and to filter out noisy data from clean data [38, 39]. 
Additionally, Ponzio et  al. [33] applied Bayesian neural 
networks to measure the uncertainty of the data and to 
remove data with high uncertainty. Through this method, 
they filtered spurious data, such as blood, fat, glass, and 
stroma, for pathological classification. Ashraf et  al. [27] 
proposed a patch-data cleaning method called LossDiff, 
which automatically sets an appropriate threshold based 
on the batch average loss for each class.

The proposed AL framework combined uncertainty-
based AL with uncertainty-based data-filtering methods. 
We adopted LL [26] as an informative image selection 
method, which has several advantages. First, it is simple 
and task-agnostic, making it suitable for use with deep 
networks. Deep networks are trained by minimizing a 
single loss, regardless of task type, number of tasks, or 
complexity of architecture, which makes LL useful for 
various purposes, as long as the LPM can be attached. 
Secondly, LL predicts loss values for unlabeled data, 
making it possible to calculate thresholds for filtering 
data collected during the training stage. Finally, LL can be 
utilized after training to select informative data.

We also focused on data-filtering methods among vari-
ous existing data-cleaning methods. We used a modi-
fied version of LossDiff [27]. We induced the model to 
generate thresholds by collecting the predicted loss in 
the training stage and selecting data with lower-than-
threshold loss values in the sampling phase, thus allowing 
the model to select appropriate and informative training 
data. This is important for robust AL on real-world noisy 
datasets where noise and informative data are mixed. 
Most data filtering methods consider data with high 
uncertainty to be noisy data, which have a high poten-
tial for both noisy and informative data. Therefore, our 
proposed framework ensured that the model selected 
informative data and filtered out noisy data.

Additionally, we confirmed the tendency of the pre-
dicted loss values of the noisy data and clean data and 
their distribution. The results showed that the noisy 
data were distributed in a high uncertainty (i.e., high 
predicted-loss) section in each prediction class distribu-
tion. Therefore, different threshold settings were required 
depending on the prediction class for proper thresh-
old generation. Subsequently, a sensitivity analysis was 

performed on the alpha value to select an appropriate 
value. The results of the sensitivity analysis demonstrated 
a performance change in the proportion of noisy data in 
the selected data as the alpha value gradually increased. 
We experimentally found alpha values that showed good 
performance, while also selecting less noise, and showed 
the best results when the values were set differently, 
according to the predicted class (Benign: “1.0”, Dysplasia: 
“1.1”, Malignant: “1.0”).

In the 10th iteration on the noisy dataset, our model 
had an accuracy of 0.917, with a performance reduc-
tion of less than 1% (0.924–0.917), and it was confirmed 
that only 29.3 noisy data points were selected on average 
from 1,000 selected data points. We performed compari-
sons with other methodologies in repeated experiments 
with corresponding alpha values. The proposed method 
showed indistinguishable performance differences on 
clean datasets and noisy datasets, and a lower numerical 
noise selection ratio than other AL methods. The study 
results clearly showed that the performance of the model 
generated by the proposed method was robust, even in 
noisy environments.

Tables 5 and 6 provide an overview of the results from 
our experimental study. On the 10th iteration on the 
noisy dataset, the proposed method showed a mean 
of accuracy and standard deviation of 0.917 and 0.004, 
respectively, unlike other methods with a 3–7% perfor-
mance reduction from the clean dataset. Our proposed 
method exhibited only a slight performance reduction 
of 0.7%. These findings support the notion that our pro-
posed method is more robust than existing methods with 
noise. For the core-set method, the 10th iteration had an 
accuracy of 0.850, which was approximately 6% lower 
than the performance of the proposed model. Moreo-
ver, for the uncertainty-based methods, the differences 
in performance between the noisy and the clean data-
sets were larger. In the case of BALD, the most affected 
by the noise, a performance reduction of approximately 
7% was found. The proposed method demonstrated lit-
tle variation in performance on both clean and noisy 
datasets, with a lower numerical noise selection ratio 
than the other AL methods. In contrast, the proposed 
method achieved the highest accuracy on both noisy and 
clean datasets, while maintaining the smallest perfor-
mance decline against the noisy dataset. Furthermore, we 
observed that our proposed AL method selected the least 
amount of noisy data.

Notably, although LC and entropy, which are uncer-
tainty-based AL methods, differ significantly in their 
noise selection ratios, the differences in performance 
were negligible. Furthermore, even with BALD, which 
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selected even fewer noisy data points than entropy, the 
results showed that selecting less noise was not a guaran-
tee of good performance. This point was further empha-
sized by the core-set and RS methods. By performing 
two functions simultaneously, beneficial data selection 
and noisy data avoidance, and in a straightforward man-
ner, our proposed method yielded high performance and 
selected more labeled data. In fact, given that only 56% 
of the labeled data was obtained by the extant entropy 
method, the actual amount of data acquired was only 
approximately half of that by the proposed method. In 
contrast to the average of 3,998 noisy data points selected 
out of 10,000 by the entropy methods, it was confirmed 
that only an average of 263.4 were selected by the pro-
posed method, indicating that utilizing existing AL 
methods on real-world noisy datasets would increase the 
workload of the oracle due to the need for more labeling 
tasks. At the same time, the proposed method minimized 
the increase in the oracle’s workload by performing AL in 
noisy environments, with an average clean data selection 
rate of 97.07%.

The proposed method can be applied to training an 
image classification model aptly in real-world indus-
trial practice with noisy data. We experimented with 
alternative AL strategies using patch images generated 
from real-world WSIs, enabling us to test the proposed 
method against real-world noisy data and understand 
its performances and general tendencies, relative to the 
state-of-the-art methods. Among them, the proposed 
method showed better performances in terms of noise 
selection levels and accuracies.

Nevertheless, this study’s proposed method has cer-
tain limitations and boundary conditions that need to 
be noted. We used predictive losses collected during the 
training process to create thresholds and exclude data 
above them from candidate data, to avoid selecting noisy 
data. However, there can be noises that are difficult to 
classify, thereby making it difficult to achieve good model 
performance. For example, in the case of noise labels 
that arise during the oracle’s labeling process, the qual-
ity of the labeled data degraded pose an inherent risk to 
the collected label data. To reduce noise labels that may 
occur in various AL scenarios, the data cleaning method 
needs to be extended to the AL training data. Addition-
ally, the proposed method focused on quantitatively 
reducing the workload of the oracle. However, consid-
ering that the task weight caused by the actual labeling 
process is not only affected by the amount of data, it is 
also necessary to consider how to qualitatively reduce the 
task weight during the labeling process. Therefore, in our 
future studies, we plan to analyze the differences between 
the data that experts find beneficial and those that the AL 
method judges to be beneficial.

Conclusions
In this study, we propose a novel AL method for patho-
logical image classification that minimizes noisy data 
selection when querying data from an unlabeled set. 
Our model selected data with high informativeness 
while avoiding the distribution interval of noisy data, 
by taking the characteristics of the predicted loss values 
of the noisy patches occurring in the field into account. 
When we trained our model using this method, it 
achieved an accuracy of 91.7% on the noisy dataset and 
92.4% on the clean dataset in the final iteration, result-
ing in a performance reduction of less than 1%.

With its reduced noise selection ratio and increased 
accuracy, the proposed method may contribute to 
relieving the workload of pathologists in the context of 
AL applied to automated image processing for cancer 
detection in the workplace. The data reflected the actual 
level of noise embedded in the WSIs created for a large 
medical diagnosis organization in Korea. Against this 
dataset collected from a real workplace, the proposed 
method produced a superior and more robust perfor-
mance, compared to the state-of-the-art methods. The 
study findings are expected to be applicable to other 
pathological image processing areas, even though the 
proposed method was tested against stomach images 
generated by a high-quality medical scanner. Further-
more, the DL model training system proposed in this 
study has the potential to enhance the working environ-
ment for pathologists while continuously improving DL 
models. This advancement can result in better resource 
utilization, increased productivity, and ultimately ben-
efit both pathologists and the patients they care for.
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