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Abstract 

Objectives This study aims to investigate the potential of radiomics with multiple parameters from conventional T1 
weighted imaging (T1WI) and susceptibility weighted imaging (SWI) in distinguishing between idiopathic Parkinson’s 
disease (PD) and multiple system atrophy (MSA).

Methods A total of 201 participants, including 57 patients with PD, 74 with MSA, and 70 healthy control (HCs) indi-
viduals, underwent T1WI and SWI scans. From the 12 subcortical nuclei (e.g. red nucleus, substantia nigra, subthalamic 
nucleus, putamen, globus pallidus, and caudate nucleus), 2640 radiomic features were extracted from both T1WI 
and SWI scans. Three classification models - logistic regression (LR), support vector machine (SVM), and light gradi-
ent boosting machine (LGBM) - were used to distinguish between MSA and PD, as well as among MSA, PD, and HC. 
These classifications were based on features extracted from T1WI, SWI, and a combination of T1WI and SWI. Five-fold 
cross-validation was used to evaluate the performance of the models with metrics such as sensitivity, specificity, 
accuracy, and area under the receiver operating curve (AUC). During each fold, the ANOVA and least absolute shrink-
age and selection operator (LASSO) methods were used to identify the most relevant subset of features for the model 
training process.

Results The LGBM model trained by the features combination of T1WI and SWI exhibited the most outstanding 
differential performance in both the three-class classification task of MSA vs. PD vs. HC and the binary classification 
task of MSA vs. PD, with an accuracy of 0.814 and 0.854, and an AUC of 0.904 and 0.881, respectively. The texture-
based differences (GLCM) of the SN and the shape-based differences of the GP were highly effective in discriminating 
between the three classes and two classes, respectively.

Conclusions Radiomic features combining T1WI and SWI can achieve a satisfactory differential diagnosis for PD, 
MSA, and HC groups, as well as for PD and MSA groups, thus providing a useful tool for clinical decision-making based 
on routine MRI sequences.
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Introduction
Idiopathic Parkinson’s disease (PD) and multiple sys-
tem atrophy (MSA) are two common neurodegenerative 
conditions, which share overlapping Parkinson’s motor 
symptoms, particularly in the early stages [1]. Clinicians 
often face a major challenge in differentiating between 
PD and MSA patients due to the reliance on subjective 
factors such as symptoms, physical examination, and the 
expertise of the neurologist for clinical diagnosis. These 
subjective assessments may be susceptible to personal 
bias, leading to diagnostic uncertainty. In comparison 
to PD, MSA is characterized by a more rapid progres-
sion and poorer prognosis. Therefore, the development 
of a practical and sensitive diagnostic tool is crucial for 
accurate differentiation between these two conditions 
[2]. Different signs on conventional Magnetic Resonance 
Imaging (MRI) like the “swallow tail” sign, “putaminal 
hypointensity”, and “hot cross” sign, which are influenced 
by the magnetic field strength and the sequence type, 
provide additional support for the diagnosis between 
PD and atypical Parkinson syndrome (APS) [3–5]. How-
ever, it is not easy for radiologists to make a diagnosis 
when the change is subtle. To this end, it is essential to 
create objective and convenient biomarkers for clinical 
diagnosis.

The utilization of advanced MRI, with its various 
modalities having various tissue-specific sensitivities, 
has been demonstrated to be advantageous in detecting 
both PD and APS. For example, resting-state functional 
magnetic resonance imaging (rs-fMRI) and diffusion 
magnetic resonance imaging (dMRI) have shown great 
potential in detecting subtle functional and structural 
alterations in patients with PD and MSA [6, 7]. Although 
the specific findings of advanced MRI appear promis-
ing, their clinical application is currently limited due to 
the extended scanning period and complex processing 
pipelines involved. T1 weighted imaging (T1WI) and 
T2 weighted imaging (T2WI), as the most conventional 
sequence, reflect anatomical and pathological informa-
tion of the disease. In clinical practice, T1WI has been 
extensively utilized to detect morphological changes in 
the brain of patients with PD and APS using various pro-
cessing methods. Previous studies have demonstrated 
that PD patients exhibit a decrease in gray matter volume 
in specific brain regions compared to HCs, including the 
basal ganglia (putamen and caudate nucleus), theory of 
mind (temporal lobe, amygdala, superior frontal gyrus 
and anterior cingulate gyrus), vocal (temporal lobe, 
rolandic operculum, insula and putamen) and visual net-
work (middle occipital gyrus and fusiform gyrus), tempo-
ral, parietal, and postcentral regions [8–11]. While some 
researchers reported that cognitively intact PD patients 
do not show significant gray matter alterations [12]. 

In addition, other studies revealed a more widespread 
pattern of brain atrophy in patients with MSA, which 
includes the striatum, prefrontal cortex, cerebellum, 
pons, thalamus (Tha), putamen (PUT), and midbrain 
[13, 14]. However, visible brain atrophy may be a symp-
tom of advanced disease, making it difficult to diagnose 
in the early stage of the disease. Susceptibility-weighted 
imaging (SWI), which is derived from a T2*-weighted 
gradient-echo sequence, is a valuable tool for detecting 
iron deposition. It has been extensively utilized in clini-
cal diagnosis due to the fact that iron accumulation in 
the basal ganglia is considered a significant factor in the 
pathogenesis of PD. Different iron deposition patterns 
have been suggested for PD and APS, which primarily 
involve the substantia nigra (SN), red nucleus (RN), Tha, 
PUT, and caudate nucleus (CN) [15, 16]. Nevertheless, 
it is important to note that there have been inconsisten-
cies and discrepancies found in the literature regarding 
the role of iron deposition and its pattern. Furthermore, 
the visual evaluation of iron deposition on SWI may be 
challenging in the initial stage and can also be observed 
in the brains of healthy elderly individuals, leading to 
an increased rate of false positives in clinical diagnoses. 
Therefore, it becomes crucial to accurately detect even 
subtle and early brain alterations in PD and MSA patients 
to ensure precise diagnoses and appropriate management 
strategies.

Radiomics is an emerging technique that enables the 
extraction of quantitative data from medical images, 
including information that may not be visually appar-
ent. This technique holds great potential for early diag-
nosis in various fields, including neurodegenerative 
diseases such as Alzheimer’s Disease (AD) and PD [17, 
18]. Recently, Tupe et al. applied radiomics analysis based 
on several gray matter regions in the cerebrum and cer-
ebellum on T1WI, and presented an accuracy of 92% in 
distinguishing PD from APS [19]. Aside from gray mat-
ter, Shu et al. focused on the white matter derived from 
T1WI. Radiomics features were derived specifically from 
the white matter regions and had a desirable perfor-
mance (AUC = 0.836) for progression prediction in PD 
patients [20]. Meanwhile, other investigators attempted 
to make radiomics analyses based on the SWI sequence. 
For example, Pang et al. extracted radiomics features on 
SWI, and achieved an AUC of 0.862 in the differential 
diagnosis between PD and parkinsonian variants of MSA 
(MSA-P ) [18]. To date, no research has been conducted 
to examine the impact of radiomics analysis based on 
the combination of conventional sequence (T1WI and 
SWI) in differentiating PD from MSA. Nevertheless, 
according to prior studies, the combination of multiple 
sequences to evaluate the underlying pathophysiology 
may lead to a more precise understanding of the disease 
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and an accurate prediction [21, 22]. Both T1WI and SWI 
are widely employed in clinical practice. Consequently, 
the application of radiomics analysis, which integrates 
these two imaging modalities, holds the potential to pro-
vide supplementary advantages for differential diagnosis. 
Additionally, previous studies focused solely on a single 
machine learning method, lacking of the comparison of 
diagnostic performance between different models.

Specifically, the purpose of this study was to build a 
radiomic model of best performance based on features 
derived from basal ganglia regions, using commonly 
applied sequences in clinical settings, to distinguish 
between PD and MSA.

Material and methods
Subjects and clinical assessment
This retrospective study was approved by the Eth-
ics Committee of the First hospital of China Medical 
University and informed consents were obtained from 
each subject, and the Declaration of Helsinki were fol-
lowed at all stages of study (decision date and number: 
04.07.2020, No.AF-SOP-07-1.1-01). Overall, 74 patients 
with MSA, 57 patients with PD were retrospectively 
recruited between June 2017 and December 2020, and 
70 HCs matched for age, gender were enrolled from the 
local community at the same time. The inclusion criteria 
were as follows: (1) the patients visited in our hospital 
met the diagnostic criteria for PD and MSA, which fol-
lows the UK PD Society Brain Bank [23] and the “prob-
able MSA” via second-consensus clinical criteria [24], 
respectively. (2) the patients underwent both T1WI and 
SWI. (3) disease duration was within 5 years, with aver-
age over 2 years of follow-up. The exclusion criteria were 
as follows:(1) medical history including a past of sub-
stance abuse, endocrine disease, or the thyroid disor-
ders. (2) neurological illnesses or pathological findings 
on conventional MRI. (3) other diseases that may cause 
abnormal iron deposition. (4) image artifacts. (5) missing 
or incomplete clinical or imaging data. A series of clini-
cal evaluations, which included movement disorders and 
cognitive conditions, were measured by part III of the 
Unified Parkinson’s Disease Rating Scale (UPDRSIII) and 
Montreal Cognitive Assessment (MoCA), respectively. 
To address potential ethical and privacy concerns, all the 
data of recruited subjects have been anonymized.

MRI protocol
All patients underwent conventional 3.0 T MRI exami-
nation (Magnetom Verio, Siemens, Erlangen, Germany), 
which includes T1WI and SWI sequence. All partici-
pants were scanned parallel to the anterior commissure-
posterior commissure (AC-PC) plane. High-resolution 
three-dimensional sagittal magnetization-prepared rapid 

acquisition gradient echo (MPRAGE) T1-weighted 
sequence was acquired with the following parameters: 
repetition time (TR) = 5000 ms, echo time (TE) = 2960 ms, 
flip angle (FA) = 12°, field of view (FOV) = 256 ×  256mm2, 
matrix size = 256 × 256, slice thickness = 1 mm, no slice 
gap, voxel size = 1.0 × 1.0 × 1.0mm3, and slice num-
ber = 176. The SWI was obtained using parameters as 
follows: TR = 27 ms, TE = 20 ms, slice number = 64, slice 
thickness = 0.8 mm, FA = 15°, FOV = 230 × 172.5  mm2, 
matrix size = 0.9 × 0.9 × 0.8mm3.

ROI segmentation and image processing
According to previous studies on iron deposition pat-
terns in PD and APS, regions of interest (ROIs) have been 
established, which includes RN, SN, CN, PUT, globus 
pallidus (GP), and subthalamic nucleus (STN) [15, 18]. 
Considering basal ganglion is well delineated on SWI 
compared with T1WI, volumes of interest (VOI) were 
conducted on sequential layers on SWI by an experienced 
radiologist with more than 5 years of experience in neu-
rology diagnosis using ITK-SNAP (version 3.6.0, www.
itksnap.org). To examine the reliability of the SWI data, 
the identical radiologist performed VOI segmentation 
using the same methodology for intra-observer agree-
ment assessment after a month. Simultaneously, another 
experienced radiologist independently performed VOI 
segmentation using the same methods to evaluate inter-
observer reliability. Intra- and inter-observer correlation 
coefficients (ICCs) were employed to quantify observer 
agreement in the extraction of radiomics features from 
the VOIs [25]. Then ROIs on SWI were linearly registered 
to individual T1WI and the quality of the registrations 
was manually assessed. Co-registration procedure was 
performed using advanced normalization tools (ANTs).

Feature extraction
For each ROI delineating 6 types of nuclei in two hemi-
spheres (a totally of 12 nuclei, “1” denotes left side, “2” 
denotes right side) on T1WI or SWI, a total of 110 fea-
tures, consisting of first-order image intensity statis-
tics, shape and texture features (gray level cooccurrence 
matrix (GLCM), gray level run length matrix (GLRLM), 
gray level size zone matrix (GLSZM), gray level depend-
ence matrix (GLDM), and neighboring gray tone differ-
ence matrix (NGTDM)), were automatically extracted 
using the open-source Python package of Pyradiom-
ics [26]. These features were obtained through 14 image 
filters accomplished by SimpleITK filters (ie, original 
image, Laplacian sharpening, discrete Gaussian, shot 
noise). Following the extraction of radiomic features, 
each feature was normalized using the min-max normali-
zation method, which rescaled the values to a range of 0 
to 1.
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Feature selection and modeling
Considering the size of sample and the desired trade-off 
between computational cost and accuracy, a five-fold 
cross-validation strategy was employed in the experi-
ment. Briefly, in each round of cross-validation, all the 
data was equally split into five subsets, often referred 
to as “folds”. Four subsets were used as the training set 
and the rest one was used as the testing set alternatively. 
Moreover, 70% of training data points were utilized to 
train the model, and the remaining 30% were utilized to 
validate and select the best model [27, 28]. In each fold, 
before building the model, the most relevant feature 
subset was first selected from abundant features in the 
training data to reduce the feature dimension and avoid 
overfitting. Firstly, analysis of variance (ANOVA) was 
applied to exclude the feature, whose standard value is 
smaller than 0.01. The standard indicates the degree of 
dispersion. The smaller the standard value is, the less dis-
tinguishable the feature is. Secondly, spearman correla-
tion analysis was performed to reduce the collinearity of 
features. When the correlation coefficient between two 
features was r > 0.9, one feature was randomly retained. 
Lastly, LASSO was performed to reduce the unimpor-
tant features and select the most representative features 
in the training dataset with non-zero coefficient values. 
The best parameter was determined by the grid search 
algorithm.

After feature selection procedure, the retained features 
were used as the input of classifiers. With the selected 
features, three different classifiers were constructed and 
compared using each of the five folds, which include 
logistic regression (LR), support vector machine (SVM) 
with radial basis function kernel (RBF), and light gradient 
boosting method (LGBM). After feature selection, the 

features of single-parametric sequence named T1WI, the 
features of single-parametric sequence named SWI, and 
the features combination of multi-parametric sequences 
of T1WI and SWI, were adopted to build the classifica-
tion model, respectively. The classification tasks include 
the three-category: HC vs PD vs MSA, and binary cate-
gory: PD vs MSA. Besides, Shapley additive explanations 
(SHAP) values of each feature were computed to under-
stand the most valuable features in prediction. SHAP, 
as a game-theoretic approach, interprets the output of 
machine learning model by calculating features’ contri-
butions. The feature processing, selection, and classifier 
construction were performed on the Anaconda3 plat-
form (www.anaconda.com) with the “scikit-learn” pack-
age (scikit-learn.org) using Python version 3.7.4. Figure 1 
presents the workflow of this study.

Statistical analysis
Numerical clinical characteristics among HCs, PD, and 
MSA were evaluated using ANOVA. The assessment of 
discrete data was performed using the chi-square test. 
The Kruskal-Wallis test, accompanied by the Dunn mul-
tiple comparisons test, was used for data exceeded homo-
geneity test for variance. The Mann-Whitney test and 
independent two-sample t-test were conducted to assess 
the differences between PD and MSA patients for vari-
ous phenotype data, as deemed appropriate. All statisti-
cal analyses were two-sides, and P < 0.05 was considered 
statistically significant. The statistical analyses were per-
formed using SPSS23.0. The diagnostic performance of 
classifiers was evaluated using the area under the receiver 
operating characteristic (ROC) curve (AUC), as well as 
measures of accuracy, sensitivity, and specificity. Then 

Fig. 1 The workflow of this study (1) Segmentation and registration: Regions of caudate, putamen, globus pallidus, substantia nucleus, red nucleus, 
and subthalamic nucleus were manually segmented on SWI sequence, and co-registered to T1 sequence. (2) Feature extraction: Three kinds 
of features were extracted from SWI and T1 sequence. (3) Feature selection: ANOVA and lasso were applied for feature selection procedure. (4) 
Modeling: Three different classification models (logistic regression (LR), support vector machine (SVM), and light gradient boosting machine (LGBM)) 
were built to distinguish different groups: including MSA vs. PD, and MSA vs. PD vs. HC
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Delong test was used to exam diagnostic performance in 
different classifiers.

Results
Clinical characteristics
There were no significant differences in age and gen-
der among three groups. The MSA and PD groups had 
significantly lower MoCA scores compared with HCs 
(p < 0.001). No significant differences were observed in 
motor UPDRSIII scores and cognitive MoCA scores 
between the patient groups, and PD showed statistically 
significant in age compared with MSA (p = 0.04). While 
the MSA patients had significantly shorter disease dura-
tion in comparison with PD groups (p < 0.001) (Table 1).

Feature selection and model performance
After performing ANOVA, all P values of radiomic fea-
tures among three groups were less than 0.05, thus none 
of the features were removed. Next, LASSO was applied 
using five-fold cross-validation, and 362 features were left 
in total five cross-validation folds. Generally, the perfor-
mance of models based on the combination of T1WI and 
SWI sequences outperformed single sequence (Fig.  3, 
Table 3).

As for the different models, the performances of the 
three classifiers were not all the same. The classifiers 
show an accuracy of 0.724 to 0.814, with an AUC of 0.869 
to 0.926 in three-classification task (Table 2, Fig. 2).

Meanwhile, the models manifested an accuracy of 0.738 
to 0.854, with an AUC of 0.827 to 0.883 in the binary 
classification task (Table 3, Fig. 3). In general, the LGBM 
model exhibited superior performance compared to the 
other classifier in both three classification and binary 
classification tasks, although there were no statistical dif-
ferences between any two models when assessed using 
the Delong test. Besides, the first 10 importance-ordered 
features extracted from combined sequences (T1 and 

SWI) in each fold were shown in Fig. 4. The GLCM_cor-
relation of SN and original_shape_flatness of GP served 
as the most stable and significant features in PD vs MSA 
vs HC and PD vs MSA, respectively.

Discussion
Conventional MR imaging techniques, such as T1WI 
and SWI, serves as the primary screening and diagnostic 
tools for clinical decision-making in the cases of PD and 
MSA [1, 29]. However, due to the similarities in imaging 
between patients with these two conditions, even experi-
enced radiologists may have difficulties in distinguishing 
between them based solely on these images [30]. Besides, 
early detection and precise diagnosis play a vital role in 
enhancing the quality of life for individuals affected by 
these neurodegenerative diseases [2]. Recent studies 
also demonstrated that machine learning models based 
on radiomic features, deep features and clinical features 
have achieved a vital predictive performance [31, 32]. As 

Table 1 Demographic and clinical characteristics of participants

Disease duration Duration from onset of PD symptoms to scan (Years)

***denotes p value less than 0.001

 adenotes p value less than 0.05 between PD and MSA
b denotes p value less than 0.05 between PD and HC
c denotes p value less than 0.05 between MSA and HC

Characteristics Patients (n = 131) HC (n = 70) U/χ2 P value

PD (n = 57) MSA (n = 74)

Age (years) 63.47 ± 7.85a 65.96 ± 6.51 64.97 ± 6.66 2.06 0.13

Gender (M/F) 30/27 35/39 34/36 0.387 0.82

Disease duration 2.88 ± 1.56 2.27 ± 0.92 N 21.474 < 0.001***

UPDRSIII score 42.42 ± 6.14 43.19 ± 8.59 N −0.60 0.55

MoCA score 22.93 ± 2.17b 22.16 ± 2.20c 26.99 ± 1.52 119.93 < 0.001***

Table 2 The performance of different models using T1 and SWI 
sequence in three-classification tasks (PD vs MSA vs HC)

Sen sensitive, Spec specificity, ACC  accuracy, AUC  area under the curve, SWI 
susceptibility weighted imaging, T1 T1 weighted imaging, LR logistic regression, 
SVM support vector machine, LGBM light gradient boosting machine

Sequence Models Average

Sen Spec ACC AUC 

SWI LR 0.762 0.882 0.764 0.869

SVM 0.787 0.896 0.789 0.914

LGBM 0.792 0.897 0.794 0.917

T1 LR 0.736 0.872 0.744 0.839

SVM 0.712 0.861 0.724 0.882

LGBM 0.723 0.864 0.729 0.887

SWI + T1 LR 0.745 0.875 0.749 0.885

SVM 0.798 0.903 0.804 0.914

LGBM 0.812 0.907 0.814 0.905
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such, this study has developed a radiomic analysis based 
on radiomic features extracted from conventional MR 
images, with the aim of precisely identifying patients 
with PD and MSA.

Previous studies applied radiomic analysis on either 
T1WI or SWI. For instance, Peng et al. conducted a study 
exploring the effectiveness of a SVM classifier employ-
ing multilevel ROI features based on T1WI, achieving an 
accuracy of 85.78% in the diagnosis of PD [33]. In another 
study, Vitali et al. proposed that T1-weighted volumetry 
of the SN on magnetization transfer-prepared MRI could 
serve as a helpful tool for staging PD [34]. Additionally, 

Shu et al. extracted radiomic features from white matter 
volumes on T1WI to predict the progression of PD [20]. 
Except for T1WI, researchers have also explored the use 
of iron-sensitive sequences in building radiomic models. 
For instance, Xiao et  al. employed convolutional neural 
network (CNN) features and radiomic features of the SN 
on quantitative susceptibility mapping (QSM) to identify 
PD and achieved a remarkable diagnostic accuracy [35]. 
Aside from single sequence, there is a growing interest 
in utilizing multimodal MRI sequences for diagnosis. 
For example, Peran et  al. applied multimodal MRI indi-
ces extracted from T2*, T1 weighted, and diffusion tensor 
imaging (DTI), to differentiate PD from MSA, achiev-
ing a high diagnostic accuracy [36]. Similarly, Chougar 
et  al. developed a differential diagnosis model based on 
volumetry and diffusion metrics obtained from T1WI 
and DTI, which demonstrated a high accuracy in distin-
guishing PD from APD [37]. Aside from DTI, researchers 
have applied radiomics models based on functional MRI 
(fMRI) and discovered that cerebellar connectivity shows 
potential in differentiating PD from MSA [38]. However, 
DTI and fMRI are not commonly used in clinical prac-
tice due to its long scan time and complex process meth-
ods. The utility of T1 and SWI is valuable in diagnosing 
those patients with motor symptoms and improving the 
acceptance of MRI examination for its shorter scan time. 
Our study is the first to build radiomic models based on 
radiomic features extracted from the most widely-applied 
T1WI sequence as well as SWI sequence in clinical.

It is not surprising that models based on the combina-
tion of both T1 and SWI sequences outperformed those 

Fig. 2 Receiver operator curves (ROC) of different models based on radiomic features extracted from the combined T1WI and SWI sequence 
in binary and three-way classification. Left: differential diagnosis of PD and MSA. Right: differential diagnosis among PD, MSA, and HC. lgbm, light 
gradient boosting machine; lr, logistic regression; svm, support vector machine

Table 3 The performance of different models using T1 and SWI 
sequence in binary classification tasks (PD vs MSA)

Sen sensitive, Spec specificity, ACC  accuracy, AUC  area under the curve, SWI 
susceptibility weighted imaging, T1 T1 weighted imaging, LR logistic regression, 
SVM support vector machine, LGBM light gradient boosting machine

Sequence Models Average

Sen Spec ACC AUC 

SWI LR 0.750 0.811 0.785 0.864

SVM 0.714 0.797 0.769 0.837

LGBM 0.768 0.851 0.815 0.883

T1 LR 0.732 0.743 0.738 0.827

SVM 0.696 0.824 0.769 0.853

LGBM 0.714 0.811 0.769 0.844

SWI + T1 LR 0.821 0.757 0.785 0.848

SVM 0.768 0.824 0.800 0.876

LGBM 0.857 0.851 0.854 0.881
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of the single sequence, although no statistical significance 
was observed in our study. Studies have suggested that 
the combination of multiple sequences, which evaluate 
the underlying pathophysiology more comprehensively, 
can result in a better understanding of the disease and a 
more accurate prediction [21]. In our study, we employed 
three models to differentiate PD from MSA and HCs, 
namely LR, SVM, and LGBM. Although the performance 
of these models may be similar, LGBM appears to be 
the most reliable and outperformed the other two mod-
els. LGBM is a novel decision tree algorithm based on a 

gradient boosting decision tree, which consists of mul-
tiple decision trees. Each tree divides the data into two 
groups based on features. LGBM has been demonstrated 
to be a powerful and effective model due to its limited 
depth of the tree to find the optimal split gain node, 
which ensures efficiency and prevents overfitting [39].

Of the selected important features, most were GLCM 
texture features and shape features, which could reflect 
the heterogeneity within the ROI. In the three-classifi-
cation task, the SWI_GLCM correlation of SN was con-
sistently selected in each fold, indicating its significance 

Fig. 3 Receiver operator curves (ROC) of different models based on radiomic features extracted from T1 weighted imaging (T1WI) 
and susceptibility weighted imaging (SWI) sequence in the differential diagnosis of idiopathic Parkinson’s disease (PD) and multiple system atrophy 
(MSA) Left: logistic regression (LR); Middle: support vector machine (SVM); Right: light gradient boosting machine (LGBM)

Fig. 4 The first ten importance-ordered radiomic features extracted from combined sequences in each fold in the LGBM model of binary and three 
classification tasks. Left: PD vs. MSA; Right: PD vs. MSA vs. HC.  swi, susceptibility weighted imaging; t1, T1 weighted imaging; GP, globus pallidus; SN, 
substantia nigra; PUT, putamen; RN, red nucleus; 1, left; 2, right
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in differentiating PD from MSA and HCs. It is generally 
accepted that the degeneration and depiction of neurons 
in the SN is the most important reason behind PD symp-
toms [40]. Based on that, the ‘swallow tail’ sign on MRI 
is considered to be valuable in identifying PD patients 
[41]. Iron deposition in SN causes heterogeneity of SN on 
SWI. As a consequence, SWI_GLCM correlation of SN 
plays a central role in distinguishing between PD, MSA 
patients and HCs. Except for the three-classification 
task, the shape_flatness of GP emerges as the most valu-
able feature in all the other tasks, regardless of single or 
combination sequence. The shape features represent the 
volume, area, or shape of the GP. Han et al. explored dif-
ferent iron deposition patterns between MSA and PSP, 
and found that MSA-P patients had iron deposition in 
posterolateral PUT and adjacent lateral aspect of GP 
[42]. Besides, researchers found that both segments of 
GP suffered from dopamine loss in Parkinsonism symp-
toms [43]. Furthermore, Pereira et al. noted that the fir-
ing rates of neurons in the GP, specifically the internal 
segment of the GP internus, exhibit differences between 
patients with MSA and PD [44]. GP is a central hub in 
nigro-pallidal dopamine pathway. Different segment of 
GP, which contains internal of GP (GPi) and external 
of GP (GPe), plays a different role in nigro-pallidal pro-
jection and is related to various motor and non-motor 
symptoms in PD patients [45]. It has been suggested that 
the brains of MSA patients may experience more severe 
shape alteration, such as atrophy and shrinkage, than 
PD patients, particularly in the later stages. However, 
this conclusion requires further confirmation through 
large-scale and multi-center studies. In addition, there is 
increasing evidence that the iron-specific deposit pattern 
of PUT is more prevalent in MSA patients, especially 
in MSA-P patients [15, 29]. On the basis of it, putami-
nal hypointensity on SWI has been proposed as a spe-
cific sign for MSA-p patients [4]. The inclusion of both 
MSA-P and MSA-C (cerebellar variants of MSA) groups 
in our study could account for the discrepancy observed, 
as it may have reduced the specificity of differences in 
the PUT region. Additionally, a study has demonstrated 
that hypointensity in the PUT can also be observed in 
the elderly, so further studies with larger cohorts are nec-
essary to assess the value of putaminal hypointensity in 
effectively differentiating MSA patients [46].

Our study has several limitations. Firstly, diagnoses 
of PD and MSA patients were made by experienced cli-
nicians without pathology-confirmed evidence, but the 
consensus operational clinical diagnostic criteria and 
more than 2 years of the average follow-up period were 
used to guarantee the accurate diagnosis. Secondly, we 
did not classify MSA into different subtypes (MSA-P 

and MSA-C) for that MSA sample size was relatively 
small (n = 73), further studies will be conducted to 
analyze the MSA subtypes when more patients are 
recruited. Thirdly, although two neuroradiologists 
delineated independently, manual segmentation on 
SWI may introduce personal bias, particularly on the 
borders of basal nuclei. We used the ICCs to make sure 
that the segmentation of ROIs in our study has a good 
reliability, all VOIs with ICCs ≥0.8 in our study.

Our study findings demonstrated that radiomics anal-
ysis, utilizing a combination of conventional sequences 
such as T1WI and SWI, holds promise in differentiat-
ing PD from MSA. This finding provides strong support 
for the accurate diagnosis at an early stage, and further 
research should focus on developing straightforward 
and efficient methods for disease classification.
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