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Abstract 

Background The hippocampus is a key area of the brain responsible for learning, memory, and other abilities. Accu-
rately segmenting the hippocampus and precisely calculating the volume of the hippocampus is of great significance 
for predicting Alzheimer’s disease and amnesia. Most of the segmentation algorithms currently involved are based 
on templates, such as the more popular FreeSufer.

Methods This study proposes Deephipp, a deep learning network based on a 3D dense block using an attention 
mechanism for accurate segmentation of the hippocampus. DeepHipp is based on the following novelties: (i) Deep-
Hipp adopts powerful data augmentation schemes to enhance the segmentation ability. (ii) DeepHipp is designed 
to incorporate 3D dense-block to capture multiple-scale features of the hippocampus. (iii) DeepHipp creatively uses 
the attention mechanism in the field of hippocampal image segmentation, extracting useful hippocampus informa-
tion in a massive feature map, and improving the accuracy and sensitivity of the model.

Conclusions We describe the illustrative results and show extensive qualitative and quantitative comparisons 
with other methods. Our achievement demonstrates that the accuracy of DeepHipp can reach 83.63%, which is supe-
rior to most existing methods in terms of accuracy and efficiency of hippocampus segmentation. It is noticeable 
that deep learning can potentially lead to an effective segmentation of medical images.

Keywords Segmentation of hippocampus, Deep learning, Dense block, Attention, Data augmentation

Introduction
Magnetic resonance imaging (MRI) can reveal the struc-
tural characteristics of various brain regions. As an 
important part of the brain, the hippocampus plays a very 
important role in the triggering mechanism of related 
diseases such as the nervous system. Many diseases are 
related to the hippocampus. For example: Alzheimer’s 
disease [1], PTSD [2], schizophrenia [3], obsessive-com-
pulsive disorder [4], depression [5], dementia [6], and 
even autism [7]. To use neuroimaging to assess disease 
progression and the effectiveness of treatment strategies, 
high-precision, repeatable measurement assessments of 
hippocampal structures are required. Dill et  al. [8] have 
reviewed the evolution and the state of the art of auto-
mated methods for hippocampus segmentation in MRI, 
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which can be divided into four stages: thresholding and 
region growth method, shape models, machine learning, 
and region learning. With the development of this field, 
many automated methods and tools have been devel-
oped. Chupin et al. [9] developed a method for automatic 
hippocampus segmentation, and they used the obtained 
hippocampus volumes to automatically discriminate 
AD patients, MCI patients, and elderly controls, with an 
accuracy of over 70%.

At present, there are a lot of tools for qualitative and 
quantitative analysis of the hippocampus, such as Free-
surfer [10], ANTs [11], FSL [12], etc. However, most of 
them are based on template registration with limited 
scope, and these tools take a long time to detect and con-
sume a lot of manpower and resources. Among these 
tools, FreeSurfer is one of the most widely used and rep-
resentative tools. Freesurfer has been highly praised by 
the industry since its birth. It is known for its high-pre-
cision segmentation of brain regions and is the preferred 
tool in many areas of brain analysis [13]. However, Free-
surfer has a disadvantage in that it takes too long to run a 
project. At the same time, the Freesurfer tool is resource-
intensive. Running Freesurfer requires a large number of 
computing resources.

With the development of deep learning in the field 
of medical imaging, many disease prediction, imaging 
diagnosis, and pathological analysis problems have been 
solved with deep learning techniques, such as cardiac 
diagnosis [14], kidney diagnosis [15], and brain func-
tional structure analysis [16]. In recent years, the most 
prominent application areas are fundus detection [17], 
lung nodule detection [18], and gastric cancer pathology 
[19]. Deep learning has made remarkable achievements. 
At the same time, segmentation algorithms based on 
deep learning have emerged in recent years. For exam-
ple, Havaei [20] proposed a multiscale feature fusion 
segmentation network. Kamnitsas [21] first proposed 
the concept of 3D convolution for fully connected mul-
tiscale CNN (Convolution Neural Network). Kayalibay 
[22] invented the Unet architecture and achieved great 
success in Brain Tumor Segmentation with Deep Neu-
ral Networks (BraTS) in 2015. Notably, they employed 
a Jaccard loss function that intrinsically handles class 
imbalances. They make use of the large receptive field 
of their architecture to process entire patients at once. 
With the increasing depth of the neural network, there 
are also some problems. For a network with very deep 
layers, the vanishing gradient problem easily occurs. 
For example, in the 2016 ImageNet [23] Competition, 
Shangtang Technology achieved 1207 layers of a net-
work. At the same time, an excessively large network 
would cause parameters explosion, which makes train-
ing difficult to converge, such as the Sparsely-Gated 

Mixture-of-Experts layer, MoE [24]. MoE contains thou-
sands of sub-networks, and each network has as many as 
137 billion parameters. Further, with Google’s Attention 
is All You Need [25] proposed, the industry began to put 
more emphasis on the application of attention models 
in natural language processing and computer vision. As 
for hippocampal segmentation, Manjon et al. [26] modi-
fied the structure of Unet and invented DS-UNet3D for 
automatic hippocampus subfield segmentation that they 
called DeepHIPS in 2022.

This paper proposes a deep neural network using T1 
data to segment the bilateral hippocampus called Deep-
Hipp. DeepHipp no longer uses traditional competi-
tion datasets as experimental data but instead uses real 
ADNI [27] datasets. We hope to verify the practicality 
and precision of DeepHipp in clinical testing through our 
method. Since the ADNI data does not have gold-stand-
ard manually-tagged labels, we use FreeSurfer to process 
the raw data and get the hippocampus masks. The hip-
pocampus segmented by FreeSurfer is a standard form 
in terms of shape and volume density. Such data is not 
very robust to train the deep learning models. To make 
the model have better anatomical variability and MRI 
sequence variability, DeepHipp uses a powerful data aug-
mentation scheme, including cropping, scaling, and non-
linear geometric transformation. With a powerful data 
amplification solution, DeepHipp can learn more useful 
information, enabling feature maps in the network to cap-
ture more details. In this paper, DeepHipp adopts a data 
augmentation scheme and integrates 3D dense-block into 
the DeepHipp to achieve a more accurate segmentation 
model. The dense block reuses features through the con-
nection on the channels. Furthermore, because medical 
imaging has three-dimensional characteristics, our 3D 
module can fit the data very well. Dense-block is a more 
radical connection mechanism: it connects all feature 
maps, specifically, each layer accepts all the previous lay-
ers as its additional input. Dense-block can directly con-
catenate feature maps from different layers, which can 
achieve the combination of image information. Moreo-
ver, for the large number of feature maps generated by 
the Dense-block, we hope that DeepHipp can capture 
useful information in the massive feature maps. There-
fore, we adopted the attention mechanism that improves 
the sensitivity and accuracy of target region prediction. It 
is noticeable attention mechanism can not only improve 
the prediction accuracy but also eliminate the influence 
of the irrelevant areas, which is equivalent to increasing 
the depth of the network without increasing the number 
of layers.

The attention mechanism is used for feature maps from 
different levels so that the attention mechanism can focus 
on the hippocampus region of interest, and automatically 
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learn the valuable semantic information. In particular, 
the training loss is guided by the attention map, and only 
the loss in the hippocampus position is back forward. 
This corresponds to letting the shallow layers of the net-
work identify the hippocampus outline, while the deep 
layers pay attention to the texture of the hippocampus.

Methods
DeepHipp is a hippocampus segmentation tool based on 
deep learning development. It integrates the latest atten-
tion mechanism into the hippocampal target segmenta-
tion, which improves the ability of model segmentation. 
Meanwhile, DeepHipp incorporates the dense-block 
residual module in each layer of the network, which 
avoids the disappearance of the gradient. The convolu-
tions used by DeepHipp are all 3D, which is a good fit 
for three-dimensional medical images. DeepHipp uses 
a powerful data augmentation mechanism, not only the 
number of amplifications in the original data set but also 
geometric transformation, voxel points density, and spa-
tial coordinate transition. We introduce each aspect of 
DeepHipp in the following.

Data preprocessing
For initial registration, we use FSL to process ADNI data 
uniformly and normalize the data into standard space to 
prepare for subsequent operations. Since we do not have 
gold-standard manually-tagged masks, we use the results 
of FreeSurfer segmentation as the training label for 
DeepHipp. FreeSurfer has a long history as a recognized 
brain segmentation tool in the industry and can achieve 
high accuracy in hippocampus segmentation. The reli-
ability of Freesurfer has been proven in many ways, for 
example, Brown et  al. proved the result of Freesurfer is 
robust [28]. Because we use the 3D network, the scale of 
network parameters is much larger than a 2D network, so 
we need to normalize the data. We do data preprocessing 
from the following three aspects.

Quantity expansion
To obtain a larger number of training data sets based on 
the original data, we need to increase the original data. 
First, we used a histogram equalization technique for 
all data to enhance the image contrast. Using histogram 
equalization to reduce the image chromatic aberration. 
It makes the picture look more natural and comfortable. 
Secondly, we use the technique of random rotation on 
the original image. It can also amplify the data amount. 
We perform a random angular rotation of the 3D data 
so that the original data is presented at different angles, 
which helps to enhance the robustness of the DeepHipp.

Geometric augmentation
We know that the parameters of the 3D convolution net-
work are exponential times of the 2D convolutional net-
work parameters. Moreover, because the medical data 
often has a large number of bytes of a single image, this 
greatly limits the batch-size settings and is also a great 
challenge for the GPU’s memory. To allow the network 
to accommodate more batch size, we copied three copies 
of the data processed in 2.1.1. In the first data, we cut the 
blank area of the original brain data based on the blank 
edges shown in the NII file and only retain the useful 
brain area. In the second data, we resize and normalize 
the brain as a dense whole, which reduces the distance 
between the voxel and enables the network to learn at 
different scales. In the third copy, we resample each indi-
vidual, which randomly distorts the entire brain region, 
such as stretching or compressing in a certain direc-
tion. Moreover, the distorted images are rescaled into 
the standard size, which can be accommodated by the 
network.

Detailed explanation of operation methods
In data preprocessing, rigid transformations include ran-
dom rotation, and flip; non-rigid transformations include 
perspective, and Non-Isotropic Scaling. We show these 
methods in Fig. 1.

Fig. 1 Some registration schemes involved in our study
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Computers store images in digital form, and each of 
these pixels is represented as a positive value. So we 
applied min-max normalization to the data, as shown 
in Eq. 1.

But in image data, its minimum value is zero, so it can 
be calculated with Eq. 2.

(1)x
′

=
x − xmin

xmax − xmin

Model design
We propose a 3D convolution model based on Dense 
block and attention mechanism. The input of the model 
is the complete brain data after preprocessing and aug-
mentation. The topological structure of the DeepHipp 
network is shown in Fig. 2.

(2)x
′

=
x

xmax

Fig. 2 The overall architecture of the DeepHipp model. The model contains an encoding part and a decoding part. The encoder is on the left side 
of the auxiliary line, and the decoder is on the right side. In the encoding section, each module consists of a dense block. In the decoding section, 
each module consists of an attention block. The model uses end-to-end input and output to segment the hippocampus from the whole brain
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It consists of two parts: encoding and decoding. 
First, we look at the encoding part, the encoding part 
is composed of several dense blocks. Different from 
GoogleNet [29], ResNet [30], and other networks, these 
networks only consider the characteristics of adjacent 
layers. The characteristics of each layer are used up 
to once in the entire network, and the reusing rate of 
features is low, which makes the learning efficiency dif-
ficult enhancement. To improve the efficiency of fea-
ture usage, we reuse features of each layer learned by 
the network. The input of each dense block includes 
the image features by the preceding dense blocks so 
that the original features of the images are retained to 
the greatest extent. Secondly, let’s look at the decoding 
part. To capture the context information of the larger 
receptive field and semantic segmentation, the decod-
ing part consists of several attention blocks. The origi-
nal decoding layer is simply to concatenate the features 
of the encoding layer. However, the improved decoding 
layer uses the attention module to process the feature 
maps and concat the encoding layer. In other words, 
each attention block is connected to the correspond-
ing encoding layer via a skip connection. Through the 
attention block, DeepHipp focuses on the segmentation 
target and suppresses irrelevant regions of the input 
image.

DeepHipp uses SE-layer, an attention mechanism 
that dynamically modulates the importance of dif-
ferent channels in the feature map for convolutional 
neural networks (CNNs). The structure of SE-layer is 
relatively simple, using global pooling or convolution 
layer to Squeeze the feature map as the weight vector 
of different channels. Then take Squeeze and Excita-
tion operations on vectors, and automatically learn the 
weights of different channels during training, achieving 
the calculation of attention in channel dimensions. In 
the Squeeze and Excitation operations, we usually use 
a dense layer or a convolutional layer(kernel size is 1). 
Assuming that the reduction ratio is r and the size of 
the weight vector is N, the length of the weight vector 

changes as Eq.  3. Finally, the channel feature map is 
multiplied by the weight vector. The structure of SE-
layer is shown in Fig. 3.

In the network structure, except for the sigmoid acti-
vation function used in the output layer, all other activa-
tion functions are ReLU. Using sigmoid to normalize the 
results to (0,1), makes it easy to calculate the segmenta-
tion results at the output layer and determine the catego-
ries of each element in the matrix. The formula is in Eq. 4:

ReLU solves the problem of high computational com-
plexity and easy gradient vanishing in sigmoid. ReLU 
will make the output of some neurons zero, making the 
network more sparser and alleviating overfitting. The for-
mula is in Eq. 5:

During the downsampling process, we used max-
pool3d, which can reduce the dimensionality of the fea-
ture map and accelerate the computational speed. This is 
a simple feature selection function that selects the maxi-
mum value in the target matrix as the output. As for the 
basic operations of tensors in neural networks, this study 
applies concatenation, add, and multiply. The above oper-
ation is shown in Fig. 4.

For the image classification problem, we often use 
cross-entropy as the loss function, as shown in Eq. 6.

Where yi represents the true value, ∼
yi represents 

the predicted value of the network, and n represents 
the number of pixels. However, for the segmentation 

(3)N →
N

r
→ N

(4)f (x) =
1

1+ e−x

(5)f (x) = max(0, x)

(6)CE y,
∼
y = −

n

i=1

yilog
∼
yi

Fig. 3 The structure of SE-layer
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problem, the traditional cross-entropy loss function does 
not work well. The current segmentation task often uses 
the Dice similarity coefficient as an objective criterion for 
segmentation accuracy, which is defined as Eq. 7.

A and B represent the real hippocampus region and the 
segmented region respectively of DeepHipp, represent-
ing the intersection of two regions. The dice similarity 
coefficient cannot be used as a loss function because it 
cannot propagate the network output loss backward. In 
recent years, many scholars have improved the Dice coef-
ficient such as IoU [31] and Dice loss function [32]. The 
loss function used by DeepHipp is Eq. 8.

In the Results section, we show the impact of the hip-
pocampus segmented by different loss functions for 
DeepHipp.

Transfer learning
To achieve a better segmentation effect of the network, 
we use the transfer learning method to pre-train the 
network on the public datasets (BraTS). BraTS has accu-
mulated a large number of data since 2015, and the goal 
of this competition is to encourage the development of 

(7)Dice(A, B) =
2(A ∩ B)

A+ B

(8)Dice
(

y,
∼
y
)

=

2
n
∑

i=1

yi
∼
yi

n
∑

i=1

(

y2i +
∼
y
2

i

)

state-of-the-art methods for tumor segmentation by pro-
viding a large dataset of annotated low-grade gliomas 
(LGG) and high-grade glioblastomas (HGG). The seg-
mentation target of BraTS is the precise segmentation of 
three types of affiliated tumor regions. This segmentation 
task is obviously different from the natural image seg-
mentation task with fewer categories. It needs the net-
work to have the ability of precise segmentation for each 
kind of pathological tissue. By training the BraTS data, 
the network can achieve better convergence ability, and 
the pre-trained network weight parameters are migrated 
to the DeepHipp, which saves a lot of time and achieves 
higher precision for our target.

Training and validating steps
We used 1000 original ADNI data and a preprocessing 
of the data in 2.1 to obtain approximately 3,000 sam-
ples. We use Keras (a kind of deep learning framework) 
to build the DeepHipp network. The initial batch size is 
set to 16, and the convolution kernel size is set to 3. The 
initial learning rate is set to 0.01, and the learning rate 
decreases as the iterations. All data is run under Linux. 
We use 6 Tesla-P100 GPUs. The normalized brain area 
is 160*160*192, and the number of convolution kernels 
increases with the network layers. We use parallel com-
puting to speed up the processing of images [33]. Other 
DeepHipp’s parameters can be defined by users accord-
ing to actual needs. Table  1 depicts a synoptic view of 
The DeepHipp segmentation process. χ represents sam-
ple space and epoch represents the number of iterations.

Fig. 4 The mathematical formula for ReLU, sigmoid. And the processes diagram for concatenation, add, and multiply
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Results
DeepHipp can accurately segment the hippocampus 
region. However, due to the poor readability of the 3D 
image display, we visualized the original image, ground 
truth, and segmentation results from three perspectives. 
Individual data may have randomness, so we randomly 
selected two data for visualization, as shown in Fig. 5. To 
compare the overall accuracy of segmentation, we now 
validate the performance of DeepHipp using brain data 
from the ADNI Project. The training data set and the test 
data set are divided according to the following two crite-
ria: (i) ensuring that the training data is sufficient for the 
model to converge. (ii) ensuring that the test data is suf-
ficient to cover various targets to be detected. Under the 

premise of satisfying the above two criteria, the ratio of 
the training set and the test set can be adjusted accord-
ing to the actual situation. In this experiment, the train-
ing set and the test set are 80% and 20% respectively. We 
compare DeepHipp with other mainstream segmenta-
tion network including FCN [34], Unet_3D [35], SegNet 
[36], PSPNet [37]. We examine various aspects of hip-
pocampus’ segmentation by DeepHipp, including dice 
coefficient distribution, volume estimation, feature maps 
presentation, the effect of different models, the compari-
son with FreeSurfer.

Dice distribution
Firstly, we evaluate the dice coefficient distribution of 
DeepHipp and other segmentation models. We use the 
80 brain samples from ADNI as the benchmark. We illus-
trate the results of the segmentation of the hippocampus 
with three data augmentation schemes. Figure  6 shows 
the histogram of different models’ dice distribution and 
examples of segmentation results.

To measure the performance of segmentation, we 
have counted the dice coefficient histograms of 80 indi-
viduals. At the bottom of each histogram is a compari-
son between the ground truth mask and the prediction. 
The first two pictures represent the comparison of the 
original data. The middle two pictures represent the 
comparison of geometric transformation. The last two 
pictures represent the data comparison after resampling. 
From Fig. 6, we can see FCN hardly recognizes the hip-
pocampus whatever augmentation scheme. Unet_3D 

Table 1 Algorithm Description of DeepHipp

Algorithm Description of DeepHipp

Input: Training data with augmentation: χ

1: Initialization: learning rate=0.01, bach_size=16, kernel size=3, randomly 
initialize W, b;

2: for epoch = 1 ; epoch ≤ epochmax ; epoch++do;

3:        Compute Dice
(

yi ,
∼

yi

)

;

4:        Compute Loss = 1− Dice
(

yi ,
∼

yi

)

;

5:        Compute Minimum(Loss);

6:    Update the model parameter W, b based on χ;

7: end for;

Output: The segmentation results from Model

Fig. 5 The visualization of original images, ground truth, and segmentation results of two data from three perspectives
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Fig. 6 The histogram of the Dice coefficient. DeepHipp compared the Dice coefficients with the other four networks. Under each histogram, we 
take three groups of hippocampal segmentation samples, which are original data, geometrically transformation data, and resampling data. The 
graph on the left of each group is the label, and the graph on the right is the segmentation result
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can slightly segment some brain regions, but it cannot 
clearly segment the outline of the hippocampus. SegNet 
can capture the contour of the hippocampus. PSPNet can 
segment the hippocampus completely, but the dice coef-
ficient has not reached the optimal level. However, Deep-
Hipp can segment the hippocampus completely, and the 
dice coefficient reaches a high level.

Hippocampal volume
As we all know, hippocampal volume is the basis for a 
variety of diagnostic tests. In this section, we further 
compare the hippocampal volume of DeepHipp with 

other segmentation models. We use the FreeSurfer seg-
mentation as the standard reference. We randomly 
selected 20 individuals as the metrics and calculated the 
hippocampus volume of each individual to generate scat-
ter plots, as shown in Fig. 7.

Each column in Fig. 7 represents a comparison of the 
different augmented schemes with each network and 
FreeSurfer. We can see that the volume of each segmen-
tation result after the FCN network is empty, no matter 
with which data augmentation scheme FCN cannot seg-
ment any target. Similarly, Unet_3D has poor segmen-
tation accuracy. For SegNet, under the original data, 

Fig. 7 Hippocampus volume. The first line in Fig. 7 represents the segmentation results on the original data, the second line represents 
the segmentation results on the geometric transformation data, and the third line represents the segmentation results on the resampling data
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SegNet can segment part of the results, but the volume 
is much lower than the standard hippocampal volume. In 
the other two data augmentation schemes, the target area 
cannot be recognized at all. Further, we find that PSPNet 
and DeepHipp have better segmentation results under 
three data augmentation schemes. Under the original 
data, the two kinds of network segmentation results are 
similar. From the geometric transformation data, we can 
see that PSPNet results are slightly better than DenseNet, 
probably because PSPNet has some advantages over sim-
ple volume scaling. In resample data, we can see that 
DeepHipp results are better than PSPNet. In Fig. 7 E_3, 
blue and red dots coincide more. We analyze that Deep-
Hipp plays an advantage in capturing the texture of the 
hippocampus and accurately segmenting the hippocam-
pus when large brain deformation occurs.

Feature maps visualization
In this section, we want to understand how the network 
captures the details of the hippocampus. We selected a 
representative network layer to display the feature maps. 

Since the 3D convolution used cannot better display the 
feature map, we take the slices after the convolution result 
to show. For each features cube, we select 12 slices from 
typical layers and organize the slices together for observa-
tion. We focused on the network’s dense-block and atten-
tion-block. As shown in Fig.  8, dense-block can reduce 
the vanishing gradient problem, and attention-block can 
make the network segmentation result more targeted.

In Fig.  8 left part, the first two lines are the feature 
maps of the first layer of DeepHipp. The second two 
line is the feature maps of the dense block. The third 
two lines are the feature maps of the attention block 
and the fourth two lines are the feature maps after the 
attention. The last two lines are the feature maps of the 
output. It can be seen that by using the dense-block 
under a limited amount of data, the network has a good 
anti-overfitting effect. At the same time, the advantage 
of using attention-block is that the network can scan 
the global image quickly, and then invest more atten-
tion in this area to get more details of the target, to sup-
press other useless information.

Fig. 8 Feature Map display. We take the feature maps of representative network layers from top to bottom
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Performance of Multiple Models
To verify the advantages of DeepHipp with other exist-
ing medical image segmentation networks, we compare 
the performance of DeepHipp and FCN, Unet_3D, Seg-
Net, and PSPNet from various aspects, including the 
accuracy, loss, and learning rate in the training set and 
validation set, as shown in Fig. 9.

We know that for the semantic segmentation model, 
FCN can be regarded as the originator. It is the infra-
structure of the segmentation model in many fields. 
We apply the training data to the FCN model, but the 
experimental results are not satisfying. Similarly, Unet 
models have unique advantages in the field of medical 
imaging. For 3D unet, our training results show that 

Fig. 9 Performance of Multiple Models. A and B represent the accuracy and loss of the different segmentation networks on the training set. C 
and D represent the accuracy and loss of the different segmentation networks on the validation set. In the four graphs A, B, C, and D, we can 
infer that DeepHipp outperforms other algorithms. During the testing process, FCN and Unet_3D accuracy is almost zero. The results of SegNet 
are unstable, approximately 0.2. PSPNet and DeepHipp can reach 0.8315 and 0.8363 respectively. Graph E represents the change in learning rate 
during the training process. F shows the training accuracy using different loss functions of DeepHipp. Using the dice coefficient can achieve 
the best results
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there is still no high accuracy. For the SegNet pro-
posed in recent years, we find that it achieves relatively 
good results in the training set, but there is no high 
accuracy and low loss in the validation set. The reason 
for this may be that SegNet transfers the maximum 
pooling into the decoder, which improves the segmen-
tation resolution but fails to meet the expected accu-
racy requirements. For PSPNet and DeepHipp, both 
the training set and the validation set have achieved 
high accuracy, but as mentioned in Dice distribution 
section, the poor robustness of PSPNet leads to the 
decrease of segmentation precision in the case of brain 
deformation, while DeepHipp has strong adaptabil-
ity and can still accurately segment the hippocampus 
in the case of brain deformation. Finally, we verify the 
training accuracy for DeepHipp using different loss 
functions. We can see Dice coefficient is the best of all 
loss functions.

Comparison with FreeSurfer
In the last section, to see whether DeepHipp performs 
consistently on other ADNI data, DeepHipp chooses 100 
individuals to verify the precision. And these 100 indi-
viduals are not included in the training set and test set. 
Note that, we sent the same data to FreeSurfer, and made 
volume statistics on the segmented results. The relevant 
statistical results are shown in Fig. 10.

As shown in Fig.  10-A, we selected a representative 
group of examples to compare FreeSurfer and Deep-
Hipp segmentation. However, we found that in subjects 
with hippocampal atrophy, FreeSurfer segmentation 
results were slightly larger than the actual hippocam-
pal, while DeepHipp was well consistent with the actual 
hippocampal. The analysis of these reasons may be that 
Freesurfer is a template-based comparison algorithm, 
but DeepHipp is a data-driven learning model. We 
counted the voxel points of 100 hippocampus separated 
by FreeSurfer and DeepHipp and made a polyline map. 
We can see that the red line and the black line have a 
high consistency. To further show the segmentation 
ability of DeepHipp, we divide the hippocampal volume 
of Freesurfer by the hippocampal volume of DeepHipp. 
We then calculated the mean value and variance of 100 
points. It can be seen from Fig.  10-B that the mean 
value is close to 1, and the variance is close to 0.1, indi-
cating that the hippocampus segmented by DeepHipp 
is very similar to FreeSurfer. Finally, we also compare 
the segmenting time required for the DeepHipp net-
work and the time required for FreeSurfer in Fig. 10-C. 
It is found that DeepHipp greatly shortens the hip-
pocampus segmentation period.

Discussions
In this paper, we present a precise hippocampus seg-
mentation network using T1 data from ADNI. Firstly, 
we make a novel and complex augmentation scheme 
for ADNI data. To make the network more effective, 
we expand the original data in shape, contrast, and data 
magnitude. Secondly, in the construction of the deep 
learning model, we adopt the latest attention mechanism 
based on computer vision, which greatly improves the 
recognition of the target segmentation area. At the same 
time, to improve the inhibition of gradient disappear-
ance, we add the dense-block module, which improves 
the learning ability and successfully avoids over-fitting. 
Finally, we compare DeepHipp with the existing main-
stream segmentation networks. The results show that 
DeepHipp has high accuracy and sensitivity in hip-
pocampal segmentation.

In the past decade, with the rapid development of com-
puter vision, medical imaging equipment has been con-
stantly updated and iterated. From the previous single 
T1 data to the present T2 data, the imaging resolution 
is increasing day by day. The hospital produces thou-
sands of images every day. Such a large scale of data lays 
a good foundation for the application of deep learning in 
this field. Using a deep learning network, DeepHipp can 
learn the regularity and characteristics of massive data 
to achieve the purpose of assisting medical diagnosis. 
Reviewing the existing methods of hippocampal segmen-
tation, most of them are based on template and mor-
phological methods, such as FSL, and FreeSurfer. Their 
common feature is that the detection time is too long to 
segment the target. For example, it takes at least 6 hours 
to segment a hippocampus in FreeSurfer and 20 minutes 
to perform the same operation on FSL. However, it only 
takes 20 seconds to detect a hippocampus in DeepHipp, 
which greatly improves the efficiency of doctors and 
reduces the workload. Through our experiments, for a 
single data, only 2GB of GPU memory is occupied during 
the inference stage.

The DeepHipp proposed in this paper, for the charac-
teristics of medical data three-dimensional imaging, does 
not use the traditional 2D convolution but uses the form 
of 3D convolution. DeepHipp can capture the details of 
objects very well in three-dimensional medical images 
and can find out the differences among voxel points. 
Because medical data itself is rarely labeled, unlike natu-
ral images, which have a large number of manual labels, 
medical image labeling requires a lot of human and mate-
rial resources. This requires us to train a segmentation 
model with higher generalization ability under a rela-
tively small dataset. DeepHipp uses the dense-block to 
avoid the vanishing gradient problem caused by larger 
parameters of the network and to resist the over-fitting 
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effect caused by a smaller dataset. In recent years, the 
attention mechanism has been widely used in natural lan-
guage processing and image recognition. DeepHipp has 
successfully added an attention mechanism in the net-
work construction, which greatly improves the precision 
of segmentation. DeepHipp can focus its attention on the 
hippocampus from a large amount of training data. We 
can observe the advantages of the attention mechanism 
from the feature map.

Finally, DeepHipp is currently only a detection tool 
for hippocampal segmentation. In the future, we hope 
that DeepHipp can be used to detect more brain areas, 
such as the frontal lobe, white matter, and gray matter. 
At the same time, we only use the result of Freesurfer 

segmentation as DeepHipp training masks. In the 
future, we can integrate more masks as DeepHipp train-
ing labels. If conditions allow, we can increase a large 
number of manual labels as DeepHipp to improve the 
segmentation ability of DeepHipp. Furthermore, since 
medical image data are multi-modal, we hope that Deep-
Hipp can detect not only single modal data but also mul-
tiple modalities in the future.

Conclusions
In this paper, we elaborate on revealing a novel method 
for segmenting the hippocampus. To solve this, we pro-
pose a new segment model using a 3D dense-block based 
on an attention mechanism, named DeepHipp. Unlike the 

Fig. 10 DeepHipp vs. FreeSurfer. A shows the segmentation results for 100 samples and shows a comparison of FreeSurfer and DeepHipp’s MRI 
at different peaks. B shows the division of the hippocampus volume by FreeSurfer and DeepHipp and counts the mean and variance values. C 
shows the segmentation time for FreeSurfer and DeepHipp segmentation. Note that FreeSurfer segments the hippocampus in hours but DeepHipp 
does in seconds
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previous conventional tools, DeppHipp can extract mean-
ingful knowledge from a succession of brain samples. 
Above all, DeepHipp has good capability at feature recog-
nition and mechanism of target attention, and can quickly 
separate the hippocampus from the brain. We believe that 
deep learning can potentially lead to effective segmentation 
of medical imaging and be applied to many other medical 
questions.
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