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Abstract
Background In recent years, there has been a growing trend towards utilizing Artificial Intelligence (AI) and machine 
learning techniques in medical imaging, including for the purpose of automating quality assurance. In this research, 
we aimed to develop and evaluate various deep learning-based approaches for automatic quality assurance of 
Magnetic Resonance (MR) images using the American College of Radiology (ACR) standards.

Methods The study involved the development, optimization, and testing of custom convolutional neural network 
(CNN) models. Additionally, popular pre-trained models such as VGG16, VGG19, ResNet50, InceptionV3, EfficientNetB0, 
and EfficientNetB5 were trained and tested. The use of pre-trained models, particularly those trained on the ImageNet 
dataset, for transfer learning was also explored. Two-class classification models were employed for assessing spatial 
resolution and geometric distortion, while an approach classifying the image into 10 classes representing the number 
of visible spokes was used for the low contrast.

Results Our results showed that deep learning-based methods can be effectively used for MR image quality 
assurance and can improve the performance of these models. The low contrast test was one of the most challenging 
tests within the ACR phantom.

Conclusions Overall, for geometric distortion and spatial resolution, all of the deep learning models tested produced 
prediction accuracy of 80% or higher. The study also revealed that training the models from scratch performed 
slightly better compared to transfer learning. For the low contrast, our investigation emphasized the adaptability 
and potential of deep learning models. The custom CNN models excelled in predicting the number of visible spokes, 
achieving commendable accuracy, recall, precision, and F1 scores.
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Background
Magnetic Resonance Imaging (MRI), due to techno-
logical advances, represents now an important imag-
ing modality used for several clinical application such as 
diagnostic and guidance of localized therapies such as 
surgery, Brachytherapy, Radiation Therapy (RT) and High 
Intensity Focused Ultrasound (HI-FU) therapy [1–3]. 
MRI provides excellent soft tissue contrast and resolution 
as well as functional imaging capabilities, allowing for the 
spatial and physiological characterization of disease.

The premise of MR based clinical applications is that 
a successful diagnostic and therapeutic outcomes relies 
on accurate localization and good spatial resolution and 
contrast.

An essential pre-requisite for any image Guided (IG) 
clinical application is the comprehensive quality assur-
ance of the imaging modality. As such, benchmarking 
and periodic assessment of image quality, spatial fidel-
ity, geometric precision, and laser/ couch accuracy are 
critical.

For the image quality module, several phantoms and 
tests have been designed and implemented. The Ameri-
can College of Radiology (ACR) phantom and associated 
tests are the most widely used in MRI since the tests and 
metrics are standardized and widely accepted as they 
follow the recommendations outlined in the ACR and 
American Association Physicists in Medicine (AAPM) 
reports surveyed [4, 5].

The ACR phantom guidance tests are commonly 
adopted as a routine clinical QC and are traditionally 
conducted by manual methods. Manual tests consist 
of multiple labor-intensive measurements (slice thick-
ness, slice location, contrast, and geometric distortion). 
Results obtained depend on user defined windowing lev-
els and the guidance definitions of leveling and window-
ing are approximate and subjective. Slice selection for 
specific tests is also user dependent.

Several approaches for the development of software 
tools capable of automating MRI quality control proce-
dure using the ACR phantom are available [6–12]. Most 
of these tools use conventional image processing meth-
ods [6–10] which rely on techniques from computer 
vision such as edge detection, segmentation, and feature 
extraction, to process images and extract useful informa-
tion from them.

In recent years, there has been a growing trend towards 
the use of Artificial Intelligence (AI) and machine learn-
ing techniques in medical imaging [13–16], particularly 
MRI. One approach is to use AI algorithms to analyze 
MRI scans and identify patterns that are associated with 
specific diseases or conditions [17, 18]. AI algorithms 
can also be used for MR image reconstruction, denois-
ing and 4D management [19, 20]. Another way that AI is 
being used in MRI is to automate the process of image 

interpretation, the low contrast test, in particular, which 
is considered one of the most challenging tests within 
the ACR phantom as it includes 30 regions with varying 
levels of visibility. These regions must be accurately clas-
sified as either visible or not visible. As such, two auto-
matic approaches to evaluate the MR ACR low contrast 
resolution have been presented by Ramos et al. [11, 12]. 
The first one [11] uses machine learning models while 
the second approach [12] uses deep learning models. 
In both approaches features are first extracted from the 
image and used as an input to the AI models. In addi-
tion to evaluating MRI quality using phantoms, there are 
many automatic image quality assessment works for clin-
ical MRIs that are more complex and use deep learning 
approaches [21, 22]. These studies demonstrate the grow-
ing interest in and advancements of AI for clinical MRIs.

This study investigates the use of deep learning for the 
automatic assessment of geometric distortion, spatial 
resolution, and low contrast in MRI images We chose 
to focus on low contrast because it is the most challeng-
ing parameter to assess. In addition to low contrast, we 
expand our exploration to encompass geometric dis-
tortion and spatial resolution tests, demonstrating the 
potential of deep learning techniques to revolutionize 
the assessment of diverse ACR quality control param-
eters. We first developed and tested convolutional neu-
ral network (CNN) models from scratch. Also, several 
models, including VGG16, VGG19, Resnet50, Incep-
tionV3, EfficientNetB0 and EfficientNetB5 [23–26] were 
trained from scratch. The impact of the batch size on the 
results is also tested. We also explored the use of pre-
trained models, such as those trained on the ImageNet 
dataset, for transfer learning. This allowed us to leverage 
the knowledge gained from these models to improve the 
performance of our MR image quality assurance model. 
The methodologies presented in this paper distinguish 
themselves from their predecessors by a notable charac-
teristic: they have the capability to process the entirety of 
MR images without necessitating the extraction of spe-
cific image features.

We used two-classes classification models for spatial 
resolution and geometric distortion. For the low contrast 
test, we used an approach classifying the image into 10 
classes representing the number of spokes visible in the 
image.

Methods
Dataset
Our dataset includes images of 256 × 256 pixels2 issued 
from 120 acquisition of the ACR phantom. MRI image 
acquisition was performed on a GE 1.5TMRI-SIM,450 W 
unit commissioned for RT planning.
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Spatial resolution and geometric distortion
The spatial resolution test evaluates the scanner’s capabil-
ity of resolving small objects when the contrast-to-noise 
ratio is high enough that it does not limit this ability. This 
test is based on a slice of the phantom showing three 
small grid structures as shown in Fig. 1.

The Geometric distortion test is performed to assess 
whether geometric distortion has occurred during the 
scan process. Geometric distortion test involves mea-
surements on sagittal localizer and on axial slices as 
shown in Fig. 1.

To increase the amount of training data and to address 
the issue of class imbalance within the dataset, images 
for the spatial resolution and geometric distortion were 
degraded by simulating noise and blur. This approach 
augments the training data, thereby ensuring a balanced 
representation of both pass and fail classes.

The Gaussian distribution function is used to simu-
late noise, and the standard deviation of the probability 
distribution function is varied from 1 to 16 (Fig. 1). The 
choice of Gaussian noise for simulating noise in MRI was 
motivated by its close approximation to the real noise 
distribution observed in medical image acquisitions, 
including certain physics-related aspects of MR image 
acquisition. Moreover, Gaussian noise is easy to generate, 

which makes it a practical choice for simulating noise 
and augmenting the dataset.

Blur is simulated by convolving the images with a two-
dimensional Gaussian function, known as a Point Spread 
Function (PSF), with the Full Width at Half Maximum 
varying from 1 to 16  mm (Fig.  2). As such, a total of 
around 600 images were generated for spatial resolution 
and geometric distortion assessments. Out of these, 240 
were real MRI images, and the remaining images were 
simulated.

At the end, the dataset for these tests consisted of 600 
labeled slices with 1 indicating that the test has passed 
and 0 indicating that it has failed. These slices were ran-
domly split into three sets: training data (499 images), 
validation data (63 images), and testing data (63 images).

To increase the size of the training set and make the 
model more robust to variations in the data, data aug-
mentation was applied to the original training images by 
performing random rotations of ± 7 degrees and transla-
tions of ± 2 mm.

The model’s output is a prediction number that ranges 
from 0 to 1, where a value closer to 1 indicates a higher 
probability of parameter to pass. The loss function 
adopted for training is “binary Cross-entropy " and the 
optimizer used is ADAM (Adaptive Moment Estimation).

Fig. 2 Blur simulation. (A) original MR image of the ACR phantom. (B) image with blur using PSF of FWHM = 3 mm. (C) image with blur using a PSF of 
6 mm

 

Fig. 1 Noise simulation. (A) original MR image of ACR phantom. (B) image with noise using gaussian distribution with SD = 12. (C) image with noise using 
gaussian distribution with SD = 16
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Before training the models, it is essential to preprocess 
the images to ensure that they are suitable for the net-
work to learn from as show in Fig. 3. One of the prepro-
cessing steps involves normalizing the intensities of the 
pixels in the images.

For the EfficientNetB0 and EfficientNetB5 models, the 
intensities of the pixels were normalized to the range of 
0 to 255. On the other hand, for the VGG16, VGG19, 
ResNet50, and InceptionV3 models, the intensities of the 
pixels were normalized to a range of 0 to 1. This range 
was chosen because it is the standard range used in these 
deep learning models.

Another important preprocessing step is resizing the 
images to a specific size. For ResNet50, VGG16, VGG19, 
and EfficientNetB0, the images were resized to 224 × 224 
pixels. However, for EfficientNetB5 and InceptionV3, 
the images were resized to 456 × 456 and 299 × 299 pix-
els, respectively. This resizing step ensures that all images 
have the same size, allowing the model to process the 
data efficiently. Figure  3 illustrates the preprocess-
ing procedure, which encompasses image resizing and 
standardization.

For the developed CNN models, intensities of the pix-
els were normalized to a range of 0 to 1 and images were 
resized to 256 × 256 pixels.

Low contrast
The low-contrast objects appear on four slices of the ACR 
MR images. In each slice the low-contrast objects appear 

as rows of small disks, with the rows radiating from the 
center of a circle like spokes in a wheel as shown in Fig. 4. 
Low contrast test measures the number of spokes in each 
slice for which all holes is visible.

To increase the training data, we devised a novel 
approach wherein new images were generated through 
the masking of one or more spokes. Consequently, a sin-
gle image could be utilized to create 10 distinct images, 
each featuring a specific number of visible spokes, as 
illustrated in Fig.  4. Additionally, circular cropping was 
applied to the images to eliminate external pixels, further 
enhancing the quality of the visual representations.

The dataset used to train, test and validate the models 
for the low contrast parameter consisted of 1000 slices. 
Every spoke in the images is classified as visible or not 
visible. These slices were randomly split into three sets: 
training data (800 images), validation data (100 images), 
and testing data (100 images). To increase the size of the 
training set and make the model more robust to varia-
tions in the data, data augmentation was applied to the 
original training images by performing random rotations 
of ± 7 degrees and translations of ± 2 mm.

To enhance the performance of our models, we con-
ducted a series of preprocessing experiments on the 
images involving Fourier transform, convolution, and 
other techniques. Through thorough exploration, we 
found that transforming pixels from Cartesian to polar 
coordinates yielded the most effective results.

Fig. 3 Image preprocessing for each model including resizing of the images and normalization of the pixels
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The utilization of polar image transformations within 
neural networks has been previously investigated in the 
literature [27, 28] especially when segmenting multiple 
elliptical objects. The key advantage lies in the ability of 
polar image transformations to decouple the segmen-
tation and localization tasks. In our specific research 
context, where our objective is the detection of circu-
lar objects, this transformation has proven to be highly 
effective. In comparison to alternative preprocessing 
methods, which yielded accuracy rates below 20%, the 
utilization of the Cartesian to polar transformation con-
sistently yielded higher accuracy levels.

As a result, the ultimate step in our methodology 
revolves around this transformative process as shown in 
Fig. 4. The conversion to polar coordinates demonstrated 
superior performance in enhancing the accuracy of the 

predicting models leading us to adopt this technique as 
the ultimate step in our analysis.

The pixel intensities and image size were normalized 
following the same procedures as applied to address geo-
metric distortion and spatial resolution.

Artificial intelligence models
Our first model (Fig.  5) consists of four convolutional 
layers with adjustable filter sizes, four max pooling lay-
ers for down sampling, a flattening layer, and two dense 
layers with adjustable units. The model is optimized with 
the Adam optimizer and categorical cross-entropy loss 
function.

For the second model, we have added two additional 
convolutional layers and an additional pooling layer after 
each convolutional layer. This increases the depth of the 

Fig. 5 First CNN model containing four convolutional layers, four max pooling layers, a flattening layer, and two dense layers

 

Fig. 4 A) original MR image for the low contrast. B) image with 6 spokes masked. C) image with pixels transformed from cartesian to polar coordinates
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model, allowing it to capture more complex features and 
patterns in the images.

Furthermore, a variety of different architectures 
were implemented and evaluated including VGG16, 
VGG19, Resenet50, InceptionV3, EfficinetNetB0 and 
EfficientNetB5.

These deep learning models have been widely used for 
tasks in the medical imaging field, as well as for image 
classification tasks more generally. Furthermore, for 
the deep learning models, we used a transfer learning 
approach that involves using a pre-trained model already 
trained on a large dataset (ImageNet in our case) as a 
starting point. The top layer of these models has been 
replaced with a new classification head that is tailored 
to our specific task (binary or multi-class classification 
task). This approach allows us to leverage the features 
learned by the base model and apply them to the new 
task, while still allowing the model to learn task-specific 
features through the new top layer.

Two scenarios are being considered. In the first sce-
nario, the transfer learning scenario, the model’s weights, 
except for the classifier, are set as non-trainable. This 
means that during the training process, only the dense 
layer weights will be updated and optimized, while 
the other weights in the model will remain fixed. This 
approach can be useful when fine-tuning a pre-trained 
model, as it allows the classifier to adapt to the new data 
without drastically changing the feature extraction capa-
bilities of the model.

In the second scenario, all the model’s weights are set 
as trainable. This means that during the training process, 
all the weights in the model will be updated and opti-
mized, including those in the feature extraction layers. 
This approach can be useful when training a model from 
scratch, as it allows the entire model to adapt to the new 
data and learn the best feature representations for the 
task at hand.

For the geometric distortion and spatial resolution 
assessments, these models have binary output indi-
cating the pass or fail of the test. For the low contrast 

assessment, the models classify the image into 10 classes 
representing the number of visible spokes.

For all the models, a thorough hyperparameter tuning 
process was conducted using the Keras Tuner library. 
The best hyperparameter including, number of filters, the 
number of units in the densely connected layer, learning 
rate, the batch size and the number of training epochs 
were determined through random search with 10 trials.

Gold standard measurements
For all image quality parameters, two-step process is used 
to ensure the accuracy of the data, one done by an in-
house software and the other by a medical physicist. The 
software is used to automatically localize the phantom, 
extract features, and evaluate the quality parameters. The 
results generated by the software are then reviewed and 
validated by a medical physicist, who can identify and 
correct any errors that may have been introduced by the 
software. These validated results represent the gold stan-
dard on which our models are trained.

Results
Geometric distortion & spatial resolution
The best hyperparameters obtained for the custom devel-
oped CNN model utilized with the geometric distortion 
were: 96 filters, 256 filters and 192 filters for the first, sec-
ond and third convolution layers respectively. 128 units 
for the densely connected layer, 0.001 for the learning 
rate, 16 for the batch size and 10 training epochs. The 
best accuracy achieved on the training set was 100% and 
a precision equal to 100%.

For the spatial resolution, the optimal hyperparameter 
values for the custom developed CNN model were: 96 
filters, 64 filters and 224 filters for the first, second and 
third convolution layers respectively. 96 units for the 
densely connected layer, 0.001 for the learning rate, 32 
for the batch size and 10 training epochs. The best accu-
racy achieved on the training set was 100% with a preci-
sion equal to 100%.

Table 1 presents the results of the performance evalu-
ation of the geometric distortion and spatial resolution 
prediction approach using various deep learning archi-
tectures, with the transfer learning scenario. The metrics 
used to evaluate the performance of the approach are 
the accuracy and the precision. The results on the train-
ing set show that when utilizing VGG16 and VGG19, we 
achieved an accuracy of 99% for the spatial resolution 
and the geometric distortion tests. For the Resnet50, the 
accuracy was 100% and 98% for the spatial resolution and 
the geometric distortion tests. For the InceptionV3 it was 
99 and 98%. For the EfficientNetB0, the accuracy was 80% 
and for the EfficientNetB5 it was 90 and 91%.

Table 2 presents the results of the performance evalu-
ation of the spatial resolution and geometric distortion 

Table 1 Accuracy and precision of deep learning models using 
transfer learning for spatial resolution and geometric distortion. 
All the parameters are frozen

Spatial resolution Geometric distortion
Accuracy Precision Accuracy Precision

VGG16 0.99 1 0.99 1
VGG19 0.99 1 0.99 1
Resenet50 1 1 0.97 1
InceptionV3 0.99 1 0.98 0.96
Efficinet-
NetB0

0.8 0.8 0.8 0.46

Efficinet-
NetB5

0.9 0.97 0.91 0.79



Page 7 of 11Torfeh et al. BMC Medical Imaging          (2023) 23:197 

prediction approach using various deep learning archi-
tectures, when training the models from scratch. The 
results on the training set show that when utilizing 
VGG16 and VGG19, we achieved an accuracy of less 
than 60% for both the spatial resolution and the geomet-
ric distortion tests. For the Resnet50, the accuracy was 
98% and 90%. For the InceptionV3 it was 99 and 97%. For 
the EfficientNetB0, the accuracy was 97 and 95% and for 
the EfficientNetB5, the accuracy was 91 and 93% for the 
spatial resolution and the geometric distortion.

The effect of dataset size on model performance was 
investigated. Upon expanding the dataset and increas-
ing the batch size to 2200 images, notable improvements 
in accuracy and precision were observed. The VGG16 
model achieved an accuracy of 89% and a 92% for both 
the spatial resolution and the geometric distortion tests. 

The VGG19 model achieved an accuracy of 94% and 92%. 
The ResNet50 model achieved an accuracy of 100% and 
97%. For the inceptionV3 model, increasing data yielded 
an accuracy of 100% and 100%. The EfficientNetB0 model 
achieved an accuracy of 99% and 98%. The EfficientNetB5 
model exhibited performance with an accuracy of 96% 
and 98% for the spatial resolution and the geometric 
distortion.

Low contrast
Table  3 summarizes the optimal hyperparameter values 
for the first CNN model, providing insights into the con-
figuration choices made during model development.

The best hyperparameters obtained were: 48 filters, 64 
filters and 64 filters for the first, second and third con-
volution layers respectively. 96 units for the densely con-
nected layer, 0.00001 for the learning rate, 16 for the 
batch size and 20 training epochs.

Figure 6 illustrates the accuracy and loss graphs created 
during the training and testing, procedures.

After 20 epochs, on the training set the model achieved 
results with 95% accuracy, 95% recall, approximately 96% 
precision, and an F1 score of 95%.

Table 4 summarizes the optimal hyperparameter values 
for the second CNN model, providing insights into the 
configuration choices made during model development.

Table 2 Accuracy and precision of deep learning models trained 
from scratch for spatial resolution and geometric distortion

Spatial resolution Geometric distortion
Accuracy Precision Accuracy Precision

VGG16 0.46 0.6 0.49 0.6
VGG19 0.55 0.45 0.52 0.63
Resenet50 0.98 0.55 0.9 0.61
InceptionV3 0.99 0.6 0.97 0.7
Efficinet-
NetB0

0.97 0.57 0.95 0.61

Efficinet-
NetB5

0.91 0.59 0.93 0.7

Table 3 Best hyperparameter values for the deep learning 
model used for spatial resolution and geometric distortion
Hyperparameter Best 

Value
Number of filters (1st convolution layer) 48
Number of filters (2nd convolution layer) 64
Number of filters (3rd convolution layer) 64
Number of units in the densely connected layer 96
Learning rate 0.00001
Batch size 16
Epochs 20

Table 4 Best hyperparameter values for the deep learning 
model used for spatial resolution and geometric distortion
Hyperparameter Best 

Value
Number of filters (1st convolution layer) 16
Number of filters (2nd convolution layer) 48
Number of filters (3rd convolution layer) 96
Number of filters (4th convolution layer) 384
Number of units in the densely connected layer 64
Learning rate 0.001
Batch size 64
Epochs 30

Fig. 6 Accuracy and loss graphs for the first CNN model
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The findings revealed that best hyperparameters 
obtained were 16 filters, 48 filters, 96 filters, and 384 fil-
ters for the first, second, third and fourth layers respec-
tively. 64 units in the densely connected layer, a learning 
rate of 0.001, a batch size of 64 and 30 training epochs. 
Figure 7 shows the accuracy and loss graphs created dur-
ing the training and testing, procedures.

After 30 epochs, on the training set the model achieved 
results with 100% accuracy, 100% recall, approximately 
100% precision, and an F1 score of 100%.

This section presents the evaluation of predeveloped 
deep learning models in predicting the number of vis-
ible spokes in low-contrast images. The assessment is 
presented in Table  5, displaying results in both transfer 
learning and from-scratch scenarios on the training set.

In the transfer learning scenario, for VGG16, optimal 
parameters included a learning rate of 0.00001, a batch 
size of 16, and 15 training epochs. This yielded accuracy, 
recall, precision, and an F1 score of 11%, 19%, 14%, and 
14% respectively. VGG19 achieved 18% accuracy, 18% 
recall, 17% precision, and a 15% F1 score with parameters 
of a learning rate of 0.001, a batch size of 16, and 5 train-
ing epochs. InceptionV3 showcased an accuracy of 71%, 
a recall of 63%, precision of 60%, and an F1 score of 58% 
with a learning rate of 0.001, a batch size of 64, and 20 
training epochs. ResNet50 demonstrated 16% accuracy, 
14% recall, 4% precision, and a 6% F1 score, utilizing a 
learning rate of 0.00001, a batch size of 64, and 5 training 

epochs. EfficientNetB0 achieved 58% accuracy, 58% 
recall, 64% precision, and a 58% F1 score with parameters 
of a learning rate of 0.001, a batch size of 32, and 10 train-
ing epochs. EfficientNetB5 garnered 74% accuracy, 56% 
recall, 93% precision, and a 92% F1 score with a learning 
rate of 0.0001, a batch size of 64, and 20 training epochs.

When training models from scratch, with all layers 
fine-tuned, distinct behaviors emerged. For VGG16, 
results included 11% accuracy, 9% recall, 10% precision, 
and a 10% F1 score, utilizing a learning rate of 0.00001, a 
batch size of 64, and 15 training epochs. VGG19 achieved 
12% accuracy, 8% recall, 10% precision, and a 10% F1 
score with parameters of a learning rate of 0.0001, a batch 
size of 64, and 20 training epochs. ResNet50 demon-
strated 14% accuracy, 10% recall, 8% precision, and a 10% 
F1 score, utilizing a learning rate of 0.00001, a batch size 
of 32, and 10 training epochs. InceptionV3 showcased 
13% accuracy, 13% recall, 10% precision, and an 18% F1 
score with a learning rate of 0.001, a batch size of 64, and 
15 training epochs. EfficientNetB0 yielded 11% accuracy, 
10% recall, 11% precision, and an 11% F1 score, utiliz-
ing a learning rate of 0.00001, a batch size of 64, and 10 
training epochs. EfficientNetB5 achieved remarkable per-
formance with 93% accuracy, 90% recall, 92% precision, 
and a 91% F1 score, employing a learning rate of 0.001, a 
batch size of 16, and 15 training epochs.

Several models experienced challenges in achieving 
convergence when fine-tuning all layers. To address this, 
an extensive investigation was undertaken first by modi-
fying the number of fine-tuned layers, and second by 
increasing the batch size as illustrated in Table 6.

The VGG16 model achieved optimal results by fine-
tuning 5 layers with an accuracy of 88% and a precision of 
76%. Similarly, for the VGG19 model, fine-tuning 6 layers 
yielded peak performance, achieving an accuracy of 91% 
and a precision of 84%.

In contrast, the ResNet50 model struggled to achieve 
convergence even after experimenting with different 
fine-tuning layer configurations. Conversely, for the 
inceptionV3 model, fine-tuning 50 layers proved optimal, 

Table 5 Accuracy and precision of deep learning models for 
10-class classification of MRI images using transfer learning and 
training from scratch

Transfer learning From scratch
Accuracy Precision Accuracy Precision

VGG16 31 34 11 10
VGG19 18 17 12 10
Resenet50 16 4 14 11
InceptionV3 71 60 13 10
EfficinetNetB0 58 64 11 11
EfficinetNetB5 74 56 93 92

Fig. 7 Accuracy and loss graphs for the second CNN model
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yielding an accuracy of 57% and a precision of 37%. The 
EfficientNetB0 model, by fine-tuning 50 layers achieved 
an accuracy of 49% and a precision of 56%. Remarkably, 
the EfficientNetB5 model exhibited exceptional perfor-
mance by fine-tuning 50 layers with an accuracy and pre-
cision of 100%.

After increasing the batch size to 3700 images, The 
VGG16 model achieved an accuracy of 73% and a pre-
cision of 70%. The VGG19 model achieved an accuracy 
of 71% and a precision of 72%. The ResNet50 model 
achieved an accuracy of 35% and a precision of 35%. 
For the inceptionV3 model, increasing data yielded 
an accuracy of 21% and a precision of 19%. The Effi-
cientNetB0 model achieved an accuracy of 19% and a 
precision of 18%. The EfficientNetB5 model exhibited 
performance with an accuracy and precision of 90% and 
88% respectively.

Discussion
The versatility of MRI in terms of the myriad of possible 
imaging sequences and potential examinations is one of 
its primary advantages, but this versatility poses a chal-
lenge for quality assurance along with quality control 
procedures.

The ACR accreditation recommendations are widely 
accepted as international best practice in MRI QC. 
Manual tests of the ACR parameters consist of multi-
ple labor-intensive measurements (slice thickness, slice 
location, contrast, and geometric distortion). Each of 
these measurements can consume an average of 5  min. 
Furthermore, results obtained depend on user defined 
windowing levels and the guidance definitions of level-
ing and windowing are approximate and subjective. In 
response to these challenges, the application of artificial 
intelligence approaches emerges as a promising area of 
research in the field of medical image analysis.

The objective of this study was to develop and evalu-
ate image-based deep learning-based approaches for the 
assessment of geometric distortion and spatial resolu-
tion in Magnetic Resonance (MR) images. The optimi-
zation of hyperparameters for custom Convolutional 
Neural Network (CNN) models, as well as the analysis of 

popular pre-trained models including VGG16, VGG19, 
EfficientNetB0, EfficientNetB5, Resnet50, and Incep-
tionV3, yielded valuable insights into their efficacy for the 
specified tasks.

The first custom-developed CNN model achieved per-
fect accuracy and precision scores for geometric distor-
tion and spatial resolution assessment. These tasks are 
relatively simple compared to low contrast assessment.

Pre-trained models using transfer learning performed 
well on both tasks, while training from scratch yielded 
varying results. Some models, such as ResNet50 and 
InceptionV3, maintained competitive performance, while 
others, such as VGG16 and VGG19, struggled to achieve 
accuracy values above 60%.

Increasing the data size from 600 to 2200 led to con-
vergence of all models with improved prediction results. 
This suggests that to use existing models for geomet-
ric distortion and spatial resolution assessment, we can 
either use transfer learning or train from scratch with a 
large dataset.

Transforming the images from Cartesian to polar 
coordinates was the most important step in improving 
the accuracy of all models for low contrast image qual-
ity assessment. This is because polar image transforms 
can separate the segmentation task from the localization 
task, allowing the neural network to focus on learning 
to segment the objects without having to worry about 
where they are located in the image.

The custom-developed CNN models performed well, 
with the first model achieving strong accuracy, recall, 
precision, and F1 scores, and the second model achieving 
perfect scores across all metrics after 30 training epochs.

The pre-trained models performed variably when 
predicting the number of visible spokes in low contrast 
images. When trained from scratch with all layers fine-
tuned, only EfficientNetB5 converged and achieved good 
accuracy. The other models, VGG16, VGG19, ResNet50, 
InceptionV3, and EfficientNetB0, failed to converge.

However, when some layers were frozen and oth-
ers were fine-tuned, all models performed better. Addi-
tionally, increasing the batch size from 1000 to 3700 
images led to convergence of all models with improved 

Table 6 Accuracy and precision of deep learning models for 10-class classification of MRI images with fine-tuning and training from 
scratch

Fine-tuned layers From scratch (batch size = 3700 
images)

Number of fine-tuned layers Accuracy Precision Accuracy Precision
VGG16 5 88 76 73 70
VGG19 6 91 84 71 72
Resenet50 50 10 8 35 35
InceptionV3 50 57 37 21 19
EfficinetNetB0 50 49 56 19 18
EfficinetNetB5 50 100 100 90 88
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prediction results. These findings suggest that transfer 
learning is preferable when the batch size is small, while 
training from scratch is effective with a large batch size. 
Additionally, with a small batch size, we can fine-tune 
some layers instead of all layers.

This study represents the first attempt to evaluate the 
potential of image-based deep learning for automatic 
ACR quality control. Our approach differs from previ-
ous studies [11, 12], which utilized machine learning and 
deep learning techniques but applied on manually cre-
ated characteristics which is labor-intensive and increases 
error rates. Our approach, on the other hand, utilizes 
image-based deep learning models to directly analyze 
MR images. This allows for a more comprehensive analy-
sis of the images, as compared to the feature-based meth-
ods used in previous studies.

Future investigations could focus on refining and opti-
mizing the training process for models that exhibit chal-
lenges when trained from scratch. Techniques such as 
curriculum learning, progressive training, and ensemble 
approaches could potentially enhance the convergence 
and performance of these models. Additionally, explor-
ing the combination of transfer learning and fine-tuning 
strategies could leverage the strengths of pre-trained 
models while adapting them to specific medical imaging 
tasks. This approach may further improve the general-
ization and robustness of the models. Furthermore, the 
incorporation of domain-specific features and consid-
erations into the model architecture could enhance the 
models’ understanding of medical image characteristics 
and potentially lead to more accurate predictions.

In summary, the study’s findings contribute to our 
understanding of utilizing deep learning models for MR 
quality assessment. The combined insights from custom-
developed models and pre-trained architectures offer a 
versatile approach to address various challenges in geo-
metric distortion, spatial resolution, and low contrast 
image quality assessment. These findings underscore the 
potential of deep learning techniques to revolutionize 
medical image analysis and contribute to advancements 
in patient care and diagnosis.

Coclusions
In this study, we undertook a comprehensive exploration 
of deep learning models for the assessment of geomet-
ric distortion, spatial resolution, and low contrast image 
quality in MRI images.

Deep learning models demonstrated promising poten-
tial for the assessment of geometric distortion, spatial 
resolution, and low contrast image quality in MRI. Cus-
tom CNN models achieved superior performance on all 
tasks, while pre-trained models showed promise for geo-
metric distortion and spatial resolution assessment. The 

findings highlight the potential of deep learning to revo-
lutionize MRI quality assessment.
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