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Abstract 

Background and purpose  Renal cell carcinoma (RCC) is a heterogeneous group of cancers. The collagen fiber 
content in the tumor microenvironment of renal cancer has an important role in tumor progression and prognosis. 
A radiomics model was developed from dual-energy CT iodine maps to assess collagen fiber content in the tumor 
microenvironment of ccRCC.

Methods  A total of 87 patients with ccRCC admitted to our hospital were included in this retrospective study. 
Among them, 59 cases contained large amounts of collagen fibers and 28 cases contained a small amount of col-
lagen fibers. We established a radiomics model using preoperative dual-energy CT scan Iodine map (IV) imaging 
to distinguish patients with multiple collagen fibers from those with few collagen fibers in the tumor microenviron-
ment of ccRCC. We extracted features from dual-energy CT Iodine map images to evaluate the effects of six classifiers, 
namely k-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGBoost), random 
forest (RF), logistic regression (LR), and decision tree (DT). The effects of the models built based on the dynamic 
and venous phases are also compared. Model performance was evaluated using quintuple cross-validation and area 
under the receiver operating characteristic curve (AUC). In addition, a clinical model was developed to assess the clini-
cal factors affecting collagen fiber content.

Results  Compared to KNN, SVM, and LR classifiers, RF, DT, and XGBoost classifiers trained with higher AUC values, 
with training sets of 0.997, 1.0, and 1.0, respectively. In the validation set, the highest AUC was found in the SVM clas-
sifier with a size of 0.722. In the comparative test of the active and intravenous phase models, the SVM classifier had 
the best effect with its validation set AUC of 0.698 and 0.741. In addition, there was a statistically significant effect 
of patient age and maximum tumor diameter on the collagen fiber content in the tumor microenvironment of kidney 
cancer.

Conclusion  Radionics features based on preoperative dual-energy CT IV can be used to predict the amount of col-
lagen fibers in the tumor microenvironment of renal cancer. This study better informs clinical prognosis and patient 
management. Iodograms may add additional value to dual-energy CTs.
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Introduction
Renal cell carcinoma (RCC) is a heterogeneous group 
of cancers that includes many histological subtypes, of 
which clear cell histology is the most common subtype 
[1]. RCC is the seventh most common cancer-causing 
death worldwide, with 140,000 patients dying from this 
cancer each year [2–4]. The tumor microenvironment 
(TME) is the environment in which tumor cells grow and 
develop, which includes not only the tumor cells them-
selves but also surrounding cells such as immune cells, 
fibroblasts, and glial cells, as well as collagen fibers, inter-
stitial cells, microvasculature and other biomolecules 
surrounding the tumor. The presence of these cells is 
critical to tumor development, treatment, and prognosis. 
In recent years, tremendous progress has been made in 
tumor cytology and molecular biology, and researchers 
have gained a deeper understanding of the relationship 
between tumors and their environment. These results 
not only help us understand tumorigenesis, development, 
and metastasis but also help us better diagnose, prevent 
and treat tumors. Tumor cells can interact with surround-
ing cells through multiple pathways, thus influencing the 
development and progression of cancer. In addition, non-
malignant cells in the tumor microenvironment play a 
key role in all stages of cancer development by stimulat-
ing cell proliferation. TME is a complex spatial network 
of interwoven extracellular matrix proteins, of which 
collagen is a major component of the ECM, and several 
studies have shown that abnormal aggregation of col-
lagen fibers is highly correlated with tumor progression 
[5–7]. In addition, the fiber component also promotes the 
growth, infiltration, and distant metastasis of ccRCC cells 
and therefore plays a crucial role in the growth of ccRCC. 
Assessing the fiber content of the tumor microenviron-
ment in ccRCC patients is essential for understanding 
tumor cell progression and prognostic treatment.

CT scan is commonly used as the primary imaging 
technique to detect kidney cancer. Conventional CT can-
not accurately assess primary tumors due to its relatively 
low soft tissue resolution. Dual-energy CT imaging refers 
to the acquisition of data from two different energies of 
electrons through a single scan [8]. It has been pointed 
out that dual-source CT dual-energy scanning can solve 
the problem of conventional CT scans with more single 
data, and virtual flat-scan images as well as Iodine maps 
are obtained after corresponding software processing, 
and the advantage of this technique is that it can reduce 
motion artifacts and improve resolution [9]. Li et al. [10] 

improved the ability to identify tissue enhancement by 
comparing lesions’ density and change characteristics 
on the IV when evaluating the contrast uptake of lesions. 
Ideograms allow for both qualitative analysis of iodine 
content and quantitative analysis of iodine concentration, 
and this post-processing technique provides useful infor-
mation for differential diagnosis.

The concept of radiomics was formally introduced in 
2012, and in recent years it has shown excellent perfor-
mance in oncology applications. Currently, the applica-
tion of radiomics in kidney cancer is focused on three 
aspects: ( 1) differentiation of benign and malignant renal 
tumors [11, 12]; (2) staging and grading [13, 14]; and (3) 
differentiation of different subtypes of kidney cancer [11, 
15]. The application of radiomics with dual-energy CT 
IV imaging to assess the fibrous component in renal cell 
carcinoma is rare. This study aimed to develop radiom-
ics models from dual-energy CT reconstructed Iodine 
map images for preoperative prediction of fibrous com-
ponent content in patients with ccRCC, to improve the 
treatment and prognosis of patients with ccRCC. In this 
study, we investigated the feasibility of applying radiom-
ics based on dual-energy CT iodine concentration images 
to assess the fibrous component content in renal cell car-
cinoma by combining clinical data (age, gender, maxi-
mum tumor diameter, nuclear grading, stage, presence of 
envelope and presence of necrotic areas).

Patients and methods
Study cohort
This study was a retrospective study that was approved 
by the Ethics Committee of Shandong Qilu Hospital, 
whose ethics committee waived the requirement of 
informed consent. The study included 87 patients (60 
males and 27 females, with a mean age of 57 years ± 10.94 
years, ranging from 33 to 82 years) admitted to Shandong 
Qilu Hospital. Inclusion criteria were: (1) patients with 
pathologically confirmed RCC after partial or radical 
nephrectomy; (2) patients who obtained a complete dual-
energy CT scan preoperatively. Exclusion criteria were: 
(1) patients with non-clear cell carcinoma; (2) patients 
receiving pre-operative radiotherapy and targeted ther-
apy; and (3) patients with poor imaging due to other dis-
eases including cardiac, hepatic, and renal insufficiency. 
We used the Radcloud Radiomics Platform (Huiying 
Medical Technology Co, https://​mics.​huiyi​huiyi​ng.​com/) 
to manage the imaging data, clinical data, and subse-
quent statistical analysis of radiomics. The validation 

https://mics.huiyihuiying.com/
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and training datasets were separated using a randomized 
method with a ratio of 3:7 and a random seed of 468 
(Examples of groupings are shown in Table 1).

Clinical data
All patient data included in this study were collected 
from our hospital’s integrated electronic medical record 
system. The clinical data included age, gender, maximum 
tumor diameter, nuclear grading, stage, envelope pres-
ence, and necrotic areas.

Study methods
CT scan method
The patient is flexed laterally, lying flat and resting, and 
is fixed in the middle of the scanning bed. The patient’s 
toes are advanced laterally and the internal pressure line 
is positioned at the sternocarpal process and the horizon-
tal line is positioned at the mid-axillary line. The contrast 
agent concentration (iohexol, 300 mg/ml) was 60 ~ 80 ml, 
which was injected by a high-pressure syringe into the 
patient’s forearm vein, with an average intravenous flow 
rate of about 3 ~ 5 ml/s per minute. Then a double-phase 
enhancement scan of the dermatomedullary and paren-
chymal phases was performed in dual-energy mode. 
The delayed exposure time was adjustable to 30 and 80 

s, meanwhile, the tube flow voltage was adjustable to 
Sn100kVp and Sn150kVp. Adjustable tube flows a current 
of 130-180mAs and 80-90mAs with automatic delayed 
exposure system on.

Pathological evaluation
Samples are taken from the tumor site of the wax block. 
The tissue was cut into sections of 4 µm thickness, and 
paraffin-sealed slices were made. Then patient sections 
were stained for Masson histopathology. Pathologist with 
5 years of experience performing observations under a 
light microscope. Based on the pathological findings, 
they were divided into two groups: a large amount of col-
lagen fibers and a small amount of collagen fibers. At the 
hotspot for collagen fibers, a small amount was desig-
nated if it covered less than half of the visual field, while 
a large amount referred to coverage greater than this 
threshold (Fig. 1).

Tumor segmentation
The images were uploaded to the Radcloud Radiomics 
Platform (http://​mics.​radcl​oud.​cn/), and two radiolo-
gists with more than 1–2 years of experience manually 
outlined the entire lesion layer by layer on all consecu-
tive levels of the tumor, and then radiologists with more 

Table 1  Grouping of DT classifiers

Clinical characteristics Training
(n = 60)

Validation
(n = 27)

Chi-square value P-Value

Mean age (year) 56.55 58.37 0.506 0.479

Gender (n) 0.036 0.529

  Male 41 19

  Female 19 8

Amounts of collagen fibers (n) 0.242 0.399

  Large 41 17

  Small 19 10

Mean maximum tumor diameter (cm) 4.688 4.459 0.224 0.637

Nuclear grading (n) 0.645 0.293

  High 13 8

  Low 47 19

Tumor stage (n) 5.175 0.159

  I 36 21

  II 6 3

  III 9 3

  IV 9 0

Envelope (n) 0.074 0.483

  Presence 33 14

  Absence 27 13

Necrotic areas (n)  < 0.001 0.601

  Presence 40 18

  Absence 20 9

http://mics.radcloud.cn/
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than 5 years of experience reviewed all the contours, and 
if the discrepancy was ≥ 5%, the senior radiologist deter-
mined that the tumor boundary as [16]. After a week, 
30 cases were randomly selected, and the two radiolo-
gists repeated the segmentation) to assess the inter- and 
intra- class correlation coefficients (ICCs). ICC > 0.75 was 
regarded as favorable robustness and reproducibility. We 
did a physician consistency check and found that there 
was good consistency in the division of the ROIs between 
the two physicians.

Feature extraction and selection
Two thousand eight hundred eighteen quantitative imag-
ing features were extracted from CT images by the Rad-
cloud platform (http://​radcl​oud.​cn/), including 1409 
features each in the arterial and venous phases. These 
features can be divided into three groups. The first cat-
egory (first-order statistics) includes 252 descriptors that 
quantify the distribution of voxel intensities in CT images 
using commonly used basic metrics. The second category 
(shape and size-based features) includes 28 3D features 
that reflect the region’s shape and size. Based on the gray 
run length and gray co-occurrence texture matrix calcu-
lations, 1050 texture features that can quantify the het-
erogeneous differences of the region are grouped into 
the third group (texture features). In summary, a large 
number of image features can be computed. However, 

all these extracted features may not be useful for a spe-
cific task. Therefore, downscaling and selecting task-
specific features for optimal performance are necessary 
steps. Feature selection methods that reduce redundant 
features include variance thresholding (variance thresh-
old = 0.8), SelectKBest, and the least absolute shrinkage 
selection operator (LASSO). Since the threshold value 
of the variance threshold method is 0.8, the feature val-
ues with variance less than 0.8 are removed. The select 
best method is a univariate feature selection method that 
analyzes the relationship between features and classifica-
tion results using p-values, as all features with p-values 
less than 0.05 are used. The L1 regularizer is used as the 
cost function in the LASSO model, the cross-validation 
error value is 3, and the maximum number of iterations 
is 1000.

Machine learning model building
After feature characterization, a total of 2818 features 
were identified as significantly related to the topic. Based 
on the selected features, the radiomics score (Rad-score) 
was computed individually for each patient through a 
mathematical formula that incorporates a selection of n 
radiomics signatures. The Rad-score formula was derived 
as follows: Rad-score = α + n

n

i=1
βiXi , and α represents 

the intercept, βi denotes the value of radiomics feature; 
Xi represents the corresponding coefficient.

Fig. 1  Masson stained pathological sections [The collagen fiber composition is shown after Masson staining (magnification × 200), and the blue 
area is collagen fiber.] and corresponding CT iodogram images. Negatives: A1 ~ 2 a 56-year-old male with biopsy-confirmed renal carcinoma 
clear cell carcinoma a large amount of collagen fibers; B1 ~ 2 a 63-year-old female with biopsy-confirmed renal carcinoma clear cell carcinoma 
with a small amount of collagen fibers

http://radcloud.cn/
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Several supervised learning classifiers are available for 
classification analysis, which create models that attempt 
to separate or predict data related to outcomes or pheno-
types (e.g., patient outcomes or responses). In this study, 
six classifiers, k-nearest neighbor (KNN), support vec-
tor machine (SVM), extreme gradient boost (XGBoost), 
random forest (RF), logistic regression (LR), and decision 
tree (DT), were used to construct radiomics-based mod-
els, and validation methods were used to improve the 
validity of the models and to compare the variability and 
superiority of the kinetic-venous phase models.

Statistical methods
Statistical analysis was performed on the Radcloud plat-
form. In the training and validation datasets, we used 
subject operating characteristic (ROC) curves, or area 
under the curve (AUC), to assess the performance of the 
predictions. Four metrics, P [accuracy = true positives/
(true positives + false positives)], R [check-all rate = true 
positives/(true positives + false negatives)], f1-score 
[f1-score = P*R*2/ (P + R)], and support (total number of 
test sets), were employed in this study to assess how well 
the classifiers performed.

SPSS 25.0 (IBM) was used to analyze the above data 
statistically, and differences were considered statistically 
significant at P < 0.05. The clinical data were analyzed by 
chi-square test and multiparametric regression analysis. 
All statistical tests were performed using one-sided and 
two-sided tests.

Results
Clinical characteristics
A total of 87 patients (60 males as well as 27 females; 
mean age 57 years ± 10.94; age range 33 to 82 years) were 
included in this study, and the number of patients with 
multiple collagen fibers was 59 (68.0% of cases) and 28 
(32.0% of cases) with small amount collagen fibers. The 
maximum diameter of the tumor was obtained on the 
transverse axis of the image images, and its size ranged 
from 1.2 cm to 11.0 cm. In the training cohort, there were 

significant differences (P < 0.05) in patient age and tumor 
maximum diameter between the content of multiple col-
lagen fibers and the content of small amount of collagen 
fibers (Tables 2 and 3), and the rest of the gender, nuclear 
grading, tumor stage, presence or absence of envelope 
and presence or absence of necrotic areas were not sig-
nificant (P > 0.05) (Table 4).

Classification results
Radiomic features with good intra- and interobserver 
reproducibility (ICC > 0.75) were selected from all 2818. 
Then we filtered 892 features from the features using 
the variance threshold method, then 11 features using 
the best selection method K. Finally, 7 optimal features 
were screened by the LASSO algorithm (Table  5 and 
Fig.  2). Using the same screening method, 444 and 445 
features were screened out of 1409 features in the arterial 
and venous phases, respectively, and the best method K 
was selected to screen 3 and 4 features, respectively, and 
the optimal features were both screened as 3 using the 
LASSO algorithm (Table 6).

Figure 3 shows the classification results and the cor-
responding ROC curves of the six classifiers for the 
different feature sets extracted from the images. Com-
pared to KNN, SVM, and LR classifiers, the RF, DT, and 
XGBoost classifiers trained with higher AUC values of 
0.997, 1.0, and 1.0 for the training set, respectively. In 

Table 2  Relationship between patient age, maximum tumor diameter, and collagen fiber content

The chi-square statistic is the difference in -2 log likelihood between the final model and the simplified model. The simplified model is formed by omitting an effect 
from the final model. The original assumption is that all parameters of the effect are 0
a Since omitting this effect does not increase the degrees of freedom, this simplified model is equivalent to the final model

Effect Model fitting conditions Likelihood ratio test

-2 log likelihood of the simplified 
model

chi-square test Degree of freedom Significance

Intercept 6.945a .000 0

Age 54.938 47.993 29 .015

Maximum tumor diameter 69.986 63.041 41 .015

Table 3  Relationship between patient age and maximum tumor 
diameter and collagen fiber content

Model Model fitting 
conditions

Likelihood ratio test

-2 log 
likelihood of 
the simplified 
model

chi-square 
test

Degree 
of 
freedom

Significance

Intercept 
distance 
only

110.172

The final 6.945 103.227 75 .017
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the validation set, the highest AUC was found in the 
SVM classifier with a size of 0.722, while the RF, DT, 
and XGBoost classifiers also achieved good data with 
AUCs of 0.639, 0.694, and 0.639, respectively. In the 
dynamic and venous phase model comparison tests, the 
validation set AUCs were 0.698 and 0.741 for the SVM 
classifier, and the LR classifier The validation set AUCs 
were 0.432 and 0.500, respectively, so the AUCs of the 
models based on the venous phase was higher (Figs. 4 
and 5).

We summarize the metrics of the six classifiers, preci-
sion, recall, f1 score, and support, in Tables 7 and 8 for 
the arterial and venous phases and all images, respec-
tively. From the features extracted on all images, the 
more effective classifiers were RF, DT, and XGBoost, 
whose four categories of metrics in the training set were 
0.90, 0.95, 0.92, 19, 1.00, 1.00, 1.00 19, and 1.00, 0.95, 
0.97, 19, respectively. Except for this, the more effective 
classifiers for the model in both the arterial and venous 
phases were SVM.

Table 4  Relationship between patients’ clinical characteristics and collagen fibre content (p-value) (n = 87)

Clinical Characteristics Large
(n = 59)

Small
(n = 28)

Total
(n = 87)

Chi-square value P-Value

Gender 0.421 0.346

  Male 38 21 59

  Female 20 8 28

Nuclear Grading 1.130 0.215

  High 16 5 21

  Low 42 24 66

Tumor Stage 0.629 0.890

  I 36 21 57

  II 6 3 9

  III 9 3 12

  IV 6 3 9

Envelope 0.023 0.530

  Presence 31 15 46

  Absence 27 14 41

Necrotic Areas 0.026 0.528

  Presence 39 19 58

  Absence 19 10 29

Table 5  Description of the selected radiomics features with their associated feature group and filter

Label: GLDM = Gray Level Dependence Matrix
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Discussion
In this study, we developed a radiomics model from dual-
energy CT Iodine map images for assessing collagen fiber 
content in the tumor microenvironment of kidney cancer. 
The results showed that there was an association between 
the radiomics features in renal dual-energy CT imaging 
and the collagen fiber content in the tumor microenvi-
ronment of kidney cancer, especially when trained using 
the SVM classifier, the model showed good predictive 
performance, and AUC is 0.722. When the arterial and 
venous phase model was compared, the venous phase 
model was more effective. Meanwhile, the clinical model 
developed in this study showed a significant correlation 
between collagen fiber content in the tumor microenvi-
ronment of kidney cancer and age and maximum tumor 
diameter.

In acquiring impact images of ccRCC patients, dual-
energy CT was chosen for this study. Dual-energy CT 
takes advantage of the different X-ray attenuation val-
ues of different substances at different energies, such as 
iodine (Z = 53) and calcium (Z = 20), and acquires and 
analyzes images at different energies according to the 
different slopes of changes in attenuation values of these 

two substances. Currently, dual-energy CT has been 
applied in a large number of studies, and Han Bo [17] 
applied dual-source CT to the study of renal occupancies 
and found that dual-source CT increased the mean CT 
value. The results were in good agreement with pathology 
and significantly reduced radiation dose. Besides, in this 
study, the arterial and venous phase models were estab-
lished separately and compared, and then it was con-
cluded that the venous phase model has a higher AUC. 
Its corresponding classifier is more effective in the cases 
selected in this study. As a result, it is more convincing in 
assessing the collagen fiber content in the tumor micro-
environment of kidney cancer.

In recent years, researchers have found in studies of 
liver, oesophageal, breast, and kidney cancers that radi-
omics has proven to be an effective tool for assessing 
information within the tumor microenvironment [18, 
19]. At present, studies using imaging histology to assess 
the immune microenvironment and genes in kidney 
cancer have emerged. For example, Lianghong Jiao et al. 
[20] used imaging histology to explore the clinical and 
immune features of ccRCC associated with IL-23 expres-
sion levels and to develop a preoperative prediction 

Fig. 2  A 892 features were selected from 2818 using the variance threshold method (variance threshold = 0.8). B 11 features were further selected 
using the best method Select K. C ~ E 7 features corresponding to the best alpha values were selected using the Lasso model
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model based on contrast CT scans. Based on the pres-
ence of differentially expressed metabolism-related prog-
nostic genes and immune-related components, Wang Yi 
et  al. [21] initially distinguished two distinct metabolic 
subtypes (C1 and C2 subtypes) and immune subtypes 
(I1 and I2 subtypes). Gao et al. [22] successfully classified 
patients into different subtypes based on gene expression 

levels in the tumor microenvironment (TME), and novel 
prognostic radiogenetics biomarkers correlated well with 
the immune-related gene expression status of ccRCC 
patients and could successfully stratify the survival sta-
tus of patients in the TCGA database. However, it is rare 
to study the collagen fiber content of the tumor micro-
environment using radiomics. Therefore, in this study, 

Table 6  The results of Precision, Sensitivity, F1-score, and Support in training/validation cohorts of the arterial phase and venous 
phase

Fig. 3  ROC curves of six methods (KNN, SVM, XGBoost, RF, LR and DT). A1 ~ F1 ROC curves for the training set in a small amount of collagen 
fiber group; A2 ~ F2 ROC curve of the validation set in a small amount of collagen fiber group
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it is a valuable attempt for us that we used radiomics to 
assess the content of collagen fibers in the tumor micro-
environment of kidney cancer and in the future, further 
evaluation of the complex information of the tumor 
microenvironment is more necessary to make better clin-
ical decisions in the era of precision medicine.

This study assessed collagen fiber levels in the tumor 
microenvironment of kidney cancer using radiomics. 
Collagen is the most important component of the ECM 
and the most abundant protein in human tissues, with 28 
unique isoforms having been identified [23–25]. Colla-
gen fibers are located in the extracellular matrix and have 
important roles in tissue scaffolding, cell adhesion, cell 

migration, angiogenesis, tissue morphogenesis, and tissue 
recovery. Emerging collagen fibers can directly establish 
an invasive pathway for matrix metalloproteinase resist-
ance to promote metastasis, and their density can facili-
tate macromolecular transport to alter renal cancer cell 
metabolism, inhibit transformed immune cell function, 
and promote gene expression [7]. In addition, collagen 
fibers stimulate fibroblast production and cross-linking 
between fibers, while at the same time increasing tissue 
fibrosis and stiffness to promote invasion and metastasis 
of kidney cancer cells. Also in the kidney, collagen plays a 
key function in branching morphogenesis, a process that 
involves the invasion of epithelial buds and tubes into the 

Fig. 4  ROC curves of six methods in the Arterial phase (KNN, SVM, XGBoost, RF, LR and DT). A1 ~ F1 ROC curves for the training set in a small 
amount of collagen fiber group; A2 ~ F2 ROC curve of the validation set in a small amount of collagen fiber group

Fig. 5  ROC curves of six methods in the venous phase (KNN, SVM, XGBoost, RF, LR and DT). A1 ~ F1 ROC curves for the training set in a small 
amount of collagen fiber group; A2 ~ F2 ROC curve of the validation set in a small amount of collagen fiber group
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surrounding extracellular matrix-rich mesenchyme [26]. 
Therefore, preoperative assessment of collagen fibers in 
the tumor microenvironment of kidney cancer patients 
by non-invasive means is an important study for clini-
cians, and dual-energy CT IV radiomics by assessing and 
monitoring tumor characteristics (e.g., temporal and spa-
tial heterogeneity) can achieve in-depth interpretation of 
information on the tumor microenvironment of kidney 
cancer and be used for clinical diagnosis and prognosis.

There are some limitations of the study. First of 
all, since this is a single-center study with a small 

sample size, more research is required to assess the 
model and findings using a larger data set. Second, 
rather than three-dimensional CT scans, the radiom-
ics model uses two-dimensional images, necessitating 
further evaluation of its performance using three-
dimensional data. Additionally, user dependence and 
variability may be introduced since tumor segmenta-
tion is done manually. In future work, fully automated 
segmentation may become a reality. Finally, this work 
is a retrospective study, so selection bias cannot be 
completely avoided.

Table 7  Description of the selected radiomics features with their associated feature group and filter

Label: GLSZM = Gray-Level Size Zone Matrix

Label: GLRLM = Gray Level Run Length Matrix, GLSZM = Gray-Level Size Zone Matrix

Table 8  The results of Precision, Sensitivity, F1-score, and Support in training cohorts and validation cohorts
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Conclusion
In conclusion, preoperative models based on radiomics 
features of dual-energy CT IV can predict collagen fiber 
content in the tumor microenvironment of kidney cancer, 
Radiomics models, as opposed to the conventional visual 
evaluation of images, can provide a tool to help assessing 
the collagen fiber content, better informing clinical progno-
sis and patient management. Further evaluation of our find-
ings on a large dataset will be necessary for future work.
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