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Abstract
Background There is a paucity of research investigating the application of machine learning techniques for 
distinguishing between lipid-poor adrenal adenoma (LPA) and subclinical pheochromocytoma (sPHEO) based on 
radiomic features extracted from non-contrast and dynamic contrast-enhanced computed tomography (CT) scans of 
the abdomen.

Methods We conducted a retrospective analysis of multiphase spiral CT scans, including non-contrast, arterial, 
venous, and delayed phases, as well as thin- and thick-thickness images from 134 patients with surgically and 
pathologically confirmed. A total of 52 patients with LPA and 44 patients with sPHEO were randomly assigned to 
training/testing sets in a 7:3 ratio. Additionally, a validation set was comprised of 22 LPA cases and 16 sPHEO cases 
from two other hospitals. We used 3D Slicer and PyRadiomics to segment tumors and extract radiomic features, 
respectively. We then applied T-test and least absolute shrinkage and selection operator (LASSO) to select features. Six 
binary classifiers, including K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), 
support vector machine (SVM), and multi-layer perceptron (MLP), were employed to differentiate LPA from sPHEO. 
Receiver operating characteristic (ROC) curves and area under the curve (AUC) values were compared using DeLong’s 
method.

Results All six classifiers showed good diagnostic performance for each phase and slice thickness, as well as for the 
entire CT data, with AUC values ranging from 0.706 to 1. Non-contrast CT densities of LPA were significantly lower 
than those of sPHEO (P < 0.001). However, using the optimal threshold for non-contrast CT density, sensitivity was only 
0.743, specificity 0.744, and AUC 0.828. Delayed phase CT density yielded a sensitivity of 0.971, specificity of 0.641, and 
AUC of 0.814. In radiomics, AUC values for the testing set using non-contrast CT images were: KNN 0.919, LR 0.979, 
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Introduction
Adrenal incidentalomas are defined as asymptomatic 
adrenal masses found by chance on medical imaging, and 
are estimated to occur in about 5–7% of adults [1]. With 
the advancement of imaging techniques and the popu-
larization of abdomen CT scanning for physical exami-
nation, the detection rate of adrenal incidentalomas is 
increasing [2–4]. Adrenal adenomas account for the 
majority of adrenal incidentalomas (41–52%), followed by 
metastatic tumors (19%), myelolipoma (9%), and pheo-
chromocytoma (8%) [5]. Although up to 80% of these 
tumors are benign, sPHEO can cause life-threatening 
hypertension during surgery, which can lead to serious 
cardiovascular events [6, 7]. However, the imaging fea-
tures and non-specific clinical manifestations of sPHEO 
are very similar to those of LPA, which are characterized 
by a non-contrast CT density ≥ 10 Hounsfield unit (HU) 
[8, 9]. As a result, sPHEO is often misdiagnosed as LPA 
[10–12]. LPA accounts for about 15–30% of adrenal ade-
nomas [13], and is not rare. Therefore, the accurate dis-
tinguishing between sPHEO and LPA prior to surgery is 
of great value to reduce the surgical risk of patients [14].

Currently, the recommended practice for distinguish-
ing between sPHEO and LPA based on CT images is as 
follows: If the non-contrast CT density is ≥ 10 HU, a ded-
icated adrenal enhanced CT protocol including a 15 min 
delayed acquisition after contrast agent administration is 
recommended to evaluate absolute percentage washout 
(APW) and relative percentage of washout (RPW) [15]. 
LPA is diagnosed when APW and RPW are greater than 
60% and 40%, respectively [16]. Compared with LPA, 
sPHEO has lower APW and RPW [10]. However, for 
small tumors, sPHEO could have similar washout char-
acteristics to LPA [15]. Most importantly, due to the large 
number of patients examined, it is difficult for most med-
ical units to carry out this time-consuming scan proto-
col with a delay of up to 15 min. In addition, a dedicated 
adrenal enhanced CT scan will increase the dose of X-ray 
radiation received by the patient and the potential risk of 
contrast agent allergy. Therefore, we intended to explore 
whether LPA and sPHEO could be distinguished based 
on the non-contrast CT images.

Radiomics is an advanced medical imaging analysis 
technique that utilizes computerized quantitative analy-
sis to extract a wide range of image-related features, 

including intensity, geometry, texture, and more, from 
various models of medical imaging [17–19]. These fea-
tures are then transformed into numerical values that can 
be utilized for subsequent data analysis and model build-
ing [20]. Radiomics has shown encouraging outcomes 
for distinguishing between different types of tumors and 
classifying subtypes [21]. Furthermore, radiomics can be 
used individually or in combination with demographic, 
histological, genomic, or proteomic data to address 
clinical problems. Highly accurate and reliable machine 
learning methods can be the driving force behind the 
successful application of radiomics in clinical practice. 
Radiomics has the potential to aid in the development of 
predictive diagnostics for personalized medicine. Studies 
have shown that machine learning based on non-contrast 
and/or contrast-enhanced CT quantitative analysis can 
improve the distinguishing efficiency of LPA and sPHEO 
[22–24].

Therefore, in this study, we developed and validated 
six binary models using machine learning to differentiate 
between LPA and sPHEO based on CT radiomic features 
from multiphase abdominal CT examinations. Our goal 
was to identify the simplest and most optimal model that 
can improve the preoperative diagnosis accuracy of LPA 
and sPHEO based on non-contrast CT images.

Materials and methods
Patients
We searched the institutional picture archiving and com-
munication system (PACS) of Ganzhou People’s Hospital 
for medical records of patients who had surgical resec-
tion from March 2015 to November 2022, with histologi-
cally confirmed LPA and sPHEO. Patients were eligible 
if they had adrenal masses with a shortest diameter of 
at least 1 cm and an attenuation of over 10 HU on non-
contrast CT. Using these criteria, we identified a total of 
96 patients (52 LPA and 44 sPHEO). All 96 cases under-
went CT plain scan, including both thin- and thick-slice 
images, with CT dynamic enhanced scan performed in 
87 cases. To validate our findings, we applied the same 
criterion to collect data from two additional hospitals: 
First Affiliated Hospital of Gannan Medical Univer-
sity and Nankang District People’s Hospital, resulting 
in 38 patients (22 LPA and 16 sPHEO) for our valida-
tion dataset. All 38 cases underwent CT plain scan, with 

DT 0.835, RF 0.967, SVM 0.979, and MLP 0.981. In the validation set, AUC values were: KNN 0.891, LR 0.974, DT 0.891, RF 
0.964, SVM 0.949, and MLP 0.979.

Conclusions The machine learning model based on CT radiomics can accurately differentiate LPA from sPHEO, even 
using non-contrast CT data alone, making contrast-enhanced CT unnecessary for diagnosing LPA and sPHEO.

Keywords Computed tomography, Machine learning, Radiomics, Lipid-poor adrenal adenoma, Subclinical 
pheochromocytoma
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CT dynamic enhanced scan performed in 29 cases. The 
images in some sequences are exclusively of thick-slice.

CT acquisition method
Patients enrolled in the study underwent similar CT 
examinations at all three hospitals, although different 
equipment and protocol were used. For example, at Gan-
zhou People’s Hospital, CT scans were performed using 
either a GE Revolution CT scanner (GE Healthcare, Mil-
waukee, USA) or SOMATOM Definition AS + CT scan-
ner (Siemens, Erlangen, Germany). The non-contrast and 
dynamic contrast-enhanced CT examinations utilized 
0.625-1.5 mm thin slice thickness and 5–6 mm thick slice 
thickness, 0.992:1 pitch, 120 kV, and smart mA 200–500. 
A total of 100 mL of non-ionic iodine contrast material 
was injected intravenously using a power injector at a rate 
of 3.0 mL/s. All patients underwent non-contrast CT and 
three-phase contrast-enhanced CT scans, which were 
obtained at 20–25  s (arterial phase), 55–60  s (venous 
phase), and 180 s (delayed phase) after the administration 
of contrast material.

CT feature measurement
Two abdominal radiologists, Fan and Wen, with seven 
and six years of experience respectively, sequentially 
measured the shortest diameter (SD), longest diameter 
(LD), and attenuation on non-contrast CT (NCCT), arte-
rial phase CT (APCT), venous phase CT (VPCT), and 
delayed phase CT (DPCT). The radiologists were blinded 
to the radiological reports and pathological findings. A 
consensus was reached on the measurement of conven-
tional CT features. Each quantitative value was measured 
thrice, and the average was used for further analysis. The 
average CT value was obtained using an area of interest 
(ROI) with a size of one-half to two-thirds of the lesion 
size on thick-slice images, excluding cystic and necrotic 
areas of the lesion. All measurements were taken using 
institutional PACS or 3D Slicer.

Radiomics acquisition and analysis
To semi-automatically outline the tumor on multiple 
contiguous slices using 3D Slicer, first manually outline 
ROI along the lesion’s edge on several key slices, 1–2 mm 
away from it to minimize interference from surround-
ing fat. Then, apply the auto-fill function within the 
application to obtain the 3D data of the entire tumor. 
Tumor segmentation was performed on all sequences 
of each individual, including both thin- and thick-slice 
images. Figure  1 illustrates the segmentation of tumor 
ROI using sPHEO as an example. We obtained original 
and mask images (in NRRD format) for each series and 
used the PyRadiomics 3.0.1 open-source Python package 
(http://github.com/Radiomics/pyradiomics#readme) to 
extract radiomic features. Our selection criteria included 
first-order, morphological, and texture features, while 
excluding Wavelet-based features. The thin slice images 
were resampled to a voxel size of 1 × 1 × 1  mm, while 
the thick slice images were resampled to a voxel size of 
5 × 5 × 5  mm when utilizing 3D slicer for tumor delin-
eation and radiomic feature extraction. Ultimately, we 
assembled a dataset of 902 entries with 112 dimensions 
(902 rows × 112 columns). The data collected from Gan-
zhou People’s Hospital was split into training (498 rows 
× 112 columns) and test (214 rows × 112 columns) sets 
in a 7:3 ratio, while the data obtained from First Affili-
ated Hospital of Gannan Medical University and Nank-
ang District People’s Hospital was used as the validation 
set (190 rows × 112 columns). All datasets were grouped 
based on various phases and slice thicknesses. We con-
ducted binary classifier analysis using KNN, LR, DT, RF, 
SVM, and MLP for each group.

The sPHEO arterial phase thin-slice and thick-slice 
images are displayed in the upper and lower rows, 
respectively. The tumor boundaries were delineated on 
the transverse axial images, while the coronal and sagittal 
images were automatically generated by 3D Slicer.

Fig. 1 Illustration tumor segmentation of ROIs with sPHEO as an Example

 

http://github.com/Radiomics/pyradiomics#readme
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Statistical analysis
The Kolmogorov-Smirnov test was used to assess nor-
mality of data distribution, and the Levene test was 
used to evaluate homogeneity of variance. The unpaired 
t-test analyzed normally distributed data with equal 
variance, while the Mann-Whitney U test was used for 
non-normally distributed data. ROC curve analysis 
assessed performance of clinical parameters and binary 
classifiers in distinguishing between LPA and sPHEO. 
Diagnostic parameters (sensitivity, specificity, AUC) 
were calculated using cutoff values of clinical param-
eters and the classifier models with highest AUC value. 
ROC curves of test and validation sets were compared 
using DeLong’s method. Reliability was measured using 
intra-class correlation coefficient, with agreement classi-
fied as poor (< 0.5), moderate (0.51 to 0.8), good (0.81 to 
0.89), or excellent (≥ 0.9). Significance was determined as 
p-value < 0.05 with all analyses conducted using Python 
3.7.8, SciPy 1.7.3, scikit-learn 1.0.2, and R languages (ver-
sion 4.2.2).

Results
Clinical characteristics
A total of 134 patients with LPA and sPHEO were 
included despite the absence of overt clinical mani-
festations. The cohort included 74 patients with LPA, 
ranging in age from 22 to 79 years, with a mean age of 

(51.54 ± 14.32) years and a male to female ratio of 29:45. 
Sixty patients had sPHEO, ranging in age from 18 to 78 
years, with a mean age of (46.82 ± 13.19) years and a male/
female ratio of 32:28. Preoperatively, 51 cases of LPA and 
43 cases of sPHEO were correctly diagnosed, while 23 
cases of LPA were incorrectly diagnosed as sPHEO, cyst, 
metastases or other disease, and 17 cases of sPHEO were 
incorrectly diagnosed as adrenal adenoma, hepatocel-
lular carcinoma, mesenchymal tumor or other disease. 
There were no statistically significant differences in gen-
eral clinical data between LPA and sPHEO, as shown in 
Table 1.

CT image characteristics
When comparing the short and long diameters of 
tumors, LPA was smaller than sPHEO, and the dif-
ferences between them were statistically significant 
(p < 0.001). The mean CT values of LPA in all four phases 
were smaller than the CT values of sPHEO in the same 
phase, and the differences were all statistically signifi-
cant (p < 0.05). The Jorden index was used to obtain the 
optimum cut-off value and corresponding sensitivity and 
specificity. ROC curve analysis and AUC values indi-
cated that sPHEO was suggested when the short tumor 
diameter was greater than 30.78 mm, with a sensitivity of 
0.743 and specificity of 0.897. Among all CT image fea-
tures, the largest AUC value (0.891) was obtained for the 
short tumor diameter, as shown in Table 2. The Delong’s 
method was applied for comparative analysis of the two 
ROC curves. There was no statistical difference between 
the ROC curve of short tumor diameter and the ROC 
curve of other CT image features, except for the ROC 
curve of venous phase CT values (p > 0.05).

Radiomic features analysis
Thirty patients were randomly selected for assessing the 
reliability of radiomic features using intraclass correla-
tion coefficient (ICC). Out of 112 features, 41 and 37 
exhibited intra-observer and inter-observer ICC values 
greater than 0.8, respectively. The CT scans datasets were 
classified into seven groups based on unique phases and 
slice thicknesses: NCCT, APCT, VPCT, DPCT, thick-slice 
CT (TKCT), thin-slice CT (TNCT), and the multiphase 
and multi-slice CT (MMCT) dataset. The MMCT con-
sists of various techniques such as non-contrast, arterial 

Table 1 Comparison of the general clinical profile of 
patients with lipid-poor adrenal adenoma and subclinical 
pheochromocytoma

LPA sPHEO Statistics 
and 
P-values

Number of cases 74 60
age 51.54 ± 14.32

(22–79)
46.82 ± 13.19
(18–78)

t = 1.668 
p = 0.099

gender male 29 32 X2 = 2.133 
p = 0.144female 45 28

radiologist’s 
diagnosis

correct 51 43 X2 = 0.024 
p = 0.876incorrect 23a 17b

AUC 0.714
LPA: lipid-poor adrenal adenoma; sPHEO: subclinical pheochromocytoma

a: sPHEO (15), cyst (4), metastasis (3), other disease (1)

b: adrenal adenoma (7), hepatocellular carcinoma (2), mesenchymal tumor (2), 
other disease (6)

Table 2 Comparison of CT image features of lipid-poor adrenal adenoma and subclinical pheochromocytoma
CT features LPA sPHEO t-/P-value cutoff sensitivity specificity AUC
Short diameter (mm) 21.26 ± 6.97 40.16 ± 14.27 t = 7.417 p < 0.001 30.78 0.743 0.897 0.891
Long diameter (mm) 27.72 ± 9.77 48.73 ± 16.84 t = 6.750 p < 0.001 39.15 0.714 0.923 0.882
NCCT (HU) 28.02 ± 7.91 36.87 ± 6.66 t = 5.461 p < 0.001 32.50 0.743 0.744 0.828
APCT (HU) 59.77 ± 19.60 79.40 ± 22.78 t = 3.951 p < 0.001 57.50 0.829 0.590 0.721
VPCT (HU) 81.64 ± 23.85 92.14 ± 18.82 t = 2.086 p = 0.041 73.00 0.857 0.385 0.614
DPCT (HU) 57.00 ± 18.90 75.06 ± 14.45 t = 4.557 p < 0.001 59.50 0.971 0.641 0.814



Page 5 of 8Xiao et al. BMC Medical Imaging          (2023) 23:159 

phase, venous phase, delayed phase, thick-slice, and thin-
slice, which are merged into a single dataset for analysis 
or diagnostic purposes. Using KNN, LR, DT, RF, SVM, 
and MLP models, the seven groups were analyzed. ROC 
curves for different datasets are shown in Fig. 2, and AUC 

values were calculated for the test and validation datas-
ets in Table 3. The six models showed excellent diagnos-
tic performance with AUC values ranging from 0.706 to 
1, with LR, RF, SVM, and MLP performing exception-
ally well. Except for TKCT, there were no significant 

Table 3 Comparison of diagnostic efficacy and ROC curves for the six classification models on seven groups datasets
Groups of CT dataset KNN LR DT RF SVM MLP
NCCT Test AUC 0.919 0.979 0.835 0.967 0.979 0.981

Val. AUC 0.891 0.974 0.891 0.964 0.949 0.979
P-value 0.622 0.871 0.396 0.929 0.408 0.937

APCT Test AUC 0.923 0.981 0.878 0.957 0.988 0.964
Val. AUC 0.978 0.96 0.953 0.97 0.973 0.96
P-value 0.194 0.626 0.189 0.757 0.614 0.927

VPCT Test AUC 0.904 0.922 0.779 0.913 0.912 0.901
Val. AUC 0.933 0.968 0.909 0.969 0.972 0.98
P-value 0.599 0.352 0.075 0.292 0.209 0.127

DPCT Test AUC 0.921 0.968 0.706 0.971 0.974 0.955
Val. AUC 0.887 0.975 0.875 0.98 0.975 0.952
P-value 0.588 0.813 0.036 0.727 0.965 0.933

TKCT Test AUC 0.893 0.959 0.866 0.947 0.963 0.972
Val. AUC 0.979 1 0.945 1 0.999 1
P-value 0.019 0.019 0.126 0.013 0.028 0.032

TNCT Test AUC 0.883 0.958 0.898 0.976 0.96 0.964
Val. AUC 0.909 0.959 0.935 0.961 0.957 0.934
P-value 0.541 0.98 0.318 0.533 0.912 0.355

MMCT Test AUC 0.857 0.925 0.844 0.941 0.931 0.947
Val. AUC 0.926 0.97 0.916 0.96 0.969 0.955
P-value 0.028 0.046 0.049 0.425 0.101 0.731

Fig. 2 ROC curves of the six classification models in test sets with different phases and slice thicknesses
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differences between the ROC curves of RF, SVM, and 
MLP on other test and validation datasets (p > 0.05). 
Additionally, MLP achieved high AUC values of up to 
0.979 when using NCCT on the validation dataset alone, 
which was not significantly different from the ROC 
curves on other validation datasets (p > 0.05), as demon-
strated in Table 4.

Discussion
This study included 74 patients with LPA and 60 patients 
with sPHEO, confirmed by surgery and pathology, with 
no significant difference in age or gender. Conventional 
CT image features showed that the long and short diam-
eters of LPA were significantly smaller than those of 
sPHEO (P < 0.001). The attenuation of LPA in NCCT, 
APCT, VPCT, and DPCT was significantly lower com-
pared to sPHEO, consistent with previous researches [7, 
25]. An optimal threshold of non-contrast CT density at 
32.5HU yielded a diagnostic sensitivity of 0.743, specific-
ity of 0.744, and AUC of 0.828. Enhanced CT (arterial, 
venous, and delayed phase) density yielded higher sen-
sitivities and lower specificities compared to non-con-
trast CT. The highest sensitivity (0.971) was obtained by 
delayed phase CT density, with an optimal threshold of 
59.5HU, explaining why delayed acquisition in enhanced 
CT examination is recommended for identifying LPA 
and sPHEO. However, the specificity obtained by delayed 
phase CT density was only 0.641, with an AUC of only 
0.814, indicating that it is easy to misdiagnose sPHEO 
as LPA based on delayed phase CT density, potentially 
leading to surgical risks for patients with sPHEO. Accu-
rately identifying LPA or sPHEO in daily imaging diag-
nosis remains a challenge for radiologists due to the low 
AUC values of these conditions, particularly when their 
imaging features are non-specific [7, 25]. This is true even 
when using both non-contrast and contrast-enhanced 
CT scans [14, 26].

Based on multiphase CT imaging radiomic features, 
we observed that the six binary models exhibited robust 
diagnostic performance across seven groups, with AUC 
values ranging from 0.706 to 1. Notably, RF, SVM, and 
MLP demonstrated exceptional diagnostic accuracy. 
Moreover, our results showed that machine learning-
based on non-contrast CT features had a good effect in 
distinguishing LPA from sPHEO. The MLP model, using 
only non-contrast CT features, achieved a high AUC 

value. In the test set, the model demonstrated a sensitiv-
ity of 0.968 and a specificity of 0.885, while in the valida-
tion set, it achieved a sensitivity of 0.964 and a specificity 
of 0.962. The MLP model’s performance in diagnosing 
LPA and sPHEO was excellent. The performance of 
our study is similar to the published studies [23]. Based 
on radiomic features extracted from non-contrast CT 
images, particularly those obtained after data dimen-
sionality reduction, a remarkable ability to differentiate 
between LPA and sPHEO is observed due to the robust 
correlation that exists between the radiomic features and 
conventional CT image characteristics such as shape, 
density, texture characteristics, etc. [13] However, com-
pared with these studies, our study included a larger 
number of cases (74 LPA and 60 sPHEO) and 2 external 
units as the validation set, which can better verify the 
robustness and generalizability of the models. Yi et al. [7] 
also suggested that additional adrenal enhanced CT may 
not be necessary in the diagnosis of LPA and sPHEO.

Dynamic contrast-enhanced CT provides more com-
prehensive image information for the diagnosis of LPA 
and sPHEO compared to non-contrast CT [8, 26, 27]. 
Some authors suggest that radiomic features derived 
from contrast-enhanced CT may improve the differ-
entiation between LPA and sPHEO [28]. However, 
further studies are needed to determine whether con-
trast-enhanced CT-based radiomic features can better 
distinguish between LPA and sPHEO. In general, fac-
tors affecting non-contrast CT images are relatively sim-
ple, whereas enhanced CT images are affected by many 
factors, including CT equipment, contrast agent type, 
administration method, and scan delay time for contrast 
enhancement. Therefore, radiomic features extracted 
from adrenal non-contrast CT images are more stable 
than those extracted from contrast-enhanced CT images. 
This is conducive to repeatability research and result 
comparison between different research institutions and 
the promotion and application of radiomics research 
results in clinical practice. Therefore, if an average AUC 
of 0.98 can be obtained based solely on the non-contrast 
CT images, as shown in the results of this paper, there is 
no need to obtain contrast-enhanced CT images.

However, our study also has several limitations. Firstly, 
the semi-automatic mapping of ROIs, particularly when 
delineating tumors on images with thick slice thickness, 
may exhibit inter-operator variability, even when per-
formed by the same operator at different time points [29, 
30]. In further research, we will consider of using a robust 
automatic segmentation method. Integrating the entire 
radiomics workflow, from image visualization to model 
implementation, within a single software platform would 
be a valuable option [31]. Secondly, differences in scan-
ning equipment and parameters were inevitable among 
the three units. The use of multiple imaging scanners can 

Table 4 Comparison of the ROC curves for NCCT in the MLP 
model with other validation sets

NCCT vs. 
APCT

NCCT vs. 
VPCT

NCCT vs. 
DPCT

NCCT 
vs. 
MMCT

Statistics 0.445 -0.032 0.835 1.021
P-values 0.658 0.975 0.406 0.309
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result in batch effects, a well-known issue in radiomic 
feature analysis [32]. These effects can produce biased 
and unreliable outcomes, with significant consequences 
for patient care and clinical decision-making. Several 
methods have been proposed to address batch effects in 
radiomics, including normalization, batch correction, 
and harmonization [33, 34]. However, we reconstructed 
the slice thickness to either 1 or 5 mm to achieve a cer-
tain degree of data consistency. Finally, this study was a 
retrospective analysis, and we only measured surgically 
removed lesions. Some patients with no clinical symp-
toms did not receive surgery, leading to selection bias.

In conclusion, the study suggests that radiomics can 
effectively distinguish between LPA and sPHEO based on 
non-contrast CT images only. The contrast-enhanced CT 
may not be necessary for diagnose LPA and sPHEO.
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