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Abstract 

Deep learning is a highly significant technology in clinical treatment and diagnostics nowadays. Convolutional 
Neural Network (CNN) is a new idea in deep learning that is being used in the area of computer vision. The COVID-19 
detection is the subject of our medical study. Researchers attempted to increase the detection accuracy but at the 
cost of high model complexity. In this paper, we desire to achieve better accuracy with little training space and time 
so that this model easily deployed in edge devices. In this paper, a new CNN design is proposed that has three 
stages: pre-processing, which removes the black padding on the side initially; convolution, which employs filter 
banks; and feature extraction, which makes use of deep convolutional layers with skip connections. In order to train 
the model, chest X-ray images are partitioned into three sets: learning(0.7), validation(0.1), and testing(0.2). The mod-
els are then evaluated using the test and training data. The LMNet, CoroNet, CVDNet, and Deep GRU-CNN models are 
the other four models used in the same experiment. The propose model achieved 99.47% & 98.91% accuracy on train-
ing and testing respectively. Additionally, it achieved 97.54%, 98.19%, 99.49%, and 97.86% scores for precision, recall, 
specificity, and f1-score respectively. The proposed model obtained nearly equivalent accuracy and other similar 
metrics when compared with other models but greatly reduced the model complexity. Moreover, it is found that pro-
posed model is less prone to over fitting as compared to other models.
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Introduction
COVID-19 was initially discovered in late December 
2019 in Wuhan, China. Approximately 619.7 million 
individuals have been impacted by the illness globally to 
date, and 6.5 million have died as a result (https:// covid 
19. who. int/ ). It is a lung condition brought on by SARS-
CoV-2 [1]. Infected individuals are exposed to symp-
toms like sore throat, headache, loss of taste and smell, 
cough, chills, and wheezing. Identifying, isolating, and 
treating the sick while adhering to all preventions is the 
fundamental strategy for containing this pandemic. The 
various strains of coronavirus have an ability of causing 
infections and diseases of high severity such as “Middle 
East respiratory syndrome” (MERS-CoV) and “Severe 
Acute Respiratory Syndrome” (SARS-CoV). Due to the 
type of virus, the World Health Organization (WHO) 
named the pandemic COVID-19 in February 2020 [2]. 
This virus is mainly airborne, along with other media 
such as contaminated surfaces, and acts in various man-
ners based on the immunity of the infected, which can be 
asymptomatic, benign or even severe [3]. This has caused 
the health systems of even developed countries such as 
the United States of America to fail, which has approxi-
mately 94 million cumulative cases as of September 19, 
2022.

The RT-PCR test is the most frequently used tech-
nique for identifying COVID-19. The initial RNA is 
subsequently broken down, dsDNA is created, and PCR 
amplification occurs as usual during RT-PCR. However, 
RT-PCR has some drawbacks. The RT-PCR test is a time-
consuming procedure [4]. Patients who have the device 
placed deep within their noses or mouths must also 
endure severe treatment [5].

Other methods can be employed, including computed 
tomography (CT Scan) and Chest X-ray (CXR) imaging. 
When comparing CT Scan to CXR, CT Scan is time-
consuming, expensive, less accurate and subjects patients 
to greater risks. Chest radiograph, on the other hand, is 
available in the majority of hospitals and clinics, mak-
ing it more widely accessible [6]. The rib cage of a person 
may be seen with CXR. The CXR approach is typically 
the primary choice if radiologists can identify the chest 
pathology. Considering the circumstance, the COVID-19 
is detected using the CXR technique [7, 8]. As a result, 
the only focus of this study is on utilising X-ray imaging 
to identify COVID-19 patients in the future.

The development of automatic detection methods 
based on artificial intelligence is required due to the 
rapid expansion of the COVID-19 pandemic. It is chal-
lenging to locate skilled physicians for each institu-
tion because of the shortage of skilled radiologists in 
various locations. Additionally, artificial intelligence 
algorithms will help patients by swiftly, easily, and 

accurately resolving this problem. The vast training of 
radiologists in this field is a key aspect. AI can aid in 
making a precise diagnosis in radiology [9]. Convolu-
tional neural networks, among other deep learning-
based AI systems, were employed in conjunction with 
chest x-rays to get accurate results utilising COVID-19. 
This is so because CNNs can learn the features on their 
own without the user having to extract them. Deep 
CNNs have been used to solve a variety of problems, 
including classification of skin cancer, arrhythmia diag-
nosis, brain disease categorisation, breast cancer detec-
tion, fundus image segmentation, lung segmentation, 
and lung detection of pneumonia using X-ray pictures. 
Deep learning’s performance has allowed Canadian 
start-up DarwinAI to feel that she has created a tool 
that could aid doctors in making important choices. As 
a result, DarwinAI is quite positive about the utilisation 
of AI in the struggle against COVID-19 [3].

The model we propose is built utilising numerous serial 
and parallel layers with various kernel sizes to identify 
local and global attributes and link residues to other lay-
ers to share information. It is based on GBRAS-Net [10]. 
To discriminate COVID-19 instances from normal cases, 
pneumonia cases, and lung opacities, the model was 
trained from 14,815 chest X-ray images, validated on 
2,116 images, and is tested on 4,233 images of a single data 
set, which is open source and publicly accessible. The out-
comes of the suggested technique are also compared with 
those of previous studies that have been published in the 
literature. The contributions are summarized as follows:

• The development of a light and accurate deep CNN 
classifier for quick identification of COVID-19 in 
order to aid in early diagnosis.

• Using a chest X-ray, which is cost effective com-
pared to other imaging techniques, to differenti-
ate COVID-19 patients through an experimental 
examination of our deep model.

• Comparison of our model’s performance to state-
of-the-art models.

• Helps researchers carry on the development of AI 
techniques to curb the COVID-19.

The Related work section provides a comprehensive 
overview of the research conducted by scholars that 
is pertinent to the current study. The suggested model 
is presented directly after the associated related work 
part, in the form of a section called Proposed Method-
ology. The Experiments section presents the specifics 
of the conducted tests, the dataset used, the alternative 
models that were compared to the current model, and 
the analysis. The final remarks have been offered in the 
Conclusion section.

https://covid19.who.int/
https://covid19.who.int/
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Related work
Ouchicha et al. developed the CVDNet [3] model. They 
made use of the Kaggle’s “COVID-19 Radiography 
Dataset” [11, 12]. A total of 2905 chest x-ray images 
were included in the dataset, and they were classified 
into three groups: viral pneumonia, COVID-19 and 
normal. They employed a 5-fold cross-validation tech-
nique and partitioned the dataset into 5 equal sections 
to test and train their model. Four parts of this dataset 
are used for training, validation, and testing, with the 
fifth component being used as a stand-alone compo-
nent. Results are obtained, and analysis is done based 
on the component that was evaluated. For three classes, 
this model averaged 96.72 percent precision, 96.69 per-
cent accuracy, 96.84 percent recall, and 96.68 percent 
F1-score.

A model called CoroNet [13] was created by Asif 
et  al. They used two sources to create their dataset [14, 
15]. They gathered 1,300 photos altogether from both of 
these sources. The dataset included the classes Normal, 
COVID-19, Bacterial Pneumonia, and Viral Pneumonia. 
They changed all of the photos to have a resolution of 72 
dpi and a size of 224 * 224 pixels. Instead of a dropout 
layer with two fully connected layers, the core model, 
Xception, was used. This dataset was divided into 4 sec-
tions using the 4-fold cross-validation method: 3 for 
training & 1 for validation. For testing, they used a data-
set produced by Wang et al. [16] & Ozturk et al. [17].

The model LMNet [18], a lightweight multi-scale CNN 
architecture, was created by Dwivedy et  al. The 6426 
CXR pictures from three classes-COVID-19, Normal, 
and Pneumonia (https:// www. kaggle. com/ prash ant268/ 
chest- xray- covid 19- pneum onia) make up the data sam-
ple used in this study. The values of each pixel are nor-
malised to range from 0 to 1. This original dataset is split 
such that 4/5th of the dataset went for training, while 
1/5th went for testing. Additionally, they added data to 
the existing dataset to create variations. Overall accuracy 
for LMNet was 96.03%, with average values for precision, 
recall, and F1-score - 0.97, 0.96, and 0.96, respectively.

A CNN model containing a GRU (Gated Recurrent 
Unit) [19] was created by Shah et  al. They obtained 
the data from Cohen et  al. [14] and the Kaggle reposi-
tory. There were three classes in the dataset: COVID-
19, Pneumonia, and Normal. The dataset is divided 
into three groups: training, validation, and testing, with 
respective ratios : 70%, 10%, and 20%. The average scores 
for recall, precision, and f1-score are 0.96, 0.96, and 0.95, 
respectively.

Amir et al. designed a model named FCOD (Fast COvid 
Detector) [20]. The dataset they used is from Cohen et al. 
[14]. The train-test split was 80-20. The model achieved 
sensitivity, specificity, precision, accuracy and f1-score 

of 0.93, 0.97, 0.97, 0.96 and 0.96 respectively for binary 
classification.

Oyelade et  al. designed CovFrameNet [21]. The data-
set is acquired from 5 sources. These databases are the 
“COVID-19 X-Ray images” [22], the “National Institutes 
of Health (NIH) Chest X-Ray Dataset” [14], “COVID-19 
Radiography database” [16], “COVIDNet” [11], “COVID-
19 Chest X-Ray” [23], and “Actualmed COVID-19 Chest 
X-Ray Dataset” (https:// github. com/ agchu ng/ Actua 
lmed- COVID- chest xray- datas et ). All these datasets con-
stitute total 15 classes. The system achieved 1.00, 0.85, 
0.85, 0.90, 0.50, and 1.00 for specificity, recall, precision, 
F-score, AUC, and accuracy.

Castiglione et  al. developed ADECO-CNN [24]. The 
dataset they used was derived from Soares et al. [25]. This 
approach was compared with VGG19, GoogleNet, and 
ResNet models based on pre-trained CNNs. Extensive 
analysis demonstrated that the CNN model optimized 
for ADECO-CNN could classify CT images with 99.99% 
accuracy, 99.96% sensitivity, 99.92% accuracy, and 99.97% 
specificity.

A preliminary literature review on the use of machine 
learning techniques for COVID-19 detection was con-
ducted by Chiroma et al. [26]. The survey covered differ-
ent deep learning techniques, including CNN variations 
like GoogleNet, VGG, Inception, SqueezeNet, Xception, 
Alexnet, ResNet, MobileNet, etc. It also noted difficulties 
and made recommendations for further research.

Similarly, Tayarani et  al. [27] provided an overview of 
the numerous applications of Artificial Intelligence (AI) 
in the fight against COVID-19. To diagnose various 
symptoms and tests, determine a patient’s COVID-19 
severity, conduct image testing, and study epidemiol-
ogy, artificial intelligence techniques have been utilised. 
The article covered CNN’s use of CT and X-rays to detect 
COVID-19. Alimadadi et  al. [28] discussed an over-
view of AI intelligence applications in the fight against 
the COVID-19 pandemic. Wynants et al. [29] discussed 
diagnosis and treatment of COVID-19 for its rapid rec-
ognition based on several models, including machine 
learning.

Preliminaries
Formalisation
With a dataset of NS training samples D = {X ,Y0} pro-
vided, we investigate the supervised learning problem. 
Let X = {x1, . . . , xNS} , and Y0 = {y1, . . . , yNS} be the sets 
of associated ground truth labels and input chest x-ray 
data, respectively, and let xi ∈ [0, 1, . . . , L− 1]H∗W  rep-
resent height, width, and the highest greyscale value, 
respectively, and let yi ∈ [0, 1] represent Non-COVID 
and COVID, respectively. Our classifier is expressed as 
the function fw : X → Y  . The weight parameter in this 

https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
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case is w. In the event that the output space Y differs from 
the label space, the final prediction is obtained using the 
function g : Y → Y0 . We want to minimize the training 
set’s prediction error rate, which measures how different 
fw(x) is from its ground truth category. In order to iden-
tify values for w that will lower the error function on the 
training sample, we are iteratively executing the training 
procedure.

Convolutional neural network
We were encouraged by the work done on ResNet [30]. In 
ResNet, we need not connect every layer in a sequence. 
We can connect some layers far behind in the model to 
layers far ahead. This means that a layer receives input 
not only from its immediate previous layer but from 
also other layers behind. So a layer can be a function 
of multiple previous layers, and many other layers can 
be a function of one or more layers. This is achieved 
by using skip-connections. The end layer receives 
both the non-processed/partially processed input and 
fully processed input F(x). Both the results are added 
x : H(x) = F(x)+ x . The actual work done is from 
GBRAS-Net [10], which we have modified for better 
results and performance.

Our proposed model CNN possesses two such skip 
connections. Other layers include 2D Convolution, 
Depthwise 2D Convolution, Batch Normalisation, 2D 
Average Pooling, Global 2D Average Pooling and a Dense 
layer.

Convolution layer
The primary component of any CNN is the convolution 
layer, hence its name. This layer possesses kernels, which 
are nothing but a square matrix, in most cases, whose 
values are learned by the model. This layer uses a convo-
lution operation, which is basically different from matrix 
multiplication. The operation is formalised as follows:

I = image, K = 2D filter and F = feature map. Dimension 
of K is m*n.

There are some features which are alike in the entire 
dataset, or at least in its major portion. These features are 
locally present in images which have a great role in classi-
fying the image. These features are detected by this layer 
and the output formed as a result of this calculation is the 
feature map. Each convolutional layer’s output is fed into 
an activation function, which creates nonlinearity.

Depthwise convolution layer
In case of a multi-channel image,a convolution layer 
works as follows: A single convolution operation gets 

F(i, j) = (I ∗ K )(i, j) = �m�nI(i +m, j + n)K (m, n)

performed on all the channels. Consider an image of 
dimension 3*256*256 and filter 3*3*3, the entire cube 
filter gets applied on the image cuboid. In depthwise 
convolution, our image is split into 3 2D matrices of 
dimensions 256*256, along with the filter turning into 3 
matrices of dimensions 3*3. So first image is convoluted 
with first filter, second image with the second filter and 
third image with the third filter. Once we obtain all the 
three results, they are stacked back to a 3D feature map 
(https:// medium. com/@ zuris ter/ depth- wise- convo 
lution- and- depth- wise- separ able- convo lution- 37346 
565d4 ec).

Activation functions
Because convolution and pooling are all linear proce-
dures, they mix when additional layers of convolution 
or pooling are applied. This makes any attempt to bring 
depth to our CNN a futile one. Following each convolu-
tion operation, the convolutional neural network modi-
fies the convoluted function to add nonlinearity to the 
model. This article examines three activation functions:

• ELU The ELU (Exponential Linear Unit) is formal-
ised as follows: 

 The value at which an ELU saturates for nega-
tive net inputs is controlled by the α hyperparame-
ter. The vanishing gradient effect is eliminated with 
ELUs. The average activations are pushed closer to 
zero since ELUs have negative values. Because they 
approach the gradient to the natural gradient, mean 
activations that are nearer to zero enable learn-
ing to occur more quickly. When the argument is 
decreased, ELU reaches a saturation point and turns 
negative. A modest derivative is referred to as satura-
tion when it lowers the fluctuation and information 
that propagates to the next layer (https:// www. tenso 
rflow. org/ api_ docs/ python/ tf/ keras/ activ ations/ elu).

• 3Tanh The 3Tanh activation function is formalised 
as follows: 

 This returns a value between -3 and 3. As per the 
experiment conducted by Reinal et al. [10], this acts 
as the best activation function for the experiment.

• Softmax Given the input matrix, the softmax func-
tion calculates the class probabilities. The formali-
sation of softmax function is as follows [3]: 

ELU(x) =
x, if x ≥ 0,

α ∗ (ex − 1), otherwise.

3Tanh(x) = −3
1− e2x

1+ e2x

https://medium.com/%40zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://medium.com/%40zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://medium.com/%40zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://www.tensorflow.org/api_docs/python/tf/keras/activations/elu
https://www.tensorflow.org/api_docs/python/tf/keras/activations/elu
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 where z = [z1, z2,..., zK ] is the input vector to the 
softmax function, the output of softmax(z)j spans 
between 0 and 1 and 

Batch normalisation
This method called batch normalisation (BN) greatly 
enhances convergence during training. It entails aver-
aging and normalising the network layer output vari-
ance [3]. We are given a mini-batch B = { x1, x2, . . . , xm } 
of size m, the normalised values x̂1, x̂2, . . . , ˆxm and cor-
responding linear transformations y1, y2, . . . , ym . The 
transformation BNγ ,β : x1, x2, . . . , xm → y1, y2, . . . , ym is 
referred to as batch normalisation and is calculated as

Pooling layer
The characteristics of the convolution layers are grad-
ually decreased in size while still retaining the most 
crucial data in the pooling layer. This layer lowers the 
calculations and the number of variables in the net-
work. A window of size hp * hp that travels in step sp 
on every feature map defines the pooling operation. It 
is frequently tackled using two basic strategies [3]:

• Max-pooling: This technique involves returning the 
highest local value possible for each grouping win-
dow.

• Avg-pooling: Computes the mean of the local data 
for each grouping window.

softmax(z)j =
ezj

∑K
k=1 e

zk

K
∑

j=1

softmax(z)j = 1

µB =
1

m

m
∑

i=1

xi

σ 2
B =

1

m

m
∑

i=1

(xi − µB)

x̂i =
xi − µB
√

σ 2
B + ǫ

yi = β + γ x̂i ≡ BNγ ,β(xi)

Global pooling layer
The Flatten layers are replaced in CNN by the global 
pooling layer. It creates one feature map for each associ-
ated classification task category in the final convolution 
layer. The mean/maximum of every feature map is com-
puted, and the resultant vector is placed straight to the 
softmax layer, as opposed to stacking fully linked layers 
on top of the feature maps. The benefit of global average 
pooling is that it implements associations among both 
feature maps and categories, which makes it more intui-
tive to the convolutional structure. Since there are no 
variables to optimise with global average/max pooling, 
overfitting is avoided at this layer. Spatial data is sum-
marised using global average/max pooling in an effort 
to make it more resilient towards input spatial transla-
tions. Global average/max pooling may be thought of as 
a structural preprocessing step that formally mandates 
that feature maps be concept (category) accuracy maps 
(https:// andro idkt. com/ expla in- pooli ng- layers- max- 
pooli ng- avera ge- pooli ng- global- avera ge- pooli ng- and- 
global- max- pooli ng/).

Fully connected layer
Every neuron in the area corresponding to this layer’s 
input, or every neuron in the layer preceding, is linked 
to every neuron in that layer. This layer generates a 
vector with K dimensions, where K is the number of 
categories that the network can predict. This vector 
holds the probability of categorisation for each image 
class. A FC layer defines the connection between the 
classes and the image. Since the record represents 
the result of the previous layer, it corresponds to the 
object’s map: high value represents the object’s loca-
tion in the image.

Proposed methodology
To simplify the explanation, each set of layers is pre-
sented in a section of its own. The propped model is 
given in Fig. 1 and layer wise hyper parameters are sum-
marized in Table 1

Layer 1
As mentioned about the filters in the previous section, 
we also have an array of 30 elements. All of them are ini-
tialised to 1. The 30 filters serve as the weights and the 30 
ones serve as the bias for the first 2D convolution layer. 
Other features of this convolution layer is mentioned in 
the preprocessing stage. This creates 780 parameters with 
an output size of 175*175*30. This is followed by batch 
normalisation. The input is the output of the latest con-
volution layer. The parameters of the batch normalisation 

https://androidkt.com/explain-pooling-layers-max-pooling-average-pooling-global-average-pooling-and-global-max-pooling/
https://androidkt.com/explain-pooling-layers-max-pooling-average-pooling-global-average-pooling-and-global-max-pooling/
https://androidkt.com/explain-pooling-layers-max-pooling-average-pooling-global-average-pooling-and-global-max-pooling/
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layer is as follows: momentum is 0.2, epsilon is 0.001, 
center is set to True, scale is set to False, trainable True, 
fused None, renorm False, renorm clipping None, 
renorm momentum 0.4, adjustment None. These param-
eters are same for all batch normalisation layers used in 
this model. This creates 90 parameters with an output 
shape of 175*175*30.

Layer 2
The next layer is 2D depthwise convolution. This 
receives the output of the latest batch normalisa-
tion layer as its input. This layer uses kernel size of 
1*1 with stride of 1. In this case too, these parameters 
remain the same for all 2D depthwise convolution layer. 
This creates 60 parameters with an output shape of 
175*175*30. This is followed by batch normalisation. 
The input is the output of the latest 2D depthwise con-
volution layer. Number of parameters and output shape 
remains the same as layer 1.

Layer 3
The next two layers are same as the previous two layers: 
2D depthwise convolution followed by batch normalisa-
tion. All configurations remain the same as layer 2. Then 
the outputs from the last two batch normalisation layers 
are added.

Layer 4
The next layer is the 2D convolution layer. It has 25 ker-
nels of kernel size 3*3 and stride of 1. Other parameters 
are as follows: activation elu, padding same, kernel ini-
tializer glorot uniform. It creates 6775 parameters and 
its output shape is 175*175*25. This is followed by batch 
normalisation which creates 75 parameters and its out-
put shape is 175*175*25.

Layer 5
Layer 5 is same as layer 4. The only difference is that the 
2D convolution layer creates 5650 parameters.

Fig. 1 Proposed Architecture
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Layer 6
This layer consists of the 2D average pooling layer. This 
average pooling layer has a kernel size and stride of 2*2. 
This layer generates no parameters and has an output size 
of 87*87*25.

Layer 7
The structure of layer 7 is same as that of layer 5. The 
difference in the structure is that the convolution layer 
has 55 kernels. The convolution layer creates 12430 
and has an output shape of 87*87*55. The batch nor-
malisation layer has the same output size creating 165 
parameters.

Layer 8
Layer 8 is same as layers 2 and 3. The output shape is 
87*87*55. Number of parameters for depthwise convolu-
tion is 110, while it is 165 for batch normalisation layer.

Layer 9
Layer 9 is exactly the same as layer 8. The outputs of 
layer 7 and 9 are added.

Layer 10
The structure of layer 10 is same as layer 7. The output 
size is 87*87*55. Number of parameters for convolution 
layer is 27280, while it is 165 for batch normalisation.

Table 1 Layered architecture of the proposed model

Layer Number of 
filters

Kernel Size Strides Output Shape Number of 
parameters

Connected to

Input 175*175*1 0 –

2D Convolution layer 30 5*5 1*1 175*175*30 780 Input

Batch Normalisation 175*175*30 90 2D Convolution layer

Depthwise 2D Convolution layer 1*1 1*1 175*175*30 60 Batch Normalisation

Batch Normalisation 1 175*175*30 90 Depthwise 2D Convolution layer

Depthwise 2D Convolution layer 1 1*1 1*1 175*175*30 60 Batch Normalisation 1

Batch Normalisation 2 175*175*30 90 Depthwise 2D Convolution layer 1

Add 175*175*30 0 Batch Normalisation 1

Batch Normalisation 2

2D Convolution layer 1 25 3*3 1*1 175*175*25 6775 Add

Batch Normalisation 3 175*175*25 75 2D Convolution layer 1

2D Convolution layer 2 25 3*3 1*1 175*175*25 5650 Batch Normalisation 3

Batch Normalisation 4 175*175*25 75 2D Convolution layer 2

2D Average Pooling 2*2 2*2 87*87*25 0 Batch Normalisation 4

2D Convolution layer 3 55 3*3 1*1 87*87*25 12430 2D Average Pooling

Batch Normalisation 5 87*87*25 165 2D Convolution layer 3

Depthwise 2D Convolution layer 2 1*1 1*1 87*87*25 110 Batch Normalisation 5

Batch Normalisation 6 87*87*25 165 Depthwise 2D Convolution layer 2

Depthwise 2D Convolution layer 3 1*1 1*1 87*87*25 110 Batch Normalisation 6

Batch Normalisation 7 87*87*25 165 Depthwise 2D Convolution layer 3

Add 1 87*87*25 0 Batch Normalisation 5

Batch Normalisation 7

2D Convolution layer 4 55 3*3 1*1 87*87*25 27280 Add 1

Batch Normalisation 8 87*87*25 165 Batch Normalisation 5

2D Average Pooling 1 2*2 2*2 87*87*25 0 Batch Normalisation 8

2D Convolution layer 5 55 3*3 1*1 43*43*25 27280 2D Average Pooling 1

Batch Normalisation 9 43*43*25 165 2D Convolution layer 5

2D Convolution layer 6 25 1*1 1*1 43*43*25 1400 Batch Normalisation 9

Batch Normalisation 10 43*43*25 75 2D Convolution layer 6

2D Global Average Pooling 25 0 Batch Normalisation 10

Dense 2 2 52 2D Global Average Pooling
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Layer 11
This layer is also a 2D average pooling layer, which is 
same as layer 6. The output size of this layer is 43*43*55.

Layer 12
The structure of layer 12 is the same as that of layer 7 and 
layer 10. The number of parameters created are same as 
layer 10, but the output shape has reduced to 43*43*55.

Layer 13
Layer 13 has a 2D convolution layer followed by batch 
normalisation layer. The 2D convolution layer has 25 fil-
ters with kernel size of 1, with other parameters same as 
its previous counterparts. The convolution layer creates 
1400 parameters, while the batch normalisation layer 
creates 75 parameters, both having the output shape of 
43*43*25.

Layer 14
This is the last layer of the model. This model starts with 
the 2D Global Average Pooling layer. This transforms the 
input from 43*43*25 to 25. This input then goes to the 
dense layer, which is the final classifier. This has 2 neu-
rons - one for positive(1) while other for negative(0), 
using the softmax activation function. Global pooling 
layer creates no parameters while the dense layer creates 
52 parameters.

Total parameters
This model creates a total of 83,307 parameters, out of 
which 81,647 are trainable parameters while 1660 are 
non-trainable parameters.

Experiments
This section discusses about the experiments that are 
performed along with the setup used for experiments.

Experimental Setup
All the experiments are performed on a 64-bit Ubuntu 
18.04 operating system. The GPU system’s configuration 
included 32 GB of RAM, a 16 GB NVIDIA P5000/PCIe/
SSE2 GPU, and a 1 TB hard disk with 200 SSD. The GPU 
machine was equipped with Anaconda 3.7 and PyTorch 
version 1.10.0, which utilized CUDA 10.2 and NVIDIA 
Driver 470. All the programs are implemented using 
PyTorch library.

Dataset
A research team with members from “Qatar University, 
Doha, Qatar” and members from “University of Dhaka, 
Bangladesh” and other members from nations like Paki-
stan and Malaysia are joined and worked together with 
the doctors. Initially, they released CXR images for 3 

classes - COVID (219), normal (1341) and viral pneumo-
nia (1345). Next its updated with a total of 1200 images 
of class COVID and added a new class - Lung Opacity 
(6012) with Normal (10192), COVID (3616) and Viral 
Pneumonia (1345). These images are of 299*299 resolu-
tion in PNG format [11, 12].

The images for COVID class are collected from the fol-
lowing sources:

• 2473 images from Padchest dataset (https:// bimcv. 
cipf. es/ bimcv- proje cts/ bimcv- covid 19/# 15908 58128 
006- 9e640 421- 6711)

• 183 images from a Germany medical school (https:// 
github. com/ ml- workg roup/ covid- 19- image- repos 
itory/ tree/ master/ png)

• 559 image from SIRM, Github, Kaggle and Tweeter 
(https:// sirm. org/ categ ory/ senza- categ oria/ covid- 
19/, https:// euror ad. org, https:// github. com/ ieee8 
023/ covid- chest xray- datas et, https:// figsh are. com/ 
artic les/ COVID- 19_ Chest_X- Ray_ Image_ Repos 
itory/ 12580 328)

• 400 images from Github source (https:// github. com/ 
armiro/ COVID- CXNet)

A total of 10192 normal data is collected in that 8851 
from Radiological Society of North America (RSNA) and 
1341 from Kaggle (https:// www. kaggle. com/ pault imoth 
ymoon ey/ chest- xray- pneum onia).

For lung opacity, 6012 CXR images are collected 
from RSNA CXR dataset (https:// www. kaggle. com/c/ 
rsna- pneum onia- detec tion- chall enge/ data), while for 

Fig. 2 Image with class COVID

https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
https://sirm.org/category/senza-categoria/covid-19/
https://sirm.org/category/senza-categoria/covid-19/
https://eurorad.org
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://figshare.com/articles/COVID-19_Chest_X-Ray_Image_Repository/12580328
https://figshare.com/articles/COVID-19_Chest_X-Ray_Image_Repository/12580328
https://figshare.com/articles/COVID-19_Chest_X-Ray_Image_Repository/12580328
https://github.com/armiro/COVID-CXNet
https://github.com/armiro/COVID-CXNet
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
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pneumonia, 1345 images are collected from the Chest 
X-Ray Images (pneumonia) database (https:// www. kag-
gle. com/ pault imoth ymoon ey/ chest- xray- pneum onia). 
The sample images are shown in Figs. 2, 3, 4 and 5.

Pre‑processing
Most of the images had a black background at the side 
that require more space in the image. So the black back-
ground on all the four sides are removed. Next, each 

image is resized to 175*175 dimensions. For the class 
label the ones with COVID positive is marked as 1 while 
the remaining are marked as negative (0).

After that, the model goes through a pre-processing 
phase. During this stage a convolution with 30 filters with 
a size (5, 5) is remained constant throughout the train-
ing stage (ie, the layer is not trainable). Next, the convo-
lutional layers are formatted as follows: padding, strides 
(1, 1), 30 filters (described below), and 3TanH activation 
function [10].

Next, SRM filters from YE-Net [31] are used, which 
are used to to pre-process our images [10]. These filters 
are very much capable of extracting useful features from 
our CXR images. There are 8 “Class I”, 4 “Class II” and 8 
“Class III” filters. Moreover one 3*3 filter for square, 4 3*3 
filters for edge, one filter with 5*5 dimensions for square 
and four filters of 5*5 for edge. All these filters are shown 
in Fig.  6. The filters which are not 5*5 are padded with 
0s. In order to achieve better performance, the values of 
each filter is normalised in the range of [-1, 1]. Each value 
in the filter is divided by its maximum absolute value, 
i.e, 1 for “Class I”, 2 for “Class II”, 3 for “Class III”, 4 for 
“Square 3*3” and “Edge 3*3”, and 12 for “Square 5*5” and 
“Edge 5*5” [10].

Performance metrics
We are using the following metrics to evaluate our pro-
posed model along with other models - accuracy, loss, 
Area under ROC (AUC), trainable parameters, non-
trainable parameters, model size, sensitivity, specificity, 
precision, F1-score. 

Fig. 3 Image with class Lung Opacity

Fig. 4 Image with class Normal

Fig. 5 Image with class Viral Pneumonia

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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1. Informally, accuracy is the fraction of predictions 
that our model has fulfilled. In binary context, accu-
racy is defined as follows: 

2. The loss function is the categorical cross entropy loss 
and it is formally defined as follows: 

(1)Accuracy =
TN + TP

TP + FN + FP + TN

(2)CE = −

C
∑

i=i

tilog(si)

 In binary context, the equation is reduced to: 

3. AUC: The overall performance is indicated by adding 
up all potential thresholds in the area below the ROC 
curve (AUC). For something like the ROC (receiver 
operating characteristic) curve, the algorithm per-
forms better the if the curve is closer to the upper left 
corner and have greater the AUC.

4. Sensitivity: The percentage of samples that are actu-
ally positive and produce a positive result when 

(3)CE = −t1log(s1)− (1− t1)log(1− s1)

Fig. 6 Set of 30 SRM Filters per category [10]
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employing the test in question is known as the test’s 
“Sensitivity” or “Recall” or “True Positive Rate” (TPR) 
(https:// www. techn ology netwo rks. com/ analy sis/ 
artic les/ sensi tivity- vs- speci ficity- 318222). In our 
situation, it reveals the model’s sensitivity to COVID 
detection. It is defined formally as follows 

5. Specificity: It measures the percentage of sam-
ples that are actually negative and yield a negative 
response with the test. It is also know as True Nega-
tive Rate (TNR) (https:// www. techn ology netwo 
rks. com/ analy sis/ artic les/ sensi tivity- vs- speci ficity- 
318222). In the case of our example, it explains how 
precisely it can determine whether a patient is not a 
COVID patient. It can be defined as follows: 

6. The harmonic mean of the model’s precision and 
recall is known as the F1-score, which is given below 

(4)Sensitivity =
TP

FN + TP

(5)Specificity =
TN

FP + TN

(6)F1− score =
2 ∗ Recall ∗ Precision

Recall + Precision

Experiment proceedings
The experimental process is shown in Fig.  7: The pre-
processed dataset is shuffled randomly and divided into 
3 sets - training, test and validation datasets. These data-
sets are partitioned in such that 70% samples are training 
data, 10% samples are validation data and 20% samples 
are test data. All the models are trained and obtained 
accuracy, loss and AUC on training dataset. These per-
formance plots are shown in Fig. 8. These trained models 
are experimented on test dataset and obtained test accu-
racy, test loss and test AUC. The testing performance in 
the form of confusion matrix is given in Fig. 9

Training process is carried out for 10 epochs with 
Adam optimiser and batch size of 33. The parameters of 
Adam optimiser is as follows: Learning Rate of 0.001, β1 
of 0.9, β2 of 0.999, ǫ of 10−8 and no decay.

The proposed model, is comapared with 4 other exist-
ing models namely Deep GRU-CNN [19], CoroNet [13], 
CVDNet [3] and LMNet [18]. These results are shown in 
Table 2.

From the table results it is observed that our proposed 
model generated a mere 83,307 parameters (better than 
others), out of which 81,647 are trainable while 1660 
are non-trainable. The model size is only 1.18 MB (bet-
ter than others). The model obtained a training loss of 

Fig. 7 Experiment Setup

https://www.technologynetworks.com/analysis/articles/sensitivity-vs-specificity-318222
https://www.technologynetworks.com/analysis/articles/sensitivity-vs-specificity-318222
https://www.technologynetworks.com/analysis/articles/sensitivity-vs-specificity-318222
https://www.technologynetworks.com/analysis/articles/sensitivity-vs-specificity-318222
https://www.technologynetworks.com/analysis/articles/sensitivity-vs-specificity-318222
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0.0196 (better than others), training accuracy of 99.47% 
(better than others) and training AUC of 0.9995 (better 
than others). With test data, the model obtained loss of 
0.0397 (better than others), accuracy of 98.91%(better 
than others) and AUC of 0.9983 (better than others). Out 
of 17,549 only 65 are mis-classified as COVID and out of 
3616 only 89 are misclassified as normal. The sensitiv-
ity obtained is 0.9819 (better than others), the specific-
ity obtained is 0.9949 (less than CVDNet), the precision 

is 0.9754 (less than CVDNet) and the F1-score is 0.9786 
(better than others).

Analysis
In case of LMNet,. the difference is high for metrics that 
are derived from training and test data. The accuracy dif-
fers by 3.42%. Even for metrics like loss and AUC, the dif-
ference is significant. So it is safe for us to conclude that 

Fig. 8 Graphs for accuracy, loss and AUC over 10 epochs

Fig. 9 Confusion matrix of the proposed model
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LMNet has a tendency to overfit on our dataset. Simi-
larly, Deep GRU-CNN have overfitting tendency. In Deep 
GRU-CNN case, the difference in accuracy is slightly 
more, about 3.92% (Refer Table 2).

In terms of training accuracy, the model performance 
is closest to CoroNet, which differs by merely 0.29%. But 
to reach to such a closeness, the model occupies a space 
of 278.36 MB (Refer Table 2). This is approximately 235.9 
times more than our proposed model. So it is also safe 
for us to conclude that the tradeoff between accuracy and 
complexity of our proposed model is very low and it is 
possible for us to achieve both.

On comparing the difference between training accu-
racy and test accuracy, we get the following results: 

For Deep GRU-CNN, the difference is 3.92%, 3.42% for 
LMNet, 1.42% for CoroNet, 1.1% for CVDNet and only 
0.56% in our proposed model (Refer Table 2). With this 
data, we can conclude that our model is less prone to 
overfitting on this dataset.

In the Fig. 10, our proposed model curve is upper left cor-
ner. The ROC curve clearly depicts the classification errors 
in a binary classification problem. So the ROC curve repre-
sents how effectively our model distinguishes between the 
positive class and the negative class. While other models are 
negligibly away from our model, the Deep GRU-CNN devi-
ates a lot from the results of our proposed model. So we can 
safely conclude from the graph that our proposed model 
effectively classifies any instance present in our dataset.

Table 2 Perforamcne measures of various models

LMNet CoroNet Deep GRU‑CNN CVDNet Proposed Model

Total Parameters 8,92,226 2,31,66,674 1,65,26,978 53,17,154 83,307

Trainable Parameters 8,92,162 2,31,12,146 8,23,490 53,15,618 81,647

Non-trainable parameters 64 54,528 1,57,03,488 1536 1660

Size in MB 10.89 278.36 69.55 64.13 1.18

Training Accuracy 95.69% 99.18% 97.4% 98.88% 99.47%

Training loss 0.1377 0.0286 0.0705 0.0296 0.0196

Training AUC 0.9893 0.9993 0.9973 0.9993 0.9995

Test Accuracy 92.27% 97.76% 93.48% 97.78% 98.91%

Test loss 0.2999 0.0719 0.1614 0.0713 0.0397

Test AUC 0.9684 0.9959 0.985 0.9962 0.9983

Sensitivity 0.7944 0.9545 0.9727 0.8939 0.9819

Specificity 0.9848 0.9819 0.9508 0.9969 0.9949

Precision 0.9289 0.9112 0.75 0.9851 0.9754

F1-score 0.8564 0.9323 0.847 0.9323 0.9786

Fig. 10 ROC Curve generated by all models
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Further, the proposed model is requires less number of 
trainable parameters hence can be easily deployed in any 
edge devices.

Conclusion
A novel CNN based lightweight model for COVID-19 
detection from CXR scans is proposed in this paper. The 
model has 83,307 parameters, 81,647 of which are train-
able and 1660 of which are not. The dataset used consisted 
of 21,165 CXR images with each image of 299*299 pixel. 
The images are divided into four categories: normal, lung 
opacity, viral pneumonia, and COVID-19. The dark pad-
ding surrounded the CXR photos is removed, and the 
images are resized to 175*175 pixels. The complete dataset 
was divided into training, validation and test datasets in 
7:1:2 ratio respectively. On test dataset our proposed light 
weight deep learning model achieved 99.47% accuracy and 
97.86% F1-score. When compared with other state-of-the-
art models the proposed lightweight model outperformed 
in terms of accuracy and F1-score. As the proposed model 
requires few trainable parameters it can easily deployed in 
any edge device for COVID-19 detection.
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