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Abstract 

Background The purpose of this study is to investigate the use of radiomics and deep features obtained from mul-
tiparametric magnetic resonance imaging (mpMRI) for grading prostate cancer. We propose a novel approach called 
multi-flavored feature extraction or tensor, which combines four mpMRI images using eight different fusion tech-
niques to create 52 images or datasets for each patient. We evaluate the effectiveness of this approach in grading 
prostate cancer and compare it to traditional methods.

Methods We used the PROSTATEx-2 dataset consisting of 111 patients’ images from T2W-transverse, T2W-sagittal, 
DWI, and ADC images. We used eight fusion techniques to merge T2W, DWI, and ADC images, namely Laplacian Pyra-
mid, Ratio of the low-pass pyramid, Discrete Wavelet Transform, Dual-Tree Complex Wavelet Transform, Curvelet Trans-
form, Wavelet Fusion, Weighted Fusion, and Principal Component Analysis. Prostate cancer images were manually 
segmented, and radiomics features were extracted using the Pyradiomics library in Python. We also used an Autoen-
coder for deep feature extraction. We used five different feature sets to train the classifiers: all radiomics features, all 
deep features, radiomics features linked with PCA, deep features linked with PCA, and a combination of radiomics 
and deep features. We processed the data, including balancing, standardization, PCA, correlation, and Least Absolute 
Shrinkage and Selection Operator (LASSO) regression. Finally, we used nine classifiers to classify different Gleason 
grades.

Results Our results show that the SVM classifier with deep features linked with PCA achieved the most promis-
ing results, with an AUC of 0.94 and a balanced accuracy of 0.79. Logistic regression performed best when using 
only the deep features, with an AUC of 0.93 and balanced accuracy of 0.76. Gaussian Naive Bayes had lower perfor-
mance compared to other classifiers, while KNN achieved high performance using deep features linked with PCA. 
Random Forest performed well with the combination of deep features and radiomics features, achieving an AUC 
of 0.94 and balanced accuracy of 0.76. The Voting classifiers showed higher performance when using only the deep 
features, with Voting 2 achieving the highest performance, with an AUC of 0.95 and balanced accuracy of 0.78.

Conclusion Our study concludes that the proposed multi-flavored feature extraction or tensor approach using 
radiomics and deep features can be an effective method for grading prostate cancer. Our findings suggest that deep 
features may be more effective than radiomics features alone in accurately classifying prostate cancer.
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Introduction
Prostate cancer is a prevalent form of cancer among 
men, second only to lung cancer in terms of incidence. 
It is estimated that there will be approximately 174,650 
new cases and 31,620 deaths related to prostate cancer 
in the United States in 2019 [1]. This represents a sig-
nificant proportion of all new cancer diagnoses among 
men, accounting for approximately one in five cases. 
Early detection and treatment planning are crucial in 
reducing the mortality rate associated with prostate 
cancer [1–3]. Therefore, healthcare professionals must 
be aware of the risk factors and implement screening 
and diagnostic protocols for prostate cancer. Addition-
ally, treatment planning should be individualized based 
on the patient’s risk profile, taking into consideration 
the patient’s age, comorbidities, and preferences [4–6].

Traditionally, prostate cancer is diagnosed through 
a combination of digital rectal examination (DRE) and 
prostate-specific antigen (PSA) blood test, followed by 
transrectal ultrasound (TRUS) guided sampling. The 
diagnosis is based on the microscopic evaluation of 
prostate tissue obtained through needle sampling. Cur-
rently, the gold standard for diagnosing prostate cancer 
is prostate sampling under the guidance of TRUS [7]. 
A pathologist reviews these samples and assigns a pri-
mary Gleason score for the predominant histological 
pattern and a secondary Gleason score for the worst 
pattern [8]. The Gleason Score (GS) serves as a stand-
ard indicator of the aggressiveness of prostate cancer. 
It is determined by adding the two most prevalent 
Gleason grades found in the cancerous tissue pattern. 
Pathologists assign a Gleason grade, which ranges from 
3 to 5, based on the arrangement of cancer cells within 
the prostate. Prostate cancer is divided into five distinct 
grade groups, depending on the Gleason Score. A Glea-
son Score less than 6 falls into Grade Group 1 (GG 1), 
while a Gleason Score of 7 or higher is placed in Grade 
Group 2 (GG 2, GS 3 + 4 = 7), Grade Group 3 (GG 3, 
GS 4 + 3 = 7), Grade Group 4 (GG 4, GS 4 + 4 = 8, GS 
3 + 5 = 8, GS 5 + 3 = 8), and Grade Group 5 (GG 5, 
GS = 9, GS = 10) based on the level of cancer aggres-
siveness [9]. Doctors make predictions about the like-
lihood of recovery based on the grade group. Lesions 
classified as GG 1 are generally considered insignificant 
from a clinical standpoint and do not necessitate treat-
ment. However, active surveillance is recommended for 
such lesions. In contrast, lesions categorized as GG 2, 
GG 3, GG 4, and GG 5 are deemed clinically significant 
and typically require treatment.

Computer-aided diagnosis (CAD) techniques have 
been proposed as a means of assisting radiologists in 
determining the grade of prostate cancer from mag-
netic resonance imaging (MRI) scans [10–12]. Recently, 
several studies have focused on the classification of 
clinically significant and clinically insignificant prostate 
cancer. Methods utilizing texture feature analysis and 
Convolutional Neural Networks (CNNs) have shown 
promising results [13–16]. The use of computer-aided 
quantitative analysis for prostate multiparametric MRI 
(mpMRI) has the potential to improve the detection of 
prostate cancer and aid in standardizing mpMRI inter-
pretation. This, in turn, could lead to a more efficient 
diagnostic process and reduce the number of over and 
under-diagnoses in prostate cancer management. How-
ever, various methods have been proposed for identi-
fying significant prostate cancer using deep learning 
networks or radiomics approaches. Differences in 
patient population, dataset size, imaging protocols, and 
other factors make it difficult to compare the perfor-
mance of these methods [17–20].

The aim of this research is to investigate the use of 
radiomics features and deep features obtained from 
multiparametric magnetic resonance imaging (mpMRI) 
to grade prostate cancer. We propose a novel approach 
in which four mpMRI images (T2 weighted image 
(T2W) – transverse, T2W-sagittal, Diffusion-weighted 
imaging (DWI), and apparent diffusion coefficient 
(ADC)) are combined using eight different fusion 
techniques, creating 52 images or datasets for each 
patient. This approach, referred to as multi-flavored 
feature extraction or tensor, has not been previously 
explored. Our work addresses several limitations of 
previous methods in grading prostate cancer using 
deep learning networks or radiomics approaches. Spe-
cifically, most previous studies focus on the classifica-
tion of clinically significant and clinically insignificant 
prostate cancer using a single imaging modality or the 
fusion of two modalities, which may not capture the 
complete information about the tumor. In contrast, our 
approach uses multiple imaging modalities and fusion 
techniques to extract complementary information from 
different aspects of the tumor, which may improve the 
accuracy of prostate cancer grading. Furthermore, we 
compare the performance of our approach to tradi-
tional methods, providing insights into the potential 
benefits of our approach for prostate cancer diagnosis 
and management.

The main contributions are shown as follows:
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• Proposing a novel approach, called multi-flavored 
feature extraction or tensor, that combines four 
mpMRI images using eight different fusion tech-
niques to extract complementary information from 
different aspects of the tumor. This novel approach 
has not been previously explored.

• Investigating the use of radiomics features and deep 
features obtained from mpMRI to grade prostate 
cancer, which has the potential to improve the accu-
racy of prostate cancer diagnosis and management.

• Addressing several limitations of previous methods 
in grading prostate cancer using deep learning net-
works or radiomics approaches, such as the focus on 
the classification of clinically significant and clinically 
insignificant prostate cancer using a single imaging 
modality or fusion of two modalities. Our approach 
uses multiple imaging modalities and fusion tech-
niques to extract complementary information from 
different aspects of the tumor, which may improve 
the accuracy of prostate cancer grading.

• Comparing the performance of our approach to tra-
ditional methods, which provides insights into the 
potential benefits of our approach for prostate cancer 
grading.

Related work
Previous research in the field of prostate cancer has 
predominantly concentrated on the categorization and 
grading of prostate tumors. In this section, we present 
a concise overview of the existing literature pertain-
ing to these key aspects. Liu et  al. [21]. delved into the 
exploration of whether the amalgamation of radiom-
ics and automated machine learning-based classifica-
tion, particularly for the original images obtained from 
multiphase dynamic contrast-enhanced (DCE)-MRI 
scans, could accurately forecast the aggressiveness of 
prostate cancer before resorting to a biopsy procedure. 
Their findings revealed that a fusion of radiomics and 
machine learning-driven analysis, focusing on the earli-
est and most robust phases of the original DCE-MRI 
images, could non-invasively and precisely predict pros-
tate cancer aggressiveness. In a similar vein, Castillo et al. 
[18]. undertook a comparative analysis, evaluating the 
performance of a deep-learning model against that of a 
radiomics model in diagnosing significant prostate can-
cer within diverse patient cohorts. They utilized mpMRI 
data, incorporating tumor delineations by radiologists 
and pathology reports. While internal cross-validation 
favored the deep-learning approach, the radiomics model 
demonstrated impressive performance with AUCs of 
0.88, 0.91, and 0.65 on independent test sets, in contrast 

to the AUCs of 0.70, 0.73, and 0.44 for the deep-learning 
model.

Donisi et al. [22] conducted an investigation involving 
the integration of radiomics and machine learning tech-
niques using a publicly available dataset to distinguish 
clinically significant from clinically non-significant pros-
tate lesions. Their study demonstrated that tree-based 
algorithms achieved the highest evaluation metrics, con-
sistently achieving accuracies exceeding 80%, with area-
under-the-curve receiver-operating characteristics below 
0.80. This underscores the utility of combining machine 
learning algorithms with radiomics in the context of rou-
tine, multiparametric magnetic resonance imaging for 
prostate cancer stratification.

Lastly, Zhang et  al. [23] explored the value of radi-
omics signatures derived from biparametric magnetic 
resonance imaging (bp-MRI) in the preoperative predic-
tion of prostate cancer grade, in comparison to visual 
assessments made by radiologists based on the Pros-
tate Imaging Reporting and Data System Version 2.1 
(PI-RADS V2). Their study revealed that radiomics sig-
natures outperformed PI-RADS V2 scores in the preop-
erative prediction of prostate cancer grade. Furthermore, 
the concurrent utilization of radiomics signatures and 
PI-RADS V2 scores was shown to enhance diagnostic 
accuracy.

Material and methods
In this research, we conducted a thorough analysis of 
T2W-transverse, T2W-sagittal, DWI, and ADC images. 
We employed various preprocessing techniques such as 
cropping, normalization, and enhancement to ensure 
the accuracy of the image data. Using the Pyradiom-
ics software, we extracted handcrafted features from 52 
images, which included fused images from eight differ-
ent fusion techniques, as well as individual T2W-trans-
verse, T2W-sagittal, DWI, and ADC images. To further 
enhance our analysis, we used an Autoencoder algorithm 
to extract deep features from the preprocessed images. 
We then applied a novel methodology called the "Ten-
sor" paradigm to improve prediction performance. This 
framework allowed us to utilize various hybrid systems in 
conjunction with classifiers to predict the grading. Our 
overall goal was to investigate the potential benefits of 
using a combination of deep features and radiomics fea-
tures based on a tensor approach, compared to the use of 
traditional hand-crafted radiomics features.

Dataset and pre‑processing
In this study, we utilized the PROSTATEx-2 dataset, 
which was previously used as the training dataset for 
the PROSTATEx-2 2017 challenge. An expert radiolo-
gist examined each MRI and assigned a PI-RADS score 
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to any suspicious lesions, which were then biopsied and 
graded by a pathologist to serve as the standard for accu-
racy. We used the T2W, DWI, and ADC images from the 
dataset for the research, and the MR imaging parameters 
are summarized in Table  1. Figure  1 demonstrates the 
five grade groups in the T2W-transverse, T2W-sagittal, 
DWI, and ADC images. The dataset included 36 lesions 
in Grade Group 1, 40 in Grade Group 2, 20 in Grade 
Group 3, 8 in Grade Group 4, and 7 in Grade Group 5. To 
address the limitation of imbalanced data, we performed 
cross-validations on the PROSTATEx-2 training dataset 

and utilized the SMOTE technique, as explained in the 
data analysis section.

The ground truth of the PROSTATEx-2 dataset is a 
specific point in a (p, q, and r) coordinate voxel located 
approximately at the center of the tumor. To further ana-
lyze the data, we selected a region of interest (ROI) from 
both the DWI and ADC MRI volumes. This ROI was a 
15 × 15 area that surrounded the ground truth point. 
Additionally, we selected an ROI of 60 × 60 from the 
T2W images, which also surrounded the ground truth 
point. The dimension of T2W images is different from 
the other modalities, as it is determined by the resolution 
of the image acquisition process. In the subsequent sec-
tion, we used eight different fusion techniques to merge 
T2W, DWI, and ADC images, resulting in 48 images 
per patient and a total of 52 images for each patient. The 
use of multiple fusion techniques ensured that we were 
able to capture a wide range of information and gain a 
more detailed understanding of the subject being stud-
ied. Combining the T2W, DWI, and ADC images helped 
enhance the visibility of certain structures and improve 

Table 1 MRI parameters

TR/TE Repetition Time/Echo Time, FOV Field of View

Sequence TR/TE 
(ms)

Slice Thickness 
(mm)

Matrix Size Voxel Size (mm)

T2W-transverse 5660/104 3 384 × 384 0.5 × 0.5 × 3

T2W-sagittal 5590/101 3.6 320 × 320 0.5625 × 0.5625 × 3.6

DWI 2700/63 3 128 × 84 2 × 2 × 3

ADC 2700/63 3 128 × 84 2 × 2 × 3

Fig. 1 The 5 grade groups in T2W-transverse, T2W-sagittal, DWI, and ADC images
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diagnostic accuracy. Overall, the use of these fusion tech-
niques greatly improved the quality and usefulness of the 
images obtained.

Fusion of images
In this research, we have employed various image-level 
fusion techniques to combine four different imaging 
modalities: T2W-transverse, T2W-sagittal, DWI, and 
ADC. These techniques include Laplacian Pyramid (LP), 
Ratio of the low-pass pyramid (RP), Discrete Wavelet 
Transform (DWT), Dual-Tree Complex Wavelet Trans-
form (DTCWT), Curvelet Transform (CVT), Wavelet 
Fusion, Weighted Fusion, and Principal Component 
Analysis (PCA). Each technique has its own advantages 
and disadvantages, and the choice of method depends on 
the specific task and the characteristics of the images. LP 
is particularly useful in preserving fine details and edges. 
RP is useful for maintaining overall contrast and reduc-
ing noise. DWT is effective in preserving edges and fine 
details while reducing noise. DTCWT is suitable for 
complex image structures. CVT is effective in preserv-
ing fine details and edges while reducing noise. Wave-
let Fusion is useful for preserving edges and fine details. 
Weighted Fusion is useful for maintaining overall con-
trast and reducing noise. PCA is effective in preserving 
the most important features of the image while reducing 
noise. Figure 2 illustrates the results of the fused images 
obtained from these techniques. The aim of this study is 

to improve the overall diagnostic accuracy and efficiency 
of medical imaging by utilizing these techniques.

Radiomics feature extraction
In this study, we manually segmented prostate cancer 
images using the 3D Slicer software. The images were 
then analyzed, and radiomics features were extracted 
using the Pyradiomics library, an open-source tool in 
Python. We extracted a total of 107 quantitative radiom-
ics features from each of the 52 patient images, includ-
ing T2W-transverse, T2W-sagittal, DWI, ADC, and 48 
fused images. These extracted features were classified 
into seven different categories: first-order features (18 
features), shape features (14 features), gray-level depend-
ence matrix (GLDM) features (14 features), gray-level 
co-occurrence matrix (GLCM) features (24 features), 
neighboring gray-tone difference matrix (NGTDM) fea-
tures (5 features), gray-level size zone matrix (GLSZM) 
features (16 features), and gray-level run-length matrix 
(GLRLM) features (16 features).

Deep feature extraction using Autoencoder
In this study, we propose a feature extractor based on 
an Autoencoder for deep feature learning in computer 
vision applications. Feature learning can be divided into 
two classes: supervised learning methods and unsu-
pervised learning methods. Autoencoders, as a type of 
unsupervised neural network, have been proven to be 

Fig. 2 The fusion of T2W-transverse, T2W-sagittal, DWI, and ADC using 8 fusion techniques
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effective in generating deep features from unlabeled data. 
The structure of an Autoencoder can be divided into two 
parts: the encoder and the decoder. The encoder com-
presses the original data into a lower-dimensional repre-
sentation, while the decoder reconstructs the input from 
the compressed data. The input to the Autoencoder can 
be represented by x ∈ RN, where N is the dimension of 
the input data. The output of the encoder is a compressed 
representation of the input data that passes through the 
bottleneck of the network:

Here,  W1 represents the multiplication of the input 
layers to the bottleneck layer, and b1 is the correspond-
ing bias term. σ1 denotes the activation function, which 
can be a sigmoid function or any other type of activation 
function. On the other hand, the output of the overall 
network can be obtained as follows:

where  W2 represents the multiplication of the hidden lay-
ers from the bottleneck to the output, and  b2 is the bias 
term. σ2 denotes the activation function, which can be a 
sigmoid function or any other type of activation function. 
The learning procedure starts by minimizing the follow-
ing objective function  JN:

The proposed feature extractor, as illustrated in Fig. 3, 
comprises four hidden layers in the encoder, including 
two 2D-convolutional layers, a 2D-MaxPooling layer, and 
another 2D-convolutional layer. The encoder’s output 

yencoded = σ1(W1x + b1)

ydecoded = σ2(W2yencoded + b2)

JN =
1

2

N

i=1

ydecoded − x
2

size is 32 × 15 × 15. The decoder consists of three hidden 
layers, which are two 2D-convolutional transpose layers 
and one 2D-convolutional layer. The decoder’s output 
size is 60 × 60. Rectified Linear Units (ReLU) were used 
as the activation function for all layers, except for the last 
layer of the decoder, where a sigmoid function was used 
instead. We utilized the backpropagation algorithm and 
k-fold cross-validation to minimize the objective func-
tion JN and converge to the best possible bounded value. 
Experimental results demonstrate the effectiveness of the 
proposed feature extractor in generating deep features.

Feature sets and classification
The proposed approach’s structural design is illustrated in 
Fig. 4. The original dataset consisted of images from 111 
patients, divided into four types: T2W-transverse, T2W-
sagittal, DWI, and ADC. To expand the dataset, eight 
fusion methods (LP, RP, DWT, DTCWT, CVT, Wavelet 
Fusion, Weighted Fusion, and PCA) were used, resulting 
in 48 additional image sets. In the second step, the data 
was normalized and standardized to ensure equal contri-
bution of each feature within a specific range [0, 1].

Figure 4 illustrates the use of five different feature sets 
to train the classifiers: all radiomics features, all deep 
features, radiomics features linked with PCA, deep fea-
tures linked with PCA, and a combination of radiomics 
and deep features. The data was preprocessed in the sixth 
phase, which consisted of four steps: balancing, stand-
ardization, PCA (for feature sets 1, 3, and 5), correlation 
(using a heat map with a cutoff value of 0.8 to filter top 
correlated features), and Least Absolute Shrinkage and 
Selection Operator (LASSO) regression. The feature sets 
used were: 1) deep features only, 2) radiomics features 
only, 3) PCA on deep features (concatenated to form a 

Fig. 3 Structure of Autoencoder
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Fig. 4 Flowchart of the proposed approach
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file of size 111 × 260), 4) PCA on radiomics features (con-
catenated to form a file of size 111 × 107), and 5) a com-
bination of deep features (converted from size (60, 60) 
to (111, 7200)) and radiomics features (concatenated to 
form a file of size 111 × 379964).

In the final classification phase, nine classifiers were 
used to classify different Gleason grades. Popular met-
rics, such as Logistic Regression, SVM, Gaussian Naive 
Bayes, KNN, Random Forest, Decision Tree + Bagging, 
and Gradient Boosting, were used to evaluate the clas-
sifiers’ performance. Additionally, two voting classifiers 
were employed: Voting 1 (consisting of Logistic Regres-
sion, SVM, Gaussian Naive Bayes, KNN, Random Forest, 
and Bagging) and Voting 2 (consisting of XGB Classifier, 
SVM, and Extra Tree Classifier). Grid search was used 
for hyperparameter tuning, and fivefold cross-validation 
was used for model validation for all classifiers except for 
the voting classifiers. Overall, the study presents a com-
prehensive approach for improving the classification of 
different Gleason grades in prostate cancer patients. The 
expansion of the original dataset and the use of various 
feature sets, fusion methods, and classifiers indicate the 
thoroughness of the study. The detailed explanation of 
the preprocessing steps and the evaluation metrics pro-
vide a clear understanding of the study’s methodology.

Results
This section presents the results obtained from the pro-
posed CAD approach. To assess the performance of the 
nine introduced classifiers, we employed balanced accu-
racy, Receiver Operating Characteristics (ROC) curve, 
and Area under ROC Curve (AUC) metrics. We con-
ducted five sets of experiments for each classifier, using 
five corresponding prepared datasets, to evaluate the 
performance metrics. The results of our experiments are 
summarized in Table 2. The ROC curve provides a visu-
alization of how well a classifier ranks positive samples 
over negative samples. The AUC can be interpreted as 
the probability that a positive sample receives a higher 
score than a negative sample. The corresponding best-
achieved results of the ROC are depicted in Fig. 5.

The SVM classifier showed promising results when 
using deep features linked with PCA, with an AUC of 
0.94 ± 0.023 and a balanced accuracy of 0.79 ± 0.048. 
The combination of deep features also performed 
well, with an AUC of 0.94 ± 0.014 and a balanced accu-
racy of 0.77 ± 0.045. Logistic regression performed best 
when using just the deep features, achieving an AUC of 
0.93 ± 0.028 and a balanced accuracy of 0.76 ± 0.064. The 
combination of deep features also achieved high per-
formance, with an AUC of 0.93 ± 0.016 and a balanced 
accuracy of 0.77 ± 0.045. Gaussian Naive Bayes had lower 
performance compared to other classifiers, with an AUC 

ranging from 0.72 ± 0.046 to 0.92 ± 0.018 and a balanced 
accuracy ranging from 0.39 ± 0.091 to 0.69 ± 0.046. KNN 
achieved high performance when using deep features 
linked with PCA, with an AUC of 0.89 ± 0.040 and a bal-
anced accuracy of 0.70 ± 0.054. Random Forest showed 
high performance with the combination of deep features 
and radiomics features, achieving an AUC of 0.94 ± 0.031 
and a balanced accuracy of 0.76 ± 0.086. When using just 
the deep features, Random Forest also achieved good 
results, with an AUC of 0.94 ± 0.028 and a balanced accu-
racy of 0.78 ± 0.07.

Ensemble classifiers, including Bagging with Deci-
sion Tree, Gradient Boosting, and Voting classifiers, all 
showed high performance when using a combination of 
deep features and radiomics features. The Voting clas-
sifiers showed higher performance when using just the 
deep features, with Voting 2 achieving the highest perfor-
mance, with an AUC of 0.95 ± 0.020 and a balanced accu-
racy of 0.78 ± 0.065. Our results suggest that machine 
learning classifiers using imaging data can accurately 
classify data into different categories, with deep features 
showing higher performance than radiomics features 
alone.

Our findings indicate that the radiomics-only fea-
ture set did not yield better results in any of the classi-
fiers mentioned above. This suggests that other features, 
such as clinical or demographic data, may be necessary to 
improve the performance of the classifiers. Table 3 pre-
sents a comparison of the results obtained in our study 
with those reported in other works.

Discussion
Medical professionals are trained to visually diagnose 
malignant diseases using MRI scans. However, this 
method is subjective, error-prone, and slow, which lim-
its its effectiveness as the burden on healthcare resources 
grows with the aging population [27–29]. Radiomic anal-
ysis, on the other hand, involves using machine learning 
algorithms to extract features from numerous images to 
automatically predict cancer grade with a precision and 
speed beyond the scope of human visual analysis [30, 
31]. Previous studies have shown that radiomic features 
can assist in diagnosing cancer and offer insights into the 
heterogeneity of cancers[32]. Radiomics is also advanta-
geous because it is automated, reducing human effort 
and cost, and preventing patient morbidity and mortal-
ity resulting from misdiagnosis or under/over-treatment 
[14, 24, 30]. Deep learning has the potential to improve 
the quality of Gleason grading by increasing consistency 
and providing expert-level grading independent of loca-
tion [15]. Previous studies have applied deep learning to 
detecting cancer and Gleason grading of tissue micro-
arrays, prostatectomies, and biopsies. However, these 
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Table 2 Classification performance metrics for the five datasets using nine classifiers

Classifier Dataset Name AUC Balanced Accuracy

SVM just the radiomics features 0.91 ± 0.013 0.76 ± 0.060

just the deep features 0.94 ± 0.021 0.77 ± 0.065

PCA + deep features 0.94 ± 0.023 0.79 ± 0.048
PCA + radiomics features 0.92 ± 0.030 0.76 ± 0.060

combination of deep features and radiomics features 0.94 ± 0.014 0.77 ± 0.045

Logistic Regression just the radiomics features 0.89 ± 0.023 0.70 ± 0.057

just the deep features 0.93 ± 0.028 0.76 ± 0.064
PCA + deep features 0.88 ± 0.020 0.72 ± 0.052

PCA + radiomics features 0.77 ± 0.029 0.61 ± 0.060

combination of deep features and radiomics features 0.93 ± 0.016 0.77 ± 0.045

Gaussian Naive Bayes just the radiomics features 0.91 ± 0.028 0.67 ± 0.074

just the deep features 0.90 ± 0.027 0.67 ± 0.057

PCA + deep features 0.88 ± 0.055 0.67 ± 0.107

PCA + radiomics features 0.72 ± 0.046 0.39 ± 0.091

combination of deep features and radiomics features 0.92 ± 0.018 0.69 ± 0.046
KNN just the radiomics features 0.80 ± 0.043 0.66 ± 0.081

just the deep features 0.77 ± 0.023 0.64 ± 0.037

PCA + deep features 0.79 ± 0.025 0.65 ± 0.048

PCA + radiomics features 0.89 ± 0.040 0.70 ± 0.054
combination of deep features and radiomics features 0.79 ± 0.20 0.65 ± 0.029

Random Forest just the radiomics features 0.93 ± 0.017 0.74 ± 0.043

just the deep features 0.94 ± 0.028 0.78 ± 0.078

PCA + deep features 0.92 ± 0.029 0.72 ± 0.081

PCA + radiomics features 0.88 ± 0.028 0.68 ± 0.043

combination of deep features and radiomics features 0.94 ± 0.031 0.76 ± 0.086
Bagging + Decision Tree just the radiomics features 0.92 ± 0.016 0.70 ± 0.036

just the deep features 0.93 ± 0.014 0.74 ± 0.048

PCA + deep features 0.90 ± 0.036 0.69 ± 0.098

PCA + radiomics features 0.84 ± 0.024 0.61 ± 0.058

combination of deep features and radiomics features 0.93 ± 0.029 0.73 ± 0.051
Gradient Boosting just the radiomics features 0.93 ± 0.019 0.73 ± 0.033

just the deep features 0.94 ± 0.026 0.76 ± 0.082

PCA + deep features 0.92 ± 0.030 0.74 ± 0.048

PCA + radiomics features 0.88 ± 0.045 0.68 ± 0.076

combination of deep features and radiomics features 0.94 ± 0.021 0.78 ± 0.046
Ensemble classifier (Voting 1) just the radiomics features 0.92 ± 0.023 0.74 ± 0.033

just the deep features 0.93 ± 0.021 0.78 ± 0.045

PCA + deep features 0.92 ± 0.020 0.74 ± 0.067

PCA + radiomics features 0.86 ± 0.031 0.60 ± 0.065

combination of deep features and radiomics features 0.94 ± 0.024 0.77 ± 0.055
Ensemble classifier (Voting 2) just the radiomics features 0.92 ± 0.023 0.74 ± 0.012

just the deep features 0.95 ± 0.020 0.78 ± 0.065
PCA + deep features 0.94 ± 0.024 0.76 ± 0.068

PCA + radiomics features 0.90 ± 0.022 0.69 ± 0.033

combination of deep features and radiomics features 0.94 ± 0.018 0.77 ± 0.033
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studies have been limited in scope, and a novel approach 
is needed to investigate the use of radiomics and deep 
features obtained from mpMRI to grade prostate cancer 
[33–35].

Our study proposes a new approach called multi-
flavored feature extraction or tensor, which combines 

four mpMRI images using eight different fusion tech-
niques to create 52 images or datasets for each patient. 
Our aim is to evaluate the effectiveness of this approach 
and compare it to traditional methods of grading pros-
tate cancer. Our findings suggest that machine learning 
classifiers using imaging data can accurately classify 

Fig. 5 ROC curves for machine learning classifiers using different feature datasets
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data into different categories. Moreover, the use of 
deep features in conjunction with radiomics features 
shows higher performance than radiomics features 
alone. Among all classifiers evaluated, ensemble clas-
sifiers—particularly Voting 2—showed the highest 
performance. Finally, our results indicate that the radi-
omics-only feature set did not yield better results in any 
of the classifiers mentioned above.

Our study aimed to evaluate the performance of vari-
ous machine learning classifiers in accurately classify-
ing imaging data for the diagnosis of prostate cancer. 
We found that the SVM classifier and logistic regression 
achieved the best performance when using deep fea-
tures alone or in combination with radiomics features, 
while Gaussian Naive Bayes had lower performance. 
Random Forest showed high performance using both 
types of features, and ensemble classifiers, particularly 
Voting 2, achieved the highest performance among all 
classifiers evaluated. These findings suggest that deep 
features may be more effective than radiomics features 
alone in accurately classifying prostate cancer. In con-
trast, Chaddad et al. [24] investigated whether radiomic 
features extracted from mpMRI scans can predict the 
Gleason score of prostate cancer patients. They found 
that certain radiomic features, including zone size per-
centage, large zone size emphasis, and zone size non-
uniformity, were related to Gleason score groups and 
showed significant correlation. Using a Random For-
est classifier, they were able to predict Gleason score 
groups with an average AUC ranging from 72.71% to 
83.40%. Our study and Chaddad et  al.’s work highlight 
the potential of using radiomic features extracted from 
imaging data as non-invasive biomarkers for the diag-
nosis and prediction of prostate cancer.

In the study conducted by Bulten et  al. [36], the 
researchers aimed to investigate the potential of deep 

learning for automated Gleason grading of prostate biop-
sies. They developed a deep-learning system that could 
grade prostate biopsies following the Gleason grading 
standard. The system achieved high agreement with the 
reference standard and scored highly at clinical decision 
thresholds. In contrast, the results of our paper focus on 
the performance of different machine learning classifi-
ers using imaging data to classify data into different cat-
egories. In particular, we utilize a novel approach called 
multi-flavored feature extraction, which involves com-
bining radiomics and deep features in a tensor format. 
Furthermore, we explore the effectiveness of combining 
these tensor-based radiomics features with deep features 
to further improve the accuracy of the predictive model.

The study conducted by Gong et  al. [25] aimed to 
explore the utility of radiomic features of the prostate 
gland in differentiating between Gleason scores (GS) 
of < 7, = 7, and > 7. They conducted a retrospective analy-
sis of preoperative MRI data, clinical records, and post-
operative pathological findings from a cohort of 489 
patients with prostate cancer. Radiomic features were 
extracted in both 3D and 2D formats, obtained from 
manual segmentation of the 3D prostate gland and its 
maximum 2D layer on MRI, respectively. Sequence sig-
natures were developed using multi-class linear regres-
sion (MLR), and 2D and 3D radiomic models were 
constructed by applying MLR to these sequence signa-
tures. The 2D model demonstrated a C-index of 0.728 
and an average area under the receiver operating char-
acteristic curve of 0.794 in the validation dataset. In our 
study, we use a combination of handcrafted radiomic 
features and deep features extracted from preoperative 
MRI scans to predict the Gleason score. This approach 
captures different scales of features and considers the 
relationship between different features to improve the 
model’s performance. Both studies focus on predicting 

Table 3 Comparison of AUC values of the proposed method with other ones developed using MR images

Study Type of Image Model AUC (%)

Castillo et al. [18] mpMRI the deep-learning 88, 91 and 65

the radiomics 0.70, 0.73 and 0.44

Chaddad et al. [24] mpMRI the radiomics 83.40, 72.71, and 77.35%

Donisi et al. [22] MRI the radiomics 80

Gong et al. [25] MRI the radiomics 79.4

Wang et al. [15] ADC the deep-learning 94

T2W the deep-learning 90

Bertelli et al. [26] T2W the deep-learning 0.75

Our study mpMRI the radiomics 92

the deep-learning 95

combination of deep features and radiomics 
features

94
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the Gleason score of prostate cancer patients using radi-
omic features extracted from MRI scans. However, our 
study employs a more advanced approach, which yields 
better results.

Conclusion
In conclusion, our study has introduced a novel 
approach called multi-flavored feature extraction or 
tensor, which combines radiomics and deep features to 
predict the Gleason score of prostate cancer patients. 
Our results demonstrate that tensor deep features sig-
nificantly outperform tensor radiomics features in pre-
dicting Gleason score. Furthermore, the use of Voting 
classifiers has shown higher performance when using 
just the deep features. Specifically, Voting 2 achieved 
the highest performance with an AUC of 0.95 ± 0.020 
and a balanced accuracy of 0.78 ± 0.065. These findings 
suggest that quantitative imaging analysis, particularly 
the usage of tensor deep features and the combination 
of deep features and radiomics features, can be valua-
ble in significantly enhancing Gleason score prediction 
performance. As such, this study may have important 
implications for improving the accuracy of prostate 
cancer diagnosis and ultimately contributing to better 
patient outcomes.
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