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Abstract 

Background Several machine learning (ML) classifiers for thyroid nodule diagnosis have been compared in terms 
of their accuracy, sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and area 
under the receiver operating curve (AUC). A total of 525 patients with thyroid nodules (malignant, n = 228; benign, 
n = 297) underwent conventional ultrasonography, strain elastography, and contrast-enhanced ultrasound. Six 
algorithms were compared: support vector machine (SVM), linear discriminant analysis (LDA), random forest (RF), 
logistic regression (LG), GlmNet, and K-nearest neighbors (K-NN). The diagnostic performances of the 13 suspicious 
sonographic features for discriminating benign and malignant thyroid nodules were assessed using different ML 
algorithms. To compare these algorithms, a 10-fold cross-validation paired t-test was applied to the algorithm perfor-
mance differences.

Results The logistic regression algorithm had better diagnostic performance than the other ML algorithms. However, 
it was only slightly higher than those of GlmNet, LDA, and RF. The accuracy, sensitivity, specificity, NPV, PPV, and AUC 
obtained by running logistic regression were 86.48%, 83.33%, 88.89%, 87.42%, 85.20%, and 92.84%, respectively.

Conclusions The experimental results indicate that GlmNet, SVM, LDA, LG, K-NN, and RF exhibit slight differences 
in classification performance.
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Background
There is a high incidence of thyroid nodules follow-
ing the widespread use of high-resolution ultrasound 
in clinical practice. Ultrasonography plays an impor-
tant role in the diagnosis of thyroid nodules because 
it is noninvasive, economical, and convenient. Most 
thyroid nodules are benign; however, it is difficult to 
differentiate malignant nodules from benign nodules 
owing to their hidden early clinical symptoms [1, 2]. 
Therefore, differentiating benign and malignant thyroid 
nodules is challenging. Known suspicious US features 
of differentiated thyroid nodules are margins, bor-
ders, calcification, and shape [3, 4]. In this paper, we 
chose 13 features, including conventional US features, 
and features based new imaging techniques, such as 
strain elastosonography (SE) and contrast-enhanced 
ultrasound (CEUS); see more details in the Materials 
section.

Machine learning (ML) is one of the fastest develop-
ing fields in the computer science field. ML serves as 
a useful reference tool for classification following the 
development of artificial intelligence.

Several types of classifiers are used in ML. The sup-
port vector machine (SVM), random forest (RF), logis-
tic regression, GlmNet, linear discriminant analysis 
(LDA), and K-NN are the most common classifiers.

The original SVM was proposed by Vapnik and Ya in 
1963. The current standard originated in 1993 and was 
proposed by Corte and Vapnikdition. SVM is a core 
machine-learning technology for resolving a variety of 
classification and regression problems, which produces 
nonlinear boundaries by constructing a linear bound-
ary in a large, transformed version of the feature space 
[5]. SVM has been applied to all types of problems, 
such as object and handwritten digit recognition and 
image and text classification. The general form of the 
decision function f (x) for SVM:

where k(x, xi) is the kernel function, b is the bias, 
0 ≤ αi ≤ C andΣ(αiyi) = 0.where αi can be obtained 
through training, and C is a penalty term parameter set 
by user [5–7]. In this study, the Gaussian kernel function 
kγ (X ,X

′) = e(− γ ||X − X ′||2) was used to address the 
nonlinearity classification [5]. The SVM with a Gauss-
ian kernel is implemented in MATLAB using the LIB-
SVM toolkit, which is a library for SVMs and is publicly 
available.

Figure  1 is the architecture of an SVM. x = [x1, x2,… 
xn] is an n-dimensional input feature vector, and y is the 
decision value.

RFs were first proposed by Breiman and Cutler. RF is a 
versatile machine-learning algorithm that can implement 
regression, classification, and dimensionality reduction. 
Random forests are a combination of decision trees, 
where each decision tree depends on the values of a ran-
dom vector sampled independently [8]. The performance 
of random forests is quite similar to that of the boot-
strap aggregating algorithm for many problems, which 
depends on the strength of the individual trees in the for-
est and the correlation between trees [5]. The steps of the 
algorithm are as follows:

• N samples are randomly sampled with replacements 
from the data set.

• The m features are randomly sampled from all the 
features. A certain strategy (CART ) is used to select 
one feature from m features as the split attribute of 
the node.

• The above two steps are repeated n times, that is, to 
generate n decision trees to form a random forest.

(1)f (x) =
n

i=1
aiyik(x, xi)+ b

(2)y = sgn
(∑n

i=1
aiyik(x, xi)+ b

)

Fig. 1 The architecture of the support vector machine (SVM)
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• After each decision, the final vote is confirmed as 
the category for new data.

K−Nearest Neighbors is memory-based and requires 
no preprocessing of the sample and no model to fit 
[5, 9]. Given point x0, k points that are the closest dis-
tance to x0 were found. The majority vote is then used 
to classify k points [5]. The decision rule is defined as 
follows.

where Nk(X) is the neighborhood of X.
Logistic regression is a generalized linear regres-

sion model and is the most common algorithm used in 
binary classification problems. The decision function of 
the logistic regression is

where sigmoid (.) is the activation function and x is the 
matrix of the input data. The value is set to 1 if Z ≥ 0.5. By 
contrast, the value is regarded as zero if Z < 0.5.

The GlmNet is a generalized linear model with penal-
ized maximum likelihood. GlmNet solves the following 
binomial likelihood function:

where

where α is the mixing factor, λ is the regularization 
parameter, and Pα(β) is the elastic net penalty. The model 
is a ridge regression model when α is zero. The model is a 
lasso regression when α = 1.

In the space of dimensionality reduction and data 
classification, LDA is wildly used. The principle of LDA 
is to project the labeled data into a lower-dimensional 
space using the projection method; therefore, the pro-
jected points can be easily distinguished, and the points 
of the same category will be closer to the projected 
space. The principle of LDA is to maximize the dis-
tance between classes and and to minimize the distance 
between the within-class [10]. The mapping function is

where X is the dataset to be categorized. The original 
central point of Category i is

(3)f̂ (X) =
1

k

∑
xi∈Nk (X)

yi

(4)Z = sigmoid
(
θTx

)
=

1

1+ e−θT x

(5)
minβ0 ,β

{
−

1

N

∑N

i=1

[
yi

(
β0 + xTi β

)
+ log

(
1+ eβ0+xTi β

)]
+ �Pa(β)

}

Pa(β) = (1− α)
1

2
�β�2l2 + α�β�l1

(6)Y = WTXI

where Di represents the set of points belonging to cate-
gory i and n is the number of Di.

The variance before the projection of category i s

The central point after the projection of category i is:

The variance after the projection of Category i is

where Yi is the data set after Di mapping.
Assuming that there are two categories in the dataset, 

the loss function is

where S2B = (m1 −m2)
2and S2w = S21 + S22  

The goal is to find the W that makes J(W) the biggest.
The motivation behind this study is to develop a better 

understanding of the classification process and evaluate it 
in terms of accuracy and sensitivity, specificity, NPV, PPV, 
and AUC, and to analyze the weaknesses and strengths of 
known classifiers in differentiating malignant from benign 
nodules. These issues are important and valuable for the 
application of machine classifiers in thyroid research and 
for clinicians and researchers who would like to gain an 
understanding of the classification process and analysis.

Results
The performance of these classifiers is summarized in 
Table 1. Based on the results in Table 1, logistic regres-
sion works relatively well and achieves maximum accu-
racy (86.48%), which shows the best classification 
performance. However, there are only slight differences 
in the performances of the six classifiers.

(7)mi =
1

n

∑
xǫDi

x

(8)S2i =
∑

xǫDi

(x −mi)(x −mi)
T

(9)m̂i = WTmi

(10)

Ŝ2i =
∑
yǫYi

(
y− m̂i

)2

=
∑
xǫDi

(
WTx −WTmi

)2

=
∑
xǫDi

WT (x −mi)(x −mi)
TW

= WTS2i W

(11)

J (W ) =
(m̂1−m̂2)

2

Ŝ21+Ŝ22

=

(
WTm1−WTm2

)2

WTS21W+WTS22W

=
WT (m1−m2)

2W

WT
(
S21+S22

)
W

=
WTS2BW

WTS2WW
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A statistical test method was applied to classifier per-
formance differences to quantitatively compare the clas-
sifiers [11]. The 10-folder cross-validation paired t-test 
was applied to compare the two classifiers, and the sig-
nificance level was 0.05. When the p-value was < 0.05, the 
two classifiers were significantly different. Table 2 shows 
the p-values of the paired t-tests. The results indicate that 
the six classifiers have no significant differences.

Discussion
In this analysis, the cross-validation technique and paired 
t-test method were applied to tune parameters and assess 
classifier performance differences, respectively. The 
experimental results indicate that GlmNet, SVM, LDA, 
logistic regression, K-NN, and random forests exhibit 
slight differences in classification performance. The rea-
son for this result may originate from our data, as all vari-
ables and labels are binary.

For clinical research, there are lots of classifiers for 
a real application. It is useful for clinician to select an 
optimal classifier. Our exprehensive comparison study 
may be such an effort for helping clinicians in their real 
problem.

Conclusions
The strength of this study is that 13 features regard-
ing gender, SE, and CEUS in combination with other 10 
conventional US features were used to compare different 
classifiers in the diagnosis of malignancy and benign dis-
ease. This study had a few limitations. First, the sample 

size was small. Moreover, this was a retrospective study. 
The established model requires further research to vali-
date and support it. Large-sample studies are expected to 
be performed in the future. Second, the data in this study 
were binary. Finally, it is a good way to use other model 
data with new methods such as deep learning for thyroid 
nodule diagnosis [12, 13].

Materials and method
Materials
A database of 525 patients (396 females and 129 males) 
who underwent conventional US, SE, and CEUS at 
Shenzhen Second People’s Hospital was retrospectively 
reviewed. The patients were subdivided into two groups 
based on the final pathology results: those with benign 
thyroid nodules (n = 297) and those with malignancy 
(n = 228). We chose 13 features based on our clinical 
experience and data as many as possible according to 
our current imaging equipment; all features are listed 
in Table 3. In this study, 10 conventional US features of 
malignancy were: irregular margins, ill-defined borders, 
taller-than-wide shapes, hypoechogenicity or marked 
hypoechogenicity, microcalcification, posterior echo 
attenuation, peripheral acoustic halo, interrupted thyroid 
capsule, central vascularity, and suspected cervical lymph 
node metastasis. We chose the images according to clin-
icical experience.

SE is an advanced technology used to evaluate tissue 
elasticity through the action of an external force. Under 
the same conditions, soft materials are more distorted 

Table 1 Six evaluate performances for different classifiers

Classifier Accuracy Sensitivity Specificity NPV PPV AUC 

SVM 85.14% 79.39% 89.56% 84.98% 85.38% 85.11%

RF 85.14% 82.46% 87.21% 86.62% 83.19% 91.38%

GlmNet 86.29% 82.46% 89.23% 86.89% 85.45% 92.6%

LDA 86.48% 81.14% 90.57% 86.22% 86.85% 92.51%

LG 86.48% 83.33% 88.89% 87.42% 85.20% 92.84%

K-NN 84.95% 74.56% 92.93% 82.63% 89.01% —

Table 2 The result of paired t-test of classifier differences

Classifier SVM RF GlmNet LDA LG k-NN

SVM — 0.9854 0.5846 0.4216 0.0656 0.9044

RF — 0.2720 0.1916 0.4442 0.8695

GlmNet — 0.8646 0.9147 0.2218

LDA — 0.9804 0.1394

LG — 0.3485

k-NN —
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than hard materials [2]. The degree of distortion under 
an external force was used to evaluate tissue hardness. 
Based on the fact that benign thyroid nodules are softer 
than malignant nodules, SE is used to differentiate benign 
from malignant nodules [2].

The SE score was based on Xu’s scoring system [14] as 
follows: Score 1: the nodule is predominantly white; Score 
2: the nodule is predominantly white with few black por-
tions; Score 3: the nodule is equally white and black; Score 
4: the nodule is predominantly black with a few white 
spots; Score 5: nodules are almost completely black; and 
Score 6: nodules are completely black without white spots. 
A nodule was considered malignant if the score was greater 
than 4. CEUS is a new technique that infuses microbubbles 
into blood capillaries, which are smaller than the erythro-
cytes. Owing to the ultrasound scattering effect produced 
by blood capillaries, it can estimate the blood perfusion fea-
tures of thyroid nodules to evaluate angiogenesis [2].

By comparing the echogenicity brightness between 
the thyroid nodule and surrounding parenchyma at peak 
enhancement, the degree of enhancement was classi-
fied as hypo, iso, hyper, or no enhancement. According 
to the echogenicity intensity of the thyroid nodules, the 
enhancement identity was classified as homogeneous and 
heterogeneous. Additionally, the nodule was regarded as 
malignant if the pattern of enhancement was heterogene-
ous hypoenhancement.

Method
All statistical analysis in this study was conducted using 
MATLAB software, version R2015a.

Different classifiers had different tuning parameters. 
There were no tunable parameters for the LDA and logistic 
regression classifiers. There were two parameters for RF.

The number of randomly selected variables m and 
decision trees ntree was fixed at 500 as the default 
value for the two tunable parameters. Therefore, RF 
was the only tunable parameter in this study. The tun-
able parameter of K-NN is the number of neighbors K. 
The other classifiers had two tunable parameters (SVM 
and GlmNet). The SVM had two tunable parameters: 
the Gaussian kernel(γ) and penalty coefficient (c). There 
were two tunable parameters for GlmNet: the mixing 
factor (α) and the regularization parameter (λ).

In this study, a five-fold cross-validation technique was 
used to tune the parameters for the classifiers. In each 
folder, based on a grid of parameter values, the optimal 
tunable parameters of the classifier were determined 
using five-fold cross-validation of the training data, which 
maximized classification accuracy. Table 4 provides a grid 
of parameter values from which the optimal parameters 
of the classifiers are chosen by five-fold cross-validation 
of the training data. This study evaluated performance 
using 10-folder cross-validation, including sensitivity, 
specificity, accuracy, PPV, NPV, and AUC.
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Table 3 The used 13 features for comparison

Variable Name/Description

X1 Gender/Sex

X2 irregular margins

X3 ill-defined borders

X4 taller-than-wide shape

X5 hypoechogenicity or marked hypoechogenicity

X6 microcalcification

X7 posterior echo attenuation

X8 a peripheral acoustic halo

X9 an interrupted thyroid capsule

X10 central vascularity

X11 suspected cervical lymph node metastasis

X12 strain elastosonography

X13 contrast-enhanced ultrasound

Table 4 A grid of parameter values for different classifiers

Classifier Parameter Values

SVM c ∈ {− 8: 0.8: 8}; g ∈ {− 8: 0.8: 8}

RF m ∈ {1: 1: 13}; ntree = 500

GlmNet α ∈ {0.1: 0.1: 1}; λ ∈ {2.0789e − 4, 3.6329e − 4, 
6.3485e − 04, 0.0011, 0.0019, 0.0034, 0.059, 
0.0103}

K-NN k ∈ {2: 2: 22}
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