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Abstract
A super-resolution deep learning reconstruction (SR-DLR) algorithm trained using data acquired on the ultrahigh 
spatial resolution computed tomography (UHRCT) has the potential to provide better image quality of coronary 
arteries on the whole-heart, single-rotation cardiac coverage on a 320-detector row CT scanner. However, the 
advantages of SR-DLR at coronary computed tomography angiography (CCTA) have not been fully investigated. 
The present study aimed to compare the image quality of the coronary arteries and in-stent lumen between 
SR-DLR and model-based iterative reconstruction (MBIR). We prospectively enrolled 70 patients (median age, 
69 years; interquartile range [IQR], 59–75 years; 50 men) who underwent CCTA using a 320-detector row CT 
scanner between January and August 2022. The image noise in the ascending aorta, left atrium, and septal 
wall of the ventricle was measured, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the 
proximal coronary arteries were calculated. Of the twenty stents, stent strut thickness and luminal diameter were 
quantitatively evaluated. The image noise on SR-DLR was significantly lower than that on MBIR (median 22.1 HU; 
IQR, 19.3–24.9 HU vs. 27.4 HU; IQR, 24.2–31.2 HU, p < 0.01), whereas the SNR (median 16.3; IQR, 11.8–21.8 vs. 13.7; 
IQR, 9.9–18.4, p = 0.01) and CNR (median 24.4; IQR, 15.5–30.2 vs. 19.2; IQR, 14.1–23.2, p < 0.01) on SR-DLR were 
significantly higher than that on MBIR. Stent struts were significantly thinner (median, 0.68 mm; IQR, 0.61–0.78 mm 
vs. 0.81 mm; IQR, 0.72–0.96 mm, p < 0.01) and in-stent lumens were significantly larger (median, 1.84 mm; IQR, 1.65–
2.26 mm vs. 1.52 mm; IQR, 1.28–2.25 mm, p < 0.01) on SR-DLR than on MBIR. Although further large-scale studies 
using invasive coronary angiography as the reference standard, comparative studies with UHRCT, and studies in 
more challenging population for CCTA are needed, this study’s initial experience with SR-DLR would improve the 
utility of CCTA in daily clinical practice due to the better image quality of the coronary arteries and in-stent lumen 
at CCTA compared with conventional MBIR.
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Introduction
Coronary computed tomography angiography (CCTA) is 
a robust noninvasive imaging technique with high spatial 
and temporal resolutions. Its diagnostic accuracy is high 
for the exclusion of coronary artery disease; however, 
some factors such as high image noise, insufficient vessel 
enhancement, and blooming- and beam-hardening arti-
facts may hamper the precise evaluation of vessel steno-
sis and in-stent lumen [1–3].

Recent CCTA developments with an ultrahigh spatial 
resolution computed tomography (UHRCT) of 0.25 mm 
× 128 or 160-row detector and model-based iterative 
reconstruction (MBIR) have overcome the limitations of 
the current CT spatial resolution. Several studies have 
reported higher diagnostic accuracy to detect significant 
stenosis with severely elevated calcium scores and in-
stent patency with a diameter of ≥ 2.5 mm; however, the 
use of UHRCT is limited for patients with higher heart 
rate and weight and those with arrhythmia [4–6].

Recently, a super-resolution deep learning reconstruc-
tion (SR-DLR) algorithm trained using data acquired on 
the commercially available UHRCT system is available 
for the whole-heart, single-rotation cardiac coverage on a 
320-detector row CT scanner [7, 8]. Several studies have 
reported the noise-reducing effect, improvement of spa-
tial resolution, and the sharpness of margins and plaque 
detectability of coronary artery in SR-DLR compared 
with conventional reconstruction techniques [9, 10]. 
However, no studies have reported data on the potential 
value of SR-DLR at CCTA in the clinical setting. Thus, 
this study aimed to compare the image quality of the cor-
onary arteries and in-stent lumen during CCTA recon-
structed using SR-DLR and MBIR.

Materials and methods
Study population and design
Seventy consecutive patients who underwent CCTA for 
suspected or known coronary artery disease between 
January and August 2022 were prospectively enrolled at 
Iwate Medical University Hospital. Our exclusion criteria 
were renal insufficiency (estimated glomerular filtration 
rate < 30 mL/min per 1.73 m2), contrast agent allergy, his-
tory of bypass grafting, and potential pregnancy. Written 
informed consent was obtained from all participants, as 
approved by the institution’s human research committee.

CT scanning
CT scans were performed using a 320-detector row CT 
scanner (Aquilion ONE PRISM Edition, Canon Medical 
Systems, Otawara, Japan). All patients were administered 
nitroglycerin. Patients with a heart rate of 65 bpm were 
administered oral beta-blockers 60 min before the CCTA 
scan based on the Society of Cardiovascular Computed 
Tomography guidelines [11, 12].

Coronary calcium scoring was performed using a pro-
spective electrocardiogram (ECG) gating axial scan at 
a 75% RR interval, with 120 kV tube voltage and a 300-
mA tube current. We delivered 25.9 mgI/kg/s of non-
ionic contrast material (iopamidol [Iopamiron 370, 
Bayer, Osaka, Japan]) at a 10-s fixed duration, followed 
by a 35-mL saline flush administered using a 20-G intra-
venous catheter. The scan parameters were collima-
tion of 320 × 0.5  mm; rotation time, 0.275  s; z-coverage, 
120–160 mm; tube voltage, 100 or 120 kV; and tube cur-
rent, 180–750 mA. Prospective ECG gating scan with 
an acquisition window of 35–80% or 65–80% of the RR 
interval was used for patients with a heart rate of > 65 or 
≤ 65  bpm, respectively. Retrospective ECG gating scan 
was used for patients with arrhythmia or those who could 
not sufficiently hold their breath. Experienced cardiovas-
cular CT technologists determined the optimal station-
ary cardiac phase with minimum motion-free datasets. 
The dose length product was recorded for each partici-
pant, and the corresponding effective radiation dose was 
calculated using a standard conversion factor of 0.014 
mSv/mGy cm for chest CT [13]. Axial images were 
reconstructed with 0.5-mm slice thickness and recon-
struction interval. The image reconstruction field of view 
and the matrix size were 160–200  mm and 512 × 512, 
respectively. All images were reconstructed using the SR-
DLR (PIQE) and MBIR algorithm (FIRST, Canon Medi-
cal Systems Corp.).

Super-resolution deep learning reconstruction
Super resolution technology aims at restoring high reso-
lution information from low or normal resolution inputs. 
SR-DLR archived not only high spatial resolution but 
also noise reduction [8, 14]. SR-DLR uses deep learning 
technology. Figure 1 shows the SR-DLR processing flow. 
In training process (a), the deep convolutional neural 
network (DCNN) is trained by a lot of target and input 
pairs. The high resolution and low noise data which are 
acquired on UHRCT scanner is used as target. UHRCT 
equipped with a finer size detector and smaller x-ray focal 
spot source, provides diagnostic images with two times 
the spatial resolution compared to 320-detector row CT 
scanner. “Noise simulation” to simulate low-exposure 
scan and “Spatial resolution simulation” to simulate spa-
tial resolution degradation are applied to the target data, 
and low-quality data with low spatial resolution and high 
noise content are used as input data. By learning these 
pairs of target and input data, DCNN can learn both the 
generation model of spatial resolution recovery and the 
noise model. In reconstruction process (b), by using the 
pre-trained DCNN, SR-DLR can reconstruct the image 
with high spatial resolution and low noise from low spa-
tial resolution and high noise on 320-detector row CT 
scanner.
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Image interpretation
The image datasets were transferred to an off-line work-
station, processed using commercially available software 
(Ziostation2, Ziosoft Inc., Tokyo, Japan) and two radiolo-
gists (M.O. and K.Y.) with 5 and 25 years of experience, 
respectively, in cardiovascular imaging performed all 
measurements. The readers were blinded to the clinical 
information and reconstruction method. In case of data 
analysis disagreed, a final decision was reached by con-
sensus. The degree of coronary stenosis was graded as 
minimal (< 25%), mild (25–49%), moderate (50–69%), 
and severe (70–99%) [15].

The overall image quality of each coronary artery seg-
ment was rated based on a four-point rating score for 
each coronary artery segment (4, excellent [minimal or 
no noise-related blurring and diagnostic information 
sufficient); 3, good [some noise-related blurring and 
diagnostic information acceptable]; 2, fair [marked noise-
related blurring and diagnostic information limited]; and 
1, poor [blurry and diagnostic information impaired]) 
[16].

For SR-DLR and MBIR images, the image noise 
was recorded as the standard deviation (SD) of the 

attenuation value in a circular region of interest (ROI) 
placed in the ascending aorta, left atrium, and septal wall 
of the ventricle. Then, signal-to-noise ratio (SNR) was 
calculated as signal/noise in the proximal right coronary 
artery and left main trunk [6]. The contrast-to-noise ratio 
(CNR) was calculated as follows: (mean vessel lumen 
signal − mean perivascular fat signal)/image noise in the 
ascending aorta [17, 18]. ROI measurements were per-
formed by two radiologists on axial images, carefully pre-
venting calcifications, plaques, and stenosis.

In-stent lumen assessability and quantitative stent analysis
Stents were considered assessable with the absence of 
partial volume effects by stent struts, beam hardening, 
motion artifacts, calcification, or low CNR and when the 
lumen within the stent was clearly visible [4, 19]. Fig-
ure  2 shows the calculation methods of lumen visibility 
measurements using the average attenuation profile in 
the axial plane [4, 19]. First, the stent proximal and dis-
tal edges on the curved planar reformation (CPR) image 
were determined, with the first, second, and third quar-
tiles as calculated points. Second, after determining the 
center of the stent on the cross-sectional image (Fig. 2a 

Fig. 1 Training and reconstruction processing flow of super-resolution deep learning reconstruction. In training process (a), the DCNN is trained by a lot 
of target and input pairs. The HR and LN data which are acquired on UHRCT scanner is used as target. The LR and HN data which is simulated from target 
is used as input. In reconstruction process (b), the LR and HN data is reconstructed using the trained DCNN. Then the HR and LN data is obtained. DCNN, 
deep convolutional neural network; HR, high resolution; LN, low noise; UHRCT, ultrahigh spatial resolution computed tomography; LR, low resolution; 
HN, high noise
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and b), attenuation profiles were calculated, and the full 
width at half maximum of the lumen (FWHM-lumen) 
and full width at half maximum of the strut (FWHM-
stent) were measured (Fig. 2c and d).

Invasive coronary angiography
Of the 70 patients, 14 underwent invasive coronary 
angiography. Experienced cardiovascular physicians 
performed selective invasive coronary angiography scan-
ning using the standard Judkins technique, with a radial 
approach on a biplane angiography system (AlluraClar-
ity FD10/10, Philips Electronics Japan, Tokyo Japan). 
Contrast medium was administered using an automated 
injection system (ACIST Cvi, ACIST Japan, Tokyo, 
Japan). The injection volume of contrast medium was 6.2 
ml for the left coronary angiography, and 5.4 ml for the 
right coronary angiography.

Statistical analysis
Statistical analyses were performed using IBM® SPSS® 
28.0.1 (IBM Corporation., Armonk, NY, USA). Continu-
ous measurements are expressed as mean ± SD for nor-
mally distributed variables or median (interquartile range 
[IQR], 25th–75th percentile) for nonparametric data 
and compared using Student’s t-test or Mann–Whitney 
U-test as appropriate. Categorical variables are expressed 
as numbers and percentages. p-value of < 0.05 was con-
sidered statistically significant. The interobserver agree-
ment between two radiologists regarding the qualitative 
evaluation was evaluated using the Cohen kappa κ coeffi-
cient. A κ value of more than 0.81 corresponded to excel-
lent interobserver agreement, while values of 0.61–0.80 
corresponded to good agreement.

Fig. 2 Quantitative analysis of the lumen and stent in the coronary artery. After identifying the center of the stent on a cross-sectional image, attenuation 
profiles were calculated (a: SR-DLR, b: MBIR). FWHM-lumen and FWHM-stent were measured (c: SR-DLR, d: MBIR). FWHM-stent was significantly thinner 
(p < 0.01), whereas FWHM-lumen was significantly larger on SR-DLR (p < 0.01) than on MBIR (e, f). SR-DLR, super-resolution deep learning reconstruction; 
MBIR, model-based iterative reconstruction; FWHM-lumen, full width at half maximum of the lumen; FWHM-stent, full width at half maximum of the stent
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Results
Table  1 lists the baseline clinical characteristics of 70 
patients (median age, 69 (IQR, 59–75) years; 50 men). 
Fifteen patients had prior stent placement (a total of 20 
stents). The median body mass index of patients was 24 
(IQR, 22–26) kg/m2; their median heart rate during scan-
ning was 55 (IQR, 51–61) bpm.

Of the 70 patients, 63 underwent imaging with pro-
spective ECG gating, and the other seven were imaged 
with retrospective gating due to arrhythmia or insuffi-
cient breath-hold. In patients without stents, the median 

calcium score was 16 (IQR, 0–180). The median effective 
radiation dose was 0.9 (IQR, 0.6–1.6) mSv.

Comparison of SR-DLR and MBIR
Table  2 displays the reconstruction time, image noise, 
SNR, CNR, and visual evaluation of the coronary arteries 
between SR-DLR and MBIR. The reconstruction time was 
significantly shorter on SR-DLR than on MBIR (median, 
97 s; IQR, 88–109 s vs. 173 s; IQR, 164–187 s, p < 0.01). The 
image noise was significantly lower on SR-DLR than that 
on MBIR (median 22.1 HU; IQR, 19.3–24.9 HU vs. 27.4 
HU; IQR, 24.2–31.2 HU, p < 0.01). The SNR (median 16.3; 
IQR, 11.8–21.8 vs. 13.7; IQR, 9.9–18.4 HU, p = 0.01) and 
CNR (median 24.4; IQR, 15.5–30.2 vs. 19.2; IQR, 14.1–23.2, 
p < 0.01) on SR-DLR was significantly higher than those on 
MBIR. The image quality score on SR-DLR was significantly 
higher than those on MBIR (median 4.0; IQR, 4.0–4.0 vs. 
3.0; IQR, 3.0–4.0, p < 0.01).

In both two-volume datasets, a total of 210 major cor-
onary branches were evaluated (Table  3), and represen-
tative cases are shown in Figs.  3 and 4. Severe stenosis 
in the proximal section of the left anterior descending 
artery was more sharply delineated on SR-DLR than on 
MBIR, as confirmed by invasive coronary angiography. In 
contrast, the image quality was lower on SR-DLR images 
than those on MBIR in patients weighing 144 kg with a 
body mass index of 46 kg/m2 even with higher SNR and 
CNR on SR-DLR images (Fig.  5). A substantial interob-
server agreement was observed on the overall image 
quality (κ = 0.83).

Coronary stent analysis
In 20 stents from fifteen patients, stent assessability was 
compared between SR-DLR and MBIR (Table  3; Fig. 6). 
On SR-DLR, stent assessability was 100% (1, 7, 2, 7, 2, 

Table 1 Baseline characteristics
Patient demographics (n = 70)
Age, years 69 (59–75)

Male patients, n (%) 50 (71)

Height, cm 166 (159–171)

Weight, kg 65 (56–73)

Body surface area, m2 1.7 (1.6–1.9)

Body mass index, kg/m2 24 (22–26)

 Hypertension, n (%) 48 (69)

 Dyslipidemia, n (%) 39 (56)

 Diabetes, n (%) 22 (31)

 Smoking history (former or current), n (%) 18 (25)

Sinus rhythm, n (%) 65 (93)

Characteristics of CCTA scanning

Mean heart rate during CCTA scanning, bpm 55 (51–61)

Tube voltage 100/120 kV, n (%) 32 (45)/38 (55)

Tube current

With 100 kV, mA 315 (250–368)

With 120 kV, mA 400 (260–565)

Total dose length product, mGy*cm 62 (44–117)

Total effective radiation dose, mSv 0.9 (0.6–1.6)

Contrast medium dose, mL 48 (42–58)

Calcium score 16 (0–180)
CCTA, coronary computed tomography angiography

Table 2 Comparison of reconstruction time, image noise, 
signal-to-noise ratio, contrast-to-noise ratio, and visual evaluation 
of coronary arteries between super-resolution deep learning 
reconstruction and model-based iterative reconstruction
Parameter SR-DLR MBIR p-value
Reconstruction 
time, s

97 (88–109) 173 (164–187) < 0.01

Image noise, HU

 Ascending aorta 22.5 (20.5–31.8) 29.1 (26.2–36.6) < 0.01

 Left atrium 22.4 ± 4.0 30.1 ± 5.4 < 0.01

 Septal wall of the 
ventricle

20.5 ± 3.6 23.7 ± 3.8 < 0.01

 All locations 22.1 (19.3–24.9) 27.4 (24.2–31.2) < 0.01

SNR 16.3 (11.8–21.8) 13.7 (9.9–18.4) 0.01

CNR 24.4 (15.5–30.2) 19.2 (14.1–23.2) < 0.01

Overall quality (scale 
1–4)

4.0 (4.0–4.0) 3.0 (3.0–4.0) < 0.01

SR-DLR, super-resolution deep learning reconstruction; MBIR, model-based 
iterative reconstruction; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio

Table 3 Characteristics of coronary artery stenosis and stent
Stenosis assessment (n = 210)

 <25%, n (%) 75 (36)

 25–49%, n (%) 82 (39)

 50–69%, n (%) 36 (17)

 70–99%, n (%) 17 (8)

Stent diameter (n = 20)

 2.25 mm, n (%) 1 (5)

 2.5 mm, n (%) 7 (35)

 2.75 mm, n (%) 2 (10)

 3.0 mm, n (%) 7 (35)

 3.5 mm, n (%) 2 (10)

 4.0 mm, n (%) 1 (5)

Stent length (n = 20) 27 ± 11

Stent lesion (n = 20)

 Right coronary artery, n (%) 3 (15)

 Left anterior descending artery, n (%) 12 (60)

 Left circumflex artery, n (%) 5 (25)
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and 1 of 2.25, 2.5, 2.75, 3.0, 3.5, and 4.0 mm stents). On 
MBIR, 2.25 mm stents and 3/7 of the 2.5 mm stents can-
not be assessed, and the remaining sixteen stents can 
be assessed (four stents unassessable on MBIR could be 
assessed on SR-DLR). All twelve stents with a diameter 
greater than 2.75  mm were assessable both on SR-DLR 
and MBIR. On quantitative analysis, 60 axial slices of 20 
stents were evaluated. The FWHM-stent on SR-DLR was 
significantly thinner than on MBIR (median, 0.68  mm; 
IQR, 0.61–0.78  mm vs. 0.81  mm; IQR, 0.72–0.96  mm, 
p < 0.01; Fig.  2e). The FWHM-lumen calculated on SR-
DLR was significantly larger than on MBIR (median, 
1.84  mm; IQR, 1.65–2.26  mm vs. 1.52  mm; IQR, 1.28–
2.25 mm, p < 0.01; Fig. 2f ).

Discussion
To the best of our knowledge, this is the first study to evalu-
ate the SR-DLR on the image quality of the coronary arteries 
and in-stent lumen. The image noise was significantly lower, 
and the SNR and CNR at the proximal coronary arteries was 
significantly higher on SR-DLR than those on MBIR images. 
Thus, the overall image quality was significantly better on 
SR-DLR images. Furthermore, stent struts were significantly 
thinner, and in-stent lumens were significantly larger on SR-
DLR than on MBIR in coronary stent analysis.

Development of CCTA
CCTA has become a first-line test to evaluate patients 
suspected of coronary artery disease. Nevertheless, some 
factors such as high image noise, insufficient vessel enhance-
ment, and blooming- and beam-hardening artifacts may 
hamper the precise evaluation of vessel stenosis and stents 
[1–3]. Recent developments of UHRCT have enabled the 
evaluation of calcified, stented, or small diameter segments 
due to the greater spatial resolution [4–6]. UHR of CCTA 
with dual-source photon-counting detector CT have also 
enabled the visualization of calcified plaques with an excel-
lent spatial resolution [20]. However, radiation exposure for 
UHRCT was higher than that for conventional CCTA [5]. 
Moreover, UHRCT cannot be used in patients with higher 
heart rates and weight and those with arrhythmia due to the 
limitation of the gantry rotation time [4–6]. Remarkably, the 
whole heart coverage by the area detector with a faster rota-
tion speed contributed to the improvement in the temporal 
resolution and decreased the radiation exposure and con-
trast media.

SR-DLR performance
Recently, DLR was developed to improve spatial resolution 
and low-contrast detectability while reducing noise due to 
the power of machine learning, a form of artificial intelli-
gence [16]. Especially, SR-DLR algorithm trained using data 

Fig. 3 Case example of a 66-year-old woman with effort angina. Curved planar reformation of the left anterior descending artery (LAD) on MBIR (a) 
and SR-DLR (b). Severe stenosis in the proximal section of the LAD was more sharply delineated on SR-DLR than those on MBIR (white arrows), which 
was confirmed using invasive coronary angiography (c, blue arrow). SR-DLR, super-resolution deep learning reconstruction; MBIR, model-based iterative 
reconstruction; LAD, left anterior descending artery
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acquired on the commercially available UHRCT system is 
available [7, 8]. SR-DLR algorithm features UHR 0.25 mm 
detectors to maximize the inherent spatial resolution on 
the conventional 320-detector row CT. With conventional 
reconstruction, a long tradeoff between spatial resolution 
and noise has forced CT systems to operate at much lower 
spatial resolution levels than the detector and focal spots are 
capable of producing maintenance at clinically acceptable 
dose levels. With DLR, not only can this resolution be uti-
lized, without increasing the dose or noise, but it also can be 
enhanced further. Furthermore, the neural network behind 
SR-DLR does not learn features solely in the axial plane but 
rather in three dimensions, indicating that signal features 
are identified and preserved in all three planes. Therefore, 
SR-DLR is found to be well-suited for cardiac exams, which 
are usually reviewed in CPR.

In several studies, the spatial resolution is reported 
be higher on MBIR than on filtered back projection and 

hybrid-IR images [21, 22]. Reportedly, the sophisticated 
MBIR modeling reduces blooming artifacts and yields a 
better image quality than hybrid IR [23]. Recently, several 
studies have reported that the image noise was lower and 
the coronary artery delineation was better on SR-DLR scans 
compared with conventional reconstruction techniques 
such as hybrid-IR, MBIR, and DLR [9, 10]. In this study, SR-
DLR images yielded a higher image quality including image 
noise reduction and better spatial resolution than those 
on MBIR. Moreover, the reconstruction time was signifi-
cantly shorter on SR-DLR than on MBIR. Hence, using SR-
DLR would improve the utility of CCTA in routine clinical 
practice.

Assessment of the in-stent lumen on CCTA with SR-DLR
Direct visualization of the in-stent lumen on CCTA was 
challenging mainly due to beam hardening and partial vol-
ume effects. Motoyama et al. have reported that the in-stent 

Fig. 4 Case example of the patient in Fig. 2. Curved planar reformation (CPR) images in the proximal section of the left anterior descending artery (LAD) 
with SR-DLR (a) and MBIR (b). Two cross-sectional images show the proximal reference site (c and d) and the site of maximal stenosis (e and f) correspond 
to red dashed lines on the CPR image. Coronary lumen and plaque (white arrows) were more sharply delineated on SR-DLR (c, e) than those on MBIR 
(d, f). CPR, curved planar reformation; LAD, left anterior descending artery; SR-DLR, super-resolution deep learning reconstruction; MBIR, model-based 
iterative reconstruction
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lumen of stents with ≥ 2.5 mm diameter could be assessed 
on UHRCT because of improved spiral resolution [4]. In 
this study, SR-DLR could evaluate all stents, including 2.25 
and 2.5  mm stents. Moreover, SR-DLR demonstrates bet-
ter strut delineation of the stent and in-stent lumen that are 
more accurate than MBIR. The edge has been reportedly 
sharper on MBIR than on images reconstructed with con-
ventional filtered back projection or hybrid IR [23, 24]. SR-
DLR had similar effects on the boundary of coronary stents.

In contrast, the image quality of SR-DLR was lower 
in patients with higher weight. Training the deep learn-
ing neural network with educational images from higher 
weight patients would make the SR-DLR more valuable.

Limitations
First, our study population was small. Second, the diag-
nostic accuracy of CCTA was confirmed in comparison 
with invasive coronary angiography in a limited number of 

enrolled patients only. Large-scale studies are required to 
validate and expand our initial experience using invasive 
coronary angiography as the reference standard. Third, the 
SNR and CNR were evaluated in the proximal coronary 
arteries only. The small diameter of distal segments makes 
it impossible to place ROIs without including parts of the 
vessel walls and adjacent tissues. Moreover, no stents ware 
evaluated on side-branch in this study. SR-DLR may be able 
to evaluate side-branch stents as well as small-diameter 
stents based on the results of this study, but further studies 
are needed to evaluate side-branch stents. Forth, the SR-
DLR algorithm is currently vendor-specific. Finally, the pop-
ulation of this study is less challenging for CCTA scans. In 
further studies, the value of SR-DLR needs to be proven in 
patients with high calcium scores to assess the delineation 
of the calcified plaques, in patients with high body weight, 
and in patients with arrhythmias. Comparative studies of 
coronary stent evaluation, including stents in side-branch, 

Fig. 5 Case example of a 34-year-old man weighing 144 kg with a body mass index of 46 kg/m2. Curved planar reformation of the left circumflex artery 
taken at 120 kV, 750 mA, with prospective ECG gating. a, b: SR-DLR image (signal-to-noise ratio (SNR), 17.4; contrast-to-noise ratio (CNR), 21.0). The image 
quality was rated as fair with marked noise-related blurring (white arrows). c, d: MBIR image (SNR, 16.0; CNR, 17.8). The image quality was rated as good 
with some noise-related blurring (blue arrows). SR-DLR, super-resolution deep learning reconstruction; SNR, signal-to-noise ratio; CNR, contrast-to-noise 
ratio; MBIR, model-based iterative reconstruction
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between UHRCT and 320-detector row CT scanner with 
SR-DLR are also required to assess whether SR-DLR can 
overcome the limitations of UHRCT.

Conclusion
SR-DLR might improves the image quality of the coro-
nary arteries and in-stent lumen at CCTA. Datasets 
reconstructed with SR-DLR empower the clinician with 
the high-contrast signal definition and reduce noise, rela-
tive to conventional MBIR.

Abbreviations
CCTA  Coronary computed tomography angiography
SR-DLR  Super-resolution deep learning reconstruction
MBIR  Model-based iterative reconstruction
UHRCT  Ultrahigh spatial resolution computed tomography
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ROI  Region of interest

SNR  Signal-to-noise ratio
CNR  Contrast-to-noise ratio
CPR  Curved planar reformation
FWHM-lumen  Full width at half maximum of the lumen
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HR  High resolution
LR  Low resolution
HN  High noise
LN  Low noise
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