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Abstract 

Objective  We aimed to perform a qualitative synthesis of evidence on the role of 68Ga-Pentixafor PET 
in atherosclerosis.

Methods  A systematic search of the PubMed and Embase databases for studies reporting the evaluation of ath-
erosclerotic lesions by 68Ga-Pentixafor PET was performed with a search time frame from database creation to 2022-
12-26. The diagnostic test evaluation tool QUADAS-2 was used to evaluate the quality of the included literature 
and to perform descriptive analyses of relevant outcome indicators.

Results  A total of 6 studies with 280 patients were included. One study reported only imaging outcome metrics, 
while the other five studies reported imaging outcome metrics and clinical correlation metrics. For imaging out-
comes, three studies reported imaging results for 68Ga-Pentixafor PET only, and the other three studies reported 
imaging results for comparative analysis of 68Ga-Pentixafor PET with 18F-FDG PET. For clinical correlation, three studies 
reported the correlation between tracer uptake and cardiovascular risk factors, one study reported the correlation 
between tracer uptake and plaque calcification, and one study reported the correlation between all three: tracer 
uptake, cardiovascular risk factors, and plaque calcification.

Conclusion  68Ga-Pentixafor PET has a good imaging effect on atherosclerotic lesions, and it is a promising imaging 
modality that may replace 18F-FDG PET for atherosclerosis imaging in the future. In patients with atherosclerosis, there 
is a clear clinical correlation between cardiovascular risk factors, tracer uptake, and plaque calcification.
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Introduction
Atherosclerosis is the pathological basis of cardiovas-
cular disease. Unstable atherosclerotic plaque rupture, 
platelet aggregation and thrombosis lead to narrowing 
or occlusion of blood vessels, resulting in acute cardio-
vascular disease [1, 2], and it is one of the most common 
causes of death in the elderly. Because inflammation 
plays an important role in all stages of the atheroscle-
rotic process [3], atherosclerosis is also considered to 
be a chronic inflammatory disease [4]. PET imaging can 
use biological processes to characterize high-risk fea-
tures of atherosclerotic plaques that are prone to rupture. 
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[18F]-fluorodeoxyglucose (18F-FDG) is the most com-
monly used radiotracer in vascular studies and can be 
used as a surrogate marker of plaque inflammation. How-
ever, the clinical application of 18F-FDG is somewhat 
limited. 18F-FDG can be taken up extensively by glucose-
metabolizing cells. Structures such as the myocardium 
and neck can take up 18F-FDG in large amounts, which 
makes it difficult to accurately assess tracer uptake in 
the coronary arteries [5]. Therefore, the development of 
an alternative PET tracer with high specificity for arte-
rial inflammation became necessary. Inflammatory cells 
overexpress the chemokine receptor type 4 (CXCR4), 
and 68Ga-Pentixafor is a novel PET tracer with high affin-
ity and selectivity for CXCR4 [6]. Hyafil et  al. reported 
68Ga-Pentixafor a promising PET radiotracer that can be 
used to identify macrophage infiltration present in high-
risk atherosclerotic plaques [7]. Therefore, we aimed to 
perform a qualitative synthesis of evidence on the role of 
68Ga-Pentixafor PET in atherosclerosis.

Materials and methods
The study strictly followed the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-anal-
ysis) guidelines, and the registration number on PROS-
PERO is CRD42023388079.

Search strategy
PubMed and Embase databases were searched with 
a search time frame of build to 2022-12-26. Due to the 
small amount of published literature on Pentixafor, a sin-
gle search term “Pentixafor” was used for a more compre-
hensive search of the literature related to 68Ga-Pentixafor 
PET assessment of atherosclerotic lesions. The literature 
on 68Ga-Pentixafor PET assessment of atherosclerotic 
lesions was then screened one by one. A manual supple-
mental search was also performed for all references in the 
included literature.

Inclusion and exclusion criteria
Inclusion criteria
The literature was included in this study according to the 
principle of “PICOS”. (1) “Patients” with atherosclerosis; 
(2) 68Ga-Pentixafor PET as “intervention”; (3) 18F-FDG 
PET as a “comparator”; (4) Imaging results and clinical 
correlation as “outcomes” (Indicators of imaging results 
include site, amount, and the target-to-background ratios 
(TBR) of tracer uptake, agreement and correlation anal-
ysis of the two tracer uptakes); (5) Prospective or retro-
spective original research as “study type”.

Inclusion criteria
(1) Other types of publications, including conference 
abstracts, reviews, review articles, editorials and letters, 

etc.; (2) Articles with incomplete information and unable 
to extract valid data; (3) Literature with different research 
purposes; (4) Repeated publications.

Literature screening and data extraction
Two investigators independently screened the literature 
in the order of title, abstract, and full text, and indepen-
dently extracted basic information about the included 
literature, including first author, year of publication, 
country, study type, disease population, age, sample size, 
and outcome indicators, according to a pre-designed 
data extraction form. If relevant data were missing in the 
included literature, the corresponding authors were con-
tacted by e-mail to obtain the data. When 2 investigators 
disagreed, this was resolved by discussion or consultation 
with the corresponding authors of this article.

Quality evaluation
Two authors independently evaluated each study using 
the QUADAS-2 (Quality Assessment of Diagnostic Accu-
racy Studies) tool [8], and discrepancies were discussed 
and resolved by consensus with a third reviewer. The tool 
includes four domains: case selection, index testing, ref-
erence standard, process, and time. Each method was 
assessed according to the risk of bias, and the first three 
were also assessed according to questions of applicability. 
Each question is answered with “yes”, “no”, and “unclear”, 
and the degree of risk of bias can be judged as “low risk 
“, “high risk”, or “unclear risk”. Finally, the risk of bias for 
each included study was assessed using ReviewManager 
5.4 software, and the risk of bias was plotted.

Statistical processing
The database was created with Microsoft Excel 2021 
software, entered in pairs, and proofread. When com-
bining data, if 2 or more papers reported the same out-
come indicator, Meta-analysis was performed using 
STATA17.0. The odds ratio (OR) and its 95% confidence 
interval (CI) were used for statistical data, and the mean 
difference (MD) and its 95% CI were used for measure-
ment data. Conversely, only descriptive analyses of out-
come indicators were performed when Meta-analysis was 
not feasible due to the reporting of outcome indicators in 
a single paper or heterogeneity among study populations.

Results
Literature screening results
The first 478 papers were detected, including 150 papers 
in PubMed and 328 papers in Embase. After reading 
the titles and abstracts, 201 publications were removed, 
including conference abstract (n = 136), case (n = 20), edi-
torial (n = 6), letter (n = 1), review (n = 31), note (n = 2) 
and 5 other publications. Excluding 56 papers with 
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incompatible study subjects, including neuroendocrine 
tumours (n = 4), multiple myeloma (n = 13), lung cancer 
(n = 7), glioblastoma (n = 2), lymphoma (n = 18), myocar-
dial infarction (n = 6), primary aldosteronism (n = 5), and 
Cushing’s syndrome (n = 1). Excluding 79 papers with dif-
ferent study purposes and duplicate publications. Further 
reading of the full text excluded 8 papers without clinical 
outcomes and was unable to extract valid data. After the 
screening process, 6 studies were finally included [9–14]. 
The flow of the included literatures is shown in Fig. 1.

Basic characteristics of included studies and quality 
evaluation results
Of the 6 included papers, 3 were prospective studies 
and 3 were retrospective studies. For the subject popu-
lation, two studies were single subjects and four studies 
were non-single subjects. Subjects mainly include onco-
logic patients, patients with infection, etc. Cardiovascu-
lar risk factors included in the study included smoking, 
hypertension, dyslipidemia, diabetes, C-reactive protein 
(CRP) (≥ 3  mg/L), obesity, family history of cardiovas-
cular disease and history of cardiovascular diseases. One 
study [10] reported only imaging outcome metrics and 
5 studies [9, 11–14] reported imaging outcome metrics 

and clinical correlation metrics. Lawal et al. [10] reported 
imaging outcome indicators of atherosclerotic lesion 
uptake of 68Ga-Pentixafor and 18F-FDG; Lu et  al. [9] 
reported imaging outcome indicators of lesion uptake of 
68Ga-Pentixafor and 18F-FDG and correlation indicators 
of tracer uptake with cardiovascular risk factors; Kircher 
et al. [11] reported imaging outcome indicators of lesion 
uptake of 68Ga-Pentixafor and 18F-FDG and correlation 
indicators of tracer uptake with plaque calcification; Li 
et  al. [12, 13] reported imaging outcome indicators of 
lesion uptake of 68Ga-Pentixafor and correlation indica-
tors of tracer uptake with cardiovascular risk factors; 
Weiberg et al. [14] reported imaging outcome indicators 
of lesion uptake 68Ga-Pentixafor and also reported cor-
relation indicators of tracer uptake with cardiovascular 
risk factors, correlation indicators of tracer uptake with 
plaque calcification and correlation indicators of car-
diovascular risk factors with plaque calcification. The 
basic characteristics of the included studies are shown in 
Table 1.

 Quality evaluation was performed with the QUA-
DAS-2 tool. Risk of bias: for case selection, 5 studies 
[9–11, 13, 14] were medium risk, with the main risk 
arising from continuity or randomization of patient 

Fig. 1  PRISMA flow chart included in the literature
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inclusion; for trials to be evaluated, 1 study [13] was 
high risk and 5 studies [9–12, 14] were medium risk, 
with the main risk arising from the implementation 
of blinding and the determination of thresholds; for 
gold standard 4 studies [10, 12–14] were medium risk, 
with the main risk arising from the implementation of 
the blinding method; for case, flow and progression, 2 
studies [12, 13] were high risk and 1 study [14] was a 
medium risk, with the main risk arising from the com-
pleteness of the case inclusion analysis and the appro-
priate interval. All studies had a low risk of clinical 
applicability. The quality assessment of the included lit-
erature is shown in Fig. 2 (a) (b).

Systematic evaluation results
Limited by clinical heterogeneity with different reported 
outcome indicators, among other reasons, only descrip-
tive analysis was performed in this study. (The compari-
son between 68Ga-Pentixafor and 18F-FDG is presented 
in Table  2. The abstracts of the included literatures are 
shown in Table 3).

Analysis of imaging results of tracer uptake in atherosclerotic 
lesions
Lu et  al. [9] retrospectively analyzed 19 patients with 
lymphoma, and in a lesion-based analysis, 68Ga-Pentixa-
for PET detected more lesions than 18F-FDG PET (88% 

Fig. 2  A Quality evaluation results of included documents. B Quality evaluation results of included documents
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vs. 48%, p < 0.001) and showed higher uptake than 18F-
FDG PET (TBR: 1.90 ± vs. 1.63 ± 0.29, p < 0.001); 68Ga-
Pentixafor uptake was also significantly higher than 
18F-FDG in patient-based analysis (TBR: 1.85 ± 0.20 vs. 
1.42 ± 0.19, p < 0.001). Lawal et  al. [10] prospectively 
included 12 AIDS patients and performed 68Ga-Pentix-
afor PET and 18F-FDG PET imaging of the patients. For 
analysis of 18F-FDG PET imaging, TBR was elevated 
and statistically significant on delayed scans of both 
aorta (early: 1.76 ± 0.3, delayed: 2.76 ± 0.52, t: -5.738, 
p < 0.001) and carotid artery (early: 1.51 ± 0.38, delayed: 
2.38 ± 0.66, t: -4.741, p = 0.001). significance. Correla-
tion analysis of the two imaging modalities showed a 
positive correlation between the TBR of the early aorta 
(r = 0.344, p = 0.274), late aorta (r = 0.225,p = 0.483), early 
carotid artery (r = 0.123, p = 0.704) and late carotid artery 
(r = 0.295, p = 0.352), but neither reached statistical sig-
nificance. Analysis of the agreement between the two 
imaging modalities showed good agreement between 
the two imaging modalities, and the degree of agree-
ment was higher for early scans than for delayed scans. 
Kircher et al. [11] retrospectively analyzed a total of 652 
lesions detected in 92 patients, and for each patient, the 
median number of positive lesions was 4 (0–13) for 68Ga-
Pentixafor PET compared to 1 (0–10) for 18F-FDG PET, 

and the number of positive lesions for 68Ga-Pentixafor 
PET correlated moderately with 18F-FDG PET-positive 
lesion (r = 0.46, P < 0.0001); the mean TBR of 68Ga-Pen-
tixafor PET was significantly higher than that of 18F-FDG 
PET (1.8 ± 0.5 vs. 1.4 ± 0.4, P < 0.01), and the 68Ga-Pentix-
afor PET and 18F-FDG PET TBR showed a weak positive 
correlation; based on patient analysis, individual mean 
TBR was significantly higher for 68Ga-Pentixafor PET 
than for 18F-FDG PET (1.8 ± 0.3 vs. 1.4 ± 0.3, P < 0.001 ), 
and there was a modest correlation (r = 0.36, P < 0.001). 
Li et  al. [12] analyzed 72 patients and grouped them, 
showing that patients in group 1 (non-eccentric carotid 
atherosclerotic lesions, n = 27, TBRmax = 1.29 ± 0.21) 
had significantly lower 68Ga-Pentixafor uptake than 
those in group 2 (mild eccentric carotid atherosclerotic 
lesions, n = 67, TBRmax = 1.57 ± 0.27), group 3 (mod-
erate eccentric atherosclerotic carotid lesions, n = 41, 
TBRmax = 1.64 ± 0.37) and group 4 (severe eccentric ath-
erosclerotic carotid lesions, n = 19, TBRmax = 1.55 ± 0.26) 
(p < 0.05), whereas between groups 2, 3 and 4 68Ga-Pen-
tixafor uptake were not statistically different. Li et  al. 
[13] included 34 patients in the study and 68Ga-Pentix-
afor PET detected a total of 611 (TBRmax = 1.8 ± 0.4) 
lesions, with the descending aorta being the vessel seg-
ment with the highest number of lesions and strongest 

Table 2  Analysis of imaging results of tracer uptake in atherosclerotic lesions

Author 68Ga -Pentixafor PET 18 F-FDG PET

Lu [9] lesion-based analysis:
number 88%,TBR 1.9
patient-based analysis
TBR 1.85 ± 0.20

lesion-based analysis:
number 48%,TBR 1.63 ± 0.29
patient-based analysis
TBR 1.42 ± 0.19

Lawal [10] NR early aorta: TBR 1.76 ± 0.3
late aorta: TBR 2.76 ± 0.52
early carotid artery: TBR 1.51 ± 0.38
late carotid artery: TBR 2.38 ± 0.66

Kircher [11] lesion-based analysis:
TBR 1.8 ± 0.5
patient-based analysis
number 4(0–13), TBR 1.8 ± 0.30

lesion-based analysis:
TBR 1.4 ± 0.4
patient-based analysis
number 1(0–10), TBR 1.4 ± 0.30

Li [12] group 1: TBRmax 1.29 ± 0.21
group 2: TBRmax 1.57 ± 0.27
group 3: TBRmax 1.64 ± 0.37
group 4: TBRmax 1.55 ± 0.26

NR

Li [13] descending aorta: number 225, TBRmax 1.9 ± 0.4
abdominal aorta: number 168, TBRmax 1.9 ± 0.4
aortic arch: number 83, TBRmax 1.8 ± 0.2
common carotid artery: number 74, TBRmax 1.7 ± 0.3
ascending aorta: number 61, TBRmax 1.7 ± 0.2

NR

Weiberg [14] right common carotid artery: number 49, TBR 1.7 ± 0.4
left common carotid artery: number 55, TBR 1.6 ± 0.4
thoracic aorta: number 339, TBR 1.9 ± 0.4
abdominal aorta: number 369, TBR 2.1 ± 0.6
right iliac artery: number 115, TBR 1.9 ± 0.4
left iliac artery: number 115, TBR 2.0 ± 0.5
right femoral artery: number 180, TBR 1.9 ± 0.5
left femoral artery: number 189, TBR 2.1 ± 0.6

NR



Page 7 of 10Wang et al. BMC Medical Imaging          (2023) 23:166 	

tracer uptake (n = 225, TBRmax = 1.9 ± 0.4), followed by 
the abdominal aorta (n = 168, TBRmax = 1.9 ± 0.4), aortic 
arch (n = 83, TBRmax = 1.8 ± 0.2), common carotid artery 
(n = 74, TBRmax = 1.7 ± 0.3) and ascending aorta (n = 61, 
TBRmax = 1.7 ± 0.2). Weiberg et  al. [14] retrospectively 
analyzed a total of 1411 (TBR = 2.0 ± 0.5) lesions in 51 
patients with the following uptake characteristics: right 
common carotid artery (n = 49, TBR = 1.7 ± 0.4), left 
common carotid artery (n = 55, TBR = 1.6 ± 0.4), tho-
racic aorta (n = 339, TBR = 1.9 ± 0.4), abdominal aorta 
(n = 369, TBR = 2.1 ± 0.6), right iliac artery (n = 115, 
TBR = 1.9 ± 0.4), left iliac artery (n = 115, TBR = 2.0 ± 0.5), 
right femoral artery (n = 180, TBR = 1.9 ± 0.5), and left 
femoral artery (n = 189, TBR = 2.1 ± 0.6).

Clinical correlation analysis of tracer uptake 
in atherosclerotic lesions
Lu et  al. [9] retrospectively analyzed the relationship 
between tracer uptake and cardiovascular risk factors 
in 19 patients with lymphoma and showed that com-
paring the high-risk group (n = 9) with cardiovascular 
risk factors to the low-risk group (n = 10), TBR was sig-
nificantly increased in active lesions of 68Ga-Pentixafor 
(2.02 ± 0.15 vs. 1.86 ± 0.10, p = 0.015), but this was not 
found for 18F-FDG (1.85 ± 0.10 vs. 1.80 ± 0.07, p = 0.149). 

Kircher et  al. [11] analyzed the relationship between 
tracer uptake and plaque calcification in 92 patients 
and found an inverse relationship between the degree 
of plaque calcification and the intensity of uptake of 
both tracers (as measured by TBR), with non-calcified 
lesions (n = 467) showing the highest TBR values for 
both tracers (1.9 ± 0.4 and 1.5 ± 0.4, respectively), mildly 
calcified lesions (n = 99) showed higher TBR values 
for both (1.7 ± 0.4 and 1.3 ± 0.3, respectively, P < 0.01), 
while severely calcified lesions (n = 86) showed the low-
est TBR values (1.4 ± 0.6 and 1.1 ± 0.4, respectively). TBR 
was higher in 68Ga-Pentixafor PET than in 18F-FDG PET 
when analyzing different subgroups of calcification. Li 
et  al. [12] analyzed 72 patients and found a significant 
correlation between 68Ga-Pentixafor uptake (TBRmax) 
and the prevalence of hypertension (Pearson’s r = 0.27/ 
Pearson’s r r = 0.35, p < 0.05), and there was a signifi-
cant correlation between the prevalence of type II dia-
betes mellitus (Pearson’s r = 0.27/ Pearson’s r r = 0.35, 
p < 0.05). Li et  al. [13] analyzed the correlation between 
tracer intake and cardiovascular risk factors. The results 
showed that in patients with TBR > 1.7, patients with 
diabetes, hypercholesterolemia, and cardiovascular his-
tory accounted for 27.3%, 36.4%, and 36.4% respectively, 
while in patients with TBR ≤ 1.7, patients with diabetes, 

Table 3   Abstracts of included documents 

PLHIV People living with human immunodeficiency virus, CXCR4 Chemokine receptor type 4

Author Abstract

Lu [9] Objective: This study compared 68Ga-Pentixafor uptake in active arterial segments with corresponding 18F-FDG arterial uptake as well 
as the relationship with cardiac 68Ga-Pentixafor uptake.
Conclusion: 68Ga-Pentixafor PET/MRI identified many more lesions than 18F-FDG PET/MRI. Patients with high-risk cardiovascular factors 
illustrated an increased uptake of 68Ga-Pentixafor. There was a correlation between the elevated uptake of 68Ga-Pentixafor in the active 
arterial segments and heart.

Lawal [10] Objective: In this study we aimed to perform a head-to-head comparison of 18F-FDG PET/CT and 68Ga-Pentixafor PET/CT for quantifica-
tion of arterial inflammation in PLHIV.
Conclusion: We found a high level of agreement in the quantification variables obtained using 18F-FDG PET and 68Ga-Pentixafor PET. 
There is a good level of agreement in the arterial tracer quantification variables obtained using 18F-FDG PET/CT and 68Ga-Pentixafor PET/
CT in PLHIV. This suggests that 68Ga-Pentixafor may be applied in the place of 18F-FDG PET/CT for the quantification of arterial inflamma-
tion.

Kircher [11] Objective: The aim of this retrospective study was to investigate the performance of 68Ga-Pentixafor PET/CT for imaging atherosclerosis 
in comparison to 18F-FDG PET/CT.
Conclusion: CXCR4-directed imaging of the arterial wall with 68Ga-Pentixafor PET/CT identified more lesions than 18F-FDG PET/CT, 
with only a weak correlation between tracers.

Li [12] Objective: We aimed to evaluate 68Ga-Pentixafor PET in combination MRI for in vivo quantification of CXCR4 expression in carotid 
plaques.
Conclusions: In vivo evaluation of CXCR4 expression in carotid atherosclerotic lesions is feasible using 68Ga-Pentixafor PET/MRI. In ath-
erosclerotic plaque tissue, CXCR4 expression might be used as a surrogate marker for inflammatory atherosclerosis.

Li [13] Objective: We sought to evaluate human atherosclerotic lesions using 68Ga-Pentixafor PET/MRI.
Conclusion: Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting apotential role 
of 68Ga-Pentixafor in characterization of atherosclerosis.

Weiberg [14] Objective: The aim of this study was to assess the prevalence, pattern, and clinical correlates of arterial wall accumulation of 68Ga-Pentix-
afor, a specific CXCR4 ligand for PET.
Conclusion: 68Ga-Pentixafor PET/CT is suitable for non-invasive, highly specific PET imaging of CXCR4 expression in the atherosclerotic 
arterial wall. Arterial wall 68Ga-Pentixafor uptake is significantly associated with surrogate markers of atherosclerosis, and is linked 
to the presence of cardiovascular risk factors. 68Ga-Pentixafor signal is higher in patients with a high-risk profile, and may hold promise 
for identification of vulnerable plaque.
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hypercholesterolemia and cardiovascular history only 
accounted for 0%, 8.3%, and 8.3%. (P < 0.05) This shows 
that when TBR > 1.7, the high-risk group of cardiovascu-
lar risk factors is more likely to appear. At the same time, 
by comparing and analyzing the TBR values of patients 
in a high-risk group and a low-risk group of cardiovascu-
lar risk factors, the results showed that the TBR values in 
the high-risk group were significantly higher than those 
in the low-risk group (1.9 ± 0.3 vs. 1.7 ± 0.2, p < 0.05). 
Weiberg et  al. [14] retrospectively analyzed 51 patients 
and found significant correlations between the number 
of cardiovascular risk factors and the number of calcified 
plaques (r = 0.46, P = 0.0007), the number of lesions with 
tracer ingestion (r = 0.70, P < 0.0001) and TBR (r = 0.36, 
P = 0.009). Univariate regression analysis showed sig-
nificant correlations between the number of lesions for 
tracer uptake and age at risk (r = 0.60, P < 0.0001), arterial 
hypertension (r = 0.56, P < 0.0001), hypercholesterolemia 
(r = 0.47, P = 0.0005), smoking history (r = 0.35, P = 0.01), 
and previous vascular events (r = 0.47, P = 0.0004); mul-
tiple regression analysis showed that age at risk (r = 0.50, 
P = 0.0003), arterial hypertension (r = 0.52, P = 0.0001), 
and smoking history (r = 0.36, P = 0.01) were all indepen-
dently associated with atherosclerotic lesions. There was 
a statistically significant association between the num-
ber of lesions ingested with tracer and calcified plaque 
burden (r = 0.67, P < 0.0001), maximum plaque thickness 
(r = 0.56, P < 0.0001), and calcification score (r = 0.69, 
P < 0.0001), all of which described different aspects of 
the degree of arterial calcification. Also, there was a sig-
nificant correlation between calcified plaque burden and 
age at risk (r = 0.51, P = 0.0001), arterial hypertension 
(r = 0.37, P = 0.008), and prior vascular events (r = 0.46, 
P = 0.0008); multiple regression analysis showed that 
calcified plaque burden was associated with age at risk 
(r = 0.49, P = 0.0003) and prior vascular events (r = 0.38, 
P = 0.008) were independently associated.

Discussion
Atherosclerosis is a chronic systemic disease in which 
inflammation is a dynamic trigger for progression [15–
17]. Progressive systemic enlargement of atherosclerotic 
plaques leads to a range of debilitating cardiovascular 
diseases, including peripheral arterial disease, ischemic 
stroke, coronary artery disease, and acute myocardial 
infarction [18]. These diseases are the leading cause of 
morbidity and mortality in the United States and world-
wide [19–21]. Conventional imaging examinations 
(including ultrasound, CT, and MRI angiography) have 
limited ability to assess the early stages of atherosclerosis 
[22, 23]. Therefore, molecular imaging offers an attractive 
opportunity to examine the pathological features of ath-
erosclerotic disease at the microscopic level [24]. Studies 

have suggested that 68Ga-Pentixafor may be a potential 
imaging molecule for atherosclerosis, but the use of 68Ga-
Pentixafor PET for imaging atherosclerotic lesions is not 
yet widely used in clinical practice due to the lack of evi-
dence-based medical evidence.

To further clarify the role of 68Ga-Pentixafor PET in 
atherosclerotic, we aimed to perform a qualitative syn-
thesis of evidence on the role of 68Ga-Pentixafor PET 
in atherosclerosis for the first time. The results of this 
study found that 68Ga-Pentixafor PET has better imag-
ing results than 18F-FDG PET and can overcome some 
limitations of 18F-FDG PET imaging, and may be able to 
replace 18F-FDG PET for atherosclerosis imaging in the 
future. In addition, there is a clear clinical correlation 
between cardiovascular risk factors, tracer uptake and 
plaque calcification.

Specifically, a comparative analysis of imaging results 
between 68Ga-Pentixafor PET and 18F-FDG PET revealed 
good agreement and correlation between the two imag-
ing modalities, and higher uptake of tracers (both in 
terms of quantity and intensity of uptake) by patients and 
lesions with 68Ga-Pentixafor PET compared to 18F-FDG 
PET. In addition, it was found that the uptake of tracers 
was higher in eccentric carotid atherosclerotic lesions 
than in non-eccentric carotid atherosclerotic lesions. In 
terms of clinical correlation, the uptake of tracers (both 
quantity and TBR) by patients and lesions increased with 
the number of cardiovascular risk factors in patients, 
the number of plaque calcifications increased with the 
number of cardiovascular risk factors, and the uptake of 
tracers by lesions decreased instead with the increased 
burden of plaque calcification, suggesting a positive cor-
relation between cardiovascular risk factors and tracer 
uptake and plaque calcification; whereas a negative cor-
relation existed between tracer uptake and the degree of 
plaque calcification.

Atherosclerosis is a global health problem. Although 
some progress has been made in understanding the 
complex underlying biology of atherosclerosis, we still 
need radioactive tracers targeting molecular changes in 
vulnerable plaques to identify vulnerable plaques and 
prevent adverse events. At present, the diagnostic locali-
zation of 68Ga-Pentixafor still needs to be improved. 
Bartlett et  al. [25] summarized the efficacy of various 
radioactive tracers for PET imaging in plaque charac-
terization and risk assessment. This study thought that 
further elucidating the potential biological mechanism 
of CXCR4 would help to improve the understanding of 
the clinical application of this radioactive tracer. In addi-
tion, an accurate estimate of the tracer uptake in vascular 
lesions is extremely challenging given the small size of the 
lesions compared to the spatial resolution of PET. Some 
studies [26, 27] have shown that vascular inflammation 
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imaging with 18F-FDG PET requires optimized imaging 
conditions. The research results of Lawal et al. [28] have 
shown that vascular quantification can be improved by 
increasing the uptake of vascular tracers and improving 
the clearance of blood-pool background activity. There-
fore, a set of standard imaging protocols and quantita-
tive methods is very important for molecular imaging of 
vascular inflammation.Some limitations remain in this 
study. First, given the relative novelty of the Pentixafor 
tracer, only a few studies (n = 6) were available for review. 
Some of them were conducted by the same study group 
and possible overlap of patient data cannot be excluded 
exclusively based on the information reported in the 
manuscript. In addition, most studies included a different 
population of subjects. The TBR values defining positive 
atherosclerotic lesions in the included studies were not 
all the same. All of the above factors could be sources of 
heterogeneity in this study. Due to the limitations of clin-
ical heterogeneity and different outcome indicators, only 
a descriptive analysis was performed in this study, and 
a large number of prospective randomized studies are 
needed in the future to further validate the clinical utility 
of 68Ga-Pentixafor PET application in atherosclerosis.

Conclusion
In this study, a systematic evaluation of 68Ga-Pentixafor 
PET for atherosclerosis imaging was performed. The 
results showed that 68Ga-Pentixafor PET has a good 
imaging effect on atherosclerotic lesions, and it is a 
promising imaging modality that may replace 18F-FDG 
PET for atherosclerosis imaging in the future. In patients 
with atherosclerosis, there is a clear clinical correlation 
between cardiovascular risk factors, tracer uptake, and 
plaque calcification.
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