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Abstract
Background With the rise in importance of personalized medicine and deep learning, we combine the two to create 
personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can 
be used to train deep neural networks to detect tumor progression in longitudinal datasets.

Methods Two datasets with 64 scans from 32 patients with glioblastoma multiforme (GBM) were evaluated in 
this study. The contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used. 
We trained a neural network for each patient using just two scans from different timepoints to map the difference 
between the images. The change in tumor volume can be calculated with this map. The neural networks were a form 
of a Wasserstein-GAN (generative adversarial network), an unsupervised learning architecture. The combination of 
data augmentation and the network architecture allowed us to skip the co-registration of the images. Furthermore, 
no additional training data, pre-training of the networks or any (manual) annotations are necessary.

Results The model achieved an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, 
for which an accuracy of 66% can be achieved.

Conclusions We show a novel approach to deep learning in using data from just one patient to train deep neural 
networks to monitor tumor change. Using two different datasets to evaluate the results shows the potential to 
generalize the method.

Keywords Neural networks, Personalized, Wasserstein-GAN, Unsupervised, Machine learning, Privacy-safe, Zero-
training data, Longitudinal, Brain Tumor, MRI
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Introduction
One key difference between human and artificial intel-
ligence is the number of training examples needed to 
generate knowledge. Whereas humans can learn to 
recognize new objects with only a few examples, most 
machine learning tasks require hundreds of examples for 
the same task. In fact, increasing the dataset size is often 
a key step in improving the performance of a machine 
learning model. ImageNet [1], the most famous dataset in 
computer vision, now consists of over 14 million training 
examples. The state-of-the-art models in computer vision 
are often trained on large datasets such as ImageNet 
and may not transfer well to smaller datasets of different 
tasks. Getting large datasets may not always be a feasible 
approach though, especially in the medical domain.

Gathering large datasets is one of the key challenges of 
medical deep learning applications. Keeping a patient’s 
medical information safe is critical and there are laws 
protecting it in most countries. This makes it more dif-
ficult to get the data and leads to the medical datasets 
being much smaller compared to traditional computer 
vision datasets. Additionally, deep neural networks them-
selves offer another privacy threat. It has been shown 
that training examples of fully trained networks can be 
recovered with a model inversion attack [2]. This makes 
it more difficult to publish medical deep learning appli-
cations as the patient’s privacy can not be guaranteed. 
These two reasons give a big incentive to find ways to 
train neural networks with smaller datasets or even just 
one patient’s data.

There have been several models proposed to challenge 
the task of reducing the number of training examples. 
One-shot learning is a method of learning a class from 
only one labeled example [3]. Siamese neural networks 
are able to determine if two images show the same per-
son, even if they have never seen images of that person 
before [4]. They have also been used in medicine to dis-
tinguish between chronic obstructive pulmonary disease 
and asthma [5]. Whereas new classes can be learned 
from as little as one example, one-shot learning still 
requires thousands of training examples of other classes 
beforehand. Furthermore, anomaly detection can be used 
to detect classes of rare occurrence. This is a technique 
used to recognize items which do not lie in the usual 
data distribution and makes use of unsupervised learn-
ing in most cases [6]. Anomaly detection usually makes 
use of learning the data distribution in a healthy popula-
tion and identifying the anomalies, i.e. a disease, of a new 
class. Another method to handle small datasets is trans-
fer learning, where networks trained on large datasets are 
used as a starting point to train on training examples of 
new classes. Transfer learning makes use of the fact that 
features learned on the large dataset can be reapplied to 
new data.

In this paper, we introduce personalized neural net-
works, which use only one patient’s data for training. Our 
proposed method only needs two MRIs from the same 
patient and no additional pretraining. This also results 
in a privacy-safe processing of the data, because the data 
“stays” within the same patient. Our model is based on 
generative adversarial networks (GANs) [7]. GANs have 
gained in popularity in recent years in the medical AI 
community. Originally used for image synthesis, there 
have been applications to generate medical images [8, 
9]. Other studies focus on classification or segmentation 
tasks [10, 11]. We apply the personalized neural networks 
on subjects with brain tumors.

Brain tumors belong to the most devastating diagno-
ses, in particular for a confirmed glioblastoma multi-
forme (GBM) [12]. Despite massive research efforts and 
advancements in other cancer types, like breast cancer 
[13] or prostate cancer [14], the life expectancy of a con-
firmed GBM with treatment, including chemotherapy, 
radiotherapy and surgery, is still only around one year 
[15]. Nevertheless, disease progression and treatment 
decisions are strongly dependent on maximum tumor 
diameter and tumor volume, as well as the correspond-
ing morphological changes during a treatment period. 
The imaging method of choice here is magnetic reso-
nance imaging (MRI). However, MRI does not provide 
any semantic information for brain structures or the 
brain tumor per se. This has to be done manually, semi-
manually or automatically, in a post-processing step, 
commonly referred to as a segmentation. Manually per-
formed, however, a segmentation is very time-consuming 
and operator-dependent, especially when performed in a 
three-dimensional image volume [16], which needs slice-
by-slice contouring. Hence, an automatic (algorithmic) 
segmentation is desired, especially when large quantities 
of data volumes have to be processed. Even if it is still 
considered an unsolved problem, there has been steady 
progress from year to year; and data-driven approaches, 
like deep neural networks, currently provide the best 
(fully automatic) results. However, a segmentation with a 
data-driven approach, like deep learning [17], comes with 
several burdens: Firstly, the algorithm generally needs 
massive annotated training data. Additionally, for inter-
patient disease monitoring, several segmentations have 
to be performed, and in addition, these scans have to be 
registered to each other (which also adds uncertainty to 
the overall procedure, especially when deformed soft-
tissue comes into play [18]). In this regard, we want to 
tackle these problems with a personalized neural network 
that needs just the patient’s data, no annotations and no 
extra registration step.

We apply the personalized networks to longitudinal 
datasets of glioblastoma. To the best of our knowledge, 
this is the first study using this little training data to 
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train a deep neural network in the medical domain. The 
method addresses the issues of gathering big datasets 
in medicine and producing a privacy-safe network. The 
approach is considered as unsupervised learning as no 
data annotation is necessary. Using a Wasserstein GAN, 
the model creates a map showing the differences between 
images from two timepoints. We evaluate the model with 
an receiver operating curve (ROC) analysis as well as a 
modified RANO criteria on two different datasets of lon-
gitudinal MRI images of patients with glioblastoma.

Methods
Model architecture and training
The neural network architecture used in this study is 
based upon Wasserstein GANs [19]. This is a modified 
version of GANs [7]. These are a form of deep neural 
networks in which two sub-models are trained adversar-
ily in a sum-zero game. A generator is trained to create 
new images, whereas a discriminator is trained to distin-
guish between real and synthetic images. In Wasserstein 
GANs, the discriminator is modified to a critic function 
which leads to more stable training [19].

Our network architecture is similar to the model used 
by Baumgartner et al. [20]. The aim of the network is to 
create a map which transforms an image from the first 
timepoint (t1) to the second timepoint (t2). This will 
make the model learn to represent the changes between 
the images, more specifically tumor growth/reduction in 
our case. To do this, augmented versions of the image at 
t1 are used as input to the generator. The generator will 
try to create a map that, when added to the input image 
creates an image of t2. The critic will try to distinguish 
these generated synthetic t2 images from the real t2 

images. Thereby forcing the generator to learn the differ-
ences between the two timepoints.

The generator is based on the U-Net [21] structure. 
The U-Net is a fully convolutional network consisting 
of a contracting path (encoder) and an expanding path 
(decoder) with skip connections at each resolution level. 
It produces an output image of the same size as the input 
image. The network structure is shown in more detail in 
Fig. 1. A random slice of the third dimension was taken 
during each training step, such that the network received 
an input size of 256 × 256 pixels. For the ultimate predic-
tion after training, the result for each of the 128 slices 
was calculated, saved and concatenated to the final 
256 × 256 × 128 pixels volume. The critic function is also 
a fully convolutional network. Like in Baumgartner et al. 
[20], we used an architecture similar to the C3D network 
[22]. This is an encoder type architecture which produces 
a single value output (Figure S1 in the Supplementary 
Materials).

The network was trained for 1000 epochs. In every 
epoch we updated the critic five times before updat-
ing the generator. In the first 25 epochs and every 100 
epochs, the critic was updated 100 times. We used gra-
dient penalty and the ADAM optimizer during training 
[23, 24]. Figure 2 gives an overview over the whole train-
ing process.

During training, we discovered that the training pro-
cess could be unstable when the two images were too 
similar or even identical. It could lead to the critic not 
being able to distinguish the real and the fake images at 
all and thus not providing any valuable feedback to the 
generator. We therefore added a small square of 10 × 10 
pixels of noise to a fixed position in one of the images. 
The noise was created by transforming gaussian noise 

Fig. 1 Architecture of the generator network. A U-Net structure is used. At each level there are two blocks of 3 × 3 convolution, batch normalization (BN) 
and ReLU. 2 × 2 Max pool functions are used for downsizing. 4 × 4 transposed convolutions with stride = 2 are used for upsizing. The size of the image at 
each level is shown on the left. The number of features in each block is shown on the top of the block
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with a 2D gaussian filter. The position of the noise was 
changed twice during the training (after 40% and 60% of 
all the training epochs). The concrete positions were at 
50%, 35% and 65% of the size of the input image in both 
dimensions. Finally, after 80% of the epochs, the noise 
was removed completely for the rest of the training. After 
each change of the position of the noise, a model was 
saved. After the training finished, we took an ensemble 
of all the models, averaging over the results, disregarding 
those pixels that had been artificially changed in that part 
of the training.

Preprocessing
There were several preprocessing steps in this study. First, 
all images were resampled to 256 × 256 × 128 pixels. In 
MRIs, the pixel values obtained differ for identical tissues 
when different scanners are used. To deal with this prob-
lem, we histogram matched the images to each other. 

This was done using the histogram matching tool of 3D 
Slicer [25]. Next, the images were normalized to a range 
between 0 and 1. The brain of the patient was centered 
in the image. Lastly, we skull-stripped the scans using the 
HD-BET tool to remove any non-brain tissue [26].

Augmentation
GANs usually take a lot of data to train effectively [27, 
28]. However, in this study, only two images of size 
256 × 256 × 128 pixels were used. The use of data augmen-
tation was therefore crucial. We used the batchgenerators 
framework for this task [29]. Since our model does not 
require co-registered images, this had to be accounted 
for in the data augmentation. Hence, we shifted and 
rotated the images in all three dimensions such that the 
network learns the representation of the brain in space. 
Each training image was randomly rotated between 
− 15° and 15° and shifted between 0 and 10 pixels in all 

Fig. 2 Overview over one training epoch. In (a) the critic function is trained. A t1 image is passed through the generator. The generator’s output is a map 
which gets added to the t1 image. This produces the fake t2 image. The real and the fake t2 images are then passed to the critic. The output of the critic 
is incorporated into a loss function and backpropagated to update the weights of the critic network. In (b) the generator is trained. Again, a t1 image is 
passed to the generator. The output is added to the t1 image to create the fake t2 image. This is passed to the critic. The output is incorporated into the 
generator loss function and backpropagated through both networks to update the generator network
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three dimensions. Lastly, gaussian noise was added to 
all images with zero mean and the variance ranging uni-
formly between 0 and 0.1.

Data
In this study two different datasets were used. The first 
was a local dataset including longitudinal follow-up scans 
from 15 patients diagnosed with recurrent Grade IV glio-
blastoma. As described in Kleesiek et al. [30], the baseline 
scan was defined as the scan before de novo treatment 
after tumor recurrence. The image resolution was 
256 × 256 × 128 pixels. There were 13 male and 2 female 
patients with a mean age of 55.1 years. Image acquisition 
was performed on a 3 Tesla MRI scanner (Magnetom 
Verio, Siemens Healthcare, Erlangen, Germany).

The second was a publicly available dataset from the 
Cancer Imaging Archive (TCIA) [31], called Brain-
Tumor-Progression [32]. This dataset includes two 
multi-channel MRIs each for 20 patients newly diag-
nosed with glioblastoma. The resolution of the images 
varied between 260 × 320 × 21 and 512 × 512 × 24 pixels. 
The parameters of the model were fine tuned solely on 
the first three patients of this dataset, therefore only the 
last 17 patients were included in the evaluation. For both 
datasets only the T1-contrast-enhanced (T1ce) channels 
were used in this study.

Segmentation network for ground truth
To evaluate the proposed model’s performance, ground 
truth segmentations were created. We used the neural 
network of the winner of the 2020 BraTS challenge for 
brain tumor segmentation for this task [33]. The segmen-
tations contain three classes: enhancing tumor, edema 
and necrosis. Only the enhancing tumor class was used 
in this paper.

RANO classification
To further evaluate our model, we predicted a modified 
RANO classification. The RANO criteria for glioma is a 
radiological classification used to evaluate the treatment 
of glioblastoma [34]. We slightly modified this grading 
to allow for a classification using just the total enhanc-
ing tumor volume and disregarding any clinical infor-
mation. The two classes, complete and partial response, 
were combined into one class called response. This class 
is defined as a reduction in tumor volume of more than 
50%. Progression is defined as a growth in tumor volume 
of 25% or more. Consequently, stable disease is a change 
in tumor volume not corresponding to response or pro-
gression. The tumor volume was calculated in voxels.

The segmentations created by the BraTS network were 
again used to calculate the ground truth. Since the maps 
often showed a lot of noise at the edge of the brain, as 
shown in Fig.  3, the outer 10 pixels in each dimension 

were disregarded. While this is potentially harmful for 
tumors at the edge of the brain, the advantages of remov-
ing the noisy regions outweigh the disadvantages. We 
created additional ternary maps from our network with 
just the three classes − 1, 0 and 1. Voxels with a value 
smaller than − 0.15 were defined as -1, showing tumor 
reduction and voxels with a value bigger than 0.15 were 
defined as 1, showing tumor growth. Classifications with 
a connected voxel count of 30 or less were set to 0 to 
remove some noise. The ternary map of each patient was 
added up to get the absolute change in tumor volume. 
This was added to the total tumor volume of the first 
timepoint to predict the volume of the second timepoint.

Results
Qualitative Assessment and Heatmaps
Figure  3 displays representative examples from both 
datasets. The map shows the changes in contrast-enhanc-
ing tumor in a reliable manner. The regions of tumor 
growth are represented as black (values < 1 in the map). 
The regions of tumor reduction are represented as white 
(values > 1 in the map). Converted to heatmaps they can 
be used to highlight the key regions of tumor growth/
reduction.

As one can see, there are some recurring regions of 
noise in the maps. For example, the region next to the 
ventricular system is incorrectly noted as changed in 
either direction in most cases. Additionally, the edge of 
the brain often contains a lot of noise, as highlighted in 
Fig. 3C. This can be a problem for tumors located at the 
edge of the brain or the ventricles.

ROC analysis
An ROC analysis was performed to evaluate the model’s 
prediction accuracy. The segmentations created by the 
BraTS network were used to calculate the ground truth. 
To get the classes tumor growth and reduction, the seg-
mentation of the first time point was subtracted from the 
second time point.

The 2-class ROC analysis is shown in Fig. 4. The area-
under-the-curve (AUC) for tumor growth and reduction 
is 0.72 and 0.94 respectively for the public dataset. The 
AUC is 0.94 and 0.94 for growth and reduction for the 
private dataset. The total AUC for both datasets com-
bined is 0.87 and 0.86 respectively (see Figure S2 in the 
Supplementary Materials). The micro-average AUC is 
0.87.

RANO classification
The results for the RANO classification are shown in 
Table  1. The overall sensitivity and specificity for the 
modified RANO classes were 65.5% and 82.8% respec-
tively. The total accuracy was 65.5%. The accuracy was 
calculated in a one-vs-all approach with regards to a 
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multi-label classification. The overall scores were calcu-
lated as a micro-average of all the classes. The perfor-
mance for the two datasets was comparable (see Table S1 
in the Supplementary Materials).

Discussion
In this contribution, we propose “A net for everyone”, a 
personalized neural network that is trained with lon-
gitudinal data from a single patient. We designed and 
implemented a Wasserstein-GAN-based approach that 
works with only two scans from the same patient with-
out any extra training data in an unsupervised fashion. 
That means, our method does not need any small or large 
quantities of datasets, and also does not need any manual 
or semi-manual annotations for training.

Alongside a qualitative evaluation, we show that the 
model achieves a high AUC in an ROC analysis, when 
compared to a state-of-the-art deep learning model. 
It also shows that the model’s performance for tumor 
growth and tumor reduction is very similar. The accuracy 
for the local dataset was significantly larger than for the 
public dataset. This can be explained by the difference 
in quality, as the public data was older and had a lower 

resolution, especially in the third dimension. Addition-
ally, there were artifacts in some of the images, like parts 
of the brain were cut off. We implemented a modified 
RANO criteria, resulting in a combined accuracy of 66%. 
The generated heatmaps can aid in the diagnostic process 
to quickly find the key regions of interest.

It should be noted that the performance of deep learn-
ing models usually scales with the size of the dataset [35]. 
Therefore, this approach has an inherent disadvantage 
compared to classical supervised learning models with 
big datasets. However, using only the data of one patient 
comes with some advantages. First, our method is a pri-
vacy-safe approach. Medical records and medical image 
data are very sensitive and our approach stays within the 
same patient for the algorithmic training and execution. 
Second, getting large datasets in medical imaging has 
proven to be a challenging task due to these privacy con-
cerns, and our method does not rely on this.

Furthermore, no registration is necessary for the train-
ing of our approach, which is a mandatory and crucial 
step in most approaches [36]. There are different meth-
ods for image registration, with some being completely 
automatic and others needing some manual input [37]. 

Fig. 3 Examples of the T1ce images at different timepoints along with the calculated map. The last column shows heatmaps on top of the second time 
point to highlight key regions of change. A and B are from the local dataset, C and D are from the public dataset
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While these registration methods can be accurate for 
scenarios, like rigid registrations, especially deformable 
registrations are still challenging and there are problems 
with outliers [38]. These include post-surgery scans or 
patients with a different anatomy due to a large tumor. 
Both could lead to registration artifacts, which would 
compromise the further training. Our model does not 
need a separate registration step, avoiding these potential 
sources of errors.

The model does not explicitly learn to recognize 
changes in the tumor, but learns to recognize any changes 
between two images. However, since the contrast enhanc-
ing regions of the tumor are typically amongst the most 
intense regions in a T1ce scan, changes in these regions 
are particularly visible in the created maps, highlighting 

changes in tumor enhancement patterns. However, the 
proposed approach comes with two disadvantages that 
can be addressed in future research. First, any struc-
tural change in the brain not lying in the tumor will be 
recognized by the model. For example, a midline shift 
caused by tumor growth will cause changes in healthy 
regions of the brain and might be interpreted as growth 
or reduction of contrast enhancing tumor. This can also 
be interpreted as an advantage to point out all changes 
to the reader. Second, the model is prone to noise at the 
edge of the brain and next to the ventricles. The ventri-
cles differ between two scans depending on the current 
cerebral spinal fluid volume. At the edge of the brain, the 
two scans also differ slightly due to the skull stripping. 
Another reason is the variance in size of the dural venous 
sinuses. To account for the noise at the edge of the brain, 
we disregarded the outer pixels in the calculation of the 
modified RANO criteria. This is obviously a concern 
for tumors located in the cortex of the brain as it might 
cut out regions of the tumor. However, glioblastoma are 
typically located in the centrum semiovale, thus in most 
cases this should not be a problem [39].

Table 1 Sensitivity, Specificity, Accuracy of the prediction of 
modified RANO criteria for glioblastoma
RANO category Sensitivity Specificity Accuracy
Response 70.0% 100.0% 90.6%

Stable disease 80.0% 63.6% 68.8%

Progression 50.0% 85.0% 71.9%

Total 65.6% 82.8% 65.6%

Fig. 4 ROC Analysis for the prediction of tumor change compared to the ground truth of BraTS winning network nnUNet.
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It should be noted that the ground truth from this work 
was not created by medical experts but by a neural net-
work. However, the network used achieved a Dice Score 
for the enhancing tumor of 82% [33]. This lies within the 
range of the inter-rater variability of human raters of 
74–85% [40], suggesting that medical experts would not 
change the ground truth significantly.

However, despite the above-mentioned limitations, 
this study is a proof of concept that personalized neural 
networks can serve as a privacy-safe method to analyze 
longitudinal imaging data of a single patient in an unsu-
pervised fashion. It has been shown that tumor growth 
tends to get underestimated on average and overesti-
mated for very small tumors in brain tumor measure-
ments in the current RANO criteria [41, 42]. Therefore, 
having an efficient method for measuring the 3D tumor 
volume is necessary for treatment monitoring and surgi-
cal planning [43, 44]. Lastly, the produced heatmaps can 
be a big help in the diagnosis of the MRI images, as they 
lead the reader directly to the key regions of changes.

Summarized, we proposed a deep learning architecture 
to create personalized neural networks. This study serves 
as a proof of concept to show that training data from 
just one patient can be used to monitor tumor change 
in longitudinal MRI scans. Areas of future work include 
the application to other pathologies, such as aortic aneu-
rysms and aortic dissections [45], where disease monitor-
ing over several image acquisitions plays an important 
role.
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