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Abstract 

Background Cervical cell segmentation is a fundamental step in automated cervical cancer cytology screening. 
The aim of this study was to develop and evaluate a deep ensemble model for cervical cell segmentation includ-
ing both cytoplasm and nucleus segmentation.

Methods The Cx22 dataset was used to develop the automated cervical cell segmentation algorithm. The U-Net, 
U-Net +  + , DeepLabV3, DeepLabV3Plus, Transunet, and Segformer were used as candidate model architec-
tures, and each of the first four architectures adopted two different encoders choosing from resnet34, resnet50 
and denseNet121. Models were trained under two settings: trained from scratch, encoders initialized from ImageNet 
pre-trained models and then all layers were fine-tuned. For every segmentation task, four models were chosen 
as base models, and Unweighted average was adopted as the model ensemble method.

Results U-Net and U-Net +  + with resnet34 and denseNet121 encoders trained using transfer learning consistently 
performed better than other models, so they were chosen as base models. The ensemble model obtained the Dice 
similarity coefficient, sensitivity, specificity of 0.9535 (95% CI:0.9534–0.9536), 0.9621 (0.9619–0.9622),0.9835 (0.9834–
0.9836) and 0.7863 (0.7851–0.7876), 0.9581 (0.9573–0.959), 0.9961 (0.9961–0.9962) on cytoplasm segmentation 
and nucleus segmentation, respectively. The Dice, sensitivity, specificity of baseline models for cytoplasm segmenta-
tion and nucleus segmentation were 0.948, 0.954, 0.9823 and 0.750, 0.713, 0.9988, respectively. Except for the specific-
ity of cytoplasm segmentation, all metrics outperformed the best baseline models (P < 0.05) with a moderate margin.

Conclusions The proposed algorithm achieved better performances on cervical cell segmentation than baseline 
models. It can be potentially used in automated cervical cancer cytology screening system.

Keywords Cervical cell segmentation, Cervical cytology screening, U-Net, U-Net +  +, Deep ensemble learning

Background
Cervical cancer is a common malignancy that poses a 
serious threat to women’s health. It is the fourth most 
common cancer in terms of both incidence and mortal-
ity. In 2020, approximately 600,000 new cases of cervical 
cancer were diagnosed and more than 340,000 people 
died from this disease globally [1, 2]. Fortunately, cervi-
cal cancer has a long precancerous stage, and annual 
screening programs can help detect and treat it in a 
timely manner. If cervical cancer is detected early, it can 
be completely eradicated. At present, manual screen-
ing of abnormal cells from a cervical cytology slide is 
still the common practice. However, it is usually tedious, 
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inefficient and high-cost. Consequently, the automated 
cervical cancer cytology screening has attracted increas-
ing attention. In the past few years, deep learning (DL), 
a branch of machine learning, has made great success in 
the field of medical image analysis [3–5]. The segmenta-
tion of cervical cytology images plays an important role 
in the automated cervical cancer cytology screening [6]. 
However, the performance of cervical cell segmentation 
is far from perfect [6–10].

Different from histology, which involves examining 
an entire section of tissue, cytology generally focuses on 
individual cells or clusters of cells. In some cases, several 
cells can determine the diagnostic result of the whole 
slide. One of the mainstream methods for automated 
cervical cancer cytology screening is cell segmentation 
followed by single cell classification. Compared to cervi-
cal cell segmentation, more research has been conducted 
on cell classification and more public datasets have been 
released [11–14]. According to the 2014 Bethesda guide-
line [15], nuclear morphologies, which include nuclear 
size and shape, nuclear pleomorphism, nucleus-to-cyto-
plasm ratio, multiple nuclei, and nucleoli morphology, 
are the most important biomarkers in cervical cytology 
screening. Therefore, both cytoplasm segmentation and 
nucleus segmentation are important for automated cervi-
cal cytology screening.

Previous studies have some limitations. Some previous 
studies only segmented cytoplasm or nucleus (not both 
of them simultaneously) [16]. Moreover, a lot of research 
was based on very limited data, so the generalization abil-
ity of these algorithms is not guaranteed. For example, 
some research only used 8 real cervical cytology images 
and over a hundred synthetic images [9, 10]. To the best 
of our knowledge, all previous studies adopted a single 
CNN such as the standard U-Net and did not use trans-
fer learning during training [6]. Deep learning system 
heavily relies on the amount and quality of data. So far, 
there exist some public cervical cell segmentation data-
sets including ISBI2014 [9], ISBI2015 [10], BTTFA [16] 
and Cx22 dataset [6]. Among them the recently released 
Cx22 dataset is the biggest publicly available cervical cell 
segmentation dataset and contains both cytoplasm and 
nuclei annotations. The data descriptor paper of the Cx22 
dataset also provided multiple baseline models including 
U-Net [17], U-Net +  +  [18] and U-Net +  +  +  [19], how-
ever performances of these baseline models are far from 
perfect. The Dice, sensitivity, specificity for cytoplasm 
segmentation and nucleus segmentation were 0.948, 
0.954, 0.9823 and 0.750, 0.713, 0.9988, respectively.

This study aimed to develop a automated cervical cell 
segmentation algorithm including both cytoplasm and 
nucleus segmentation By means of a relatively large data-
set, different model architectures with different encoders, 

model ensemble and loading pre-trained encoder 
weights, our algorithm outperformed those of previous 
studies.

Methods
Dataset and data processing
The Cx22 dataset delineate the contours of 14,946 cel-
lular instances in 1320 images that were generated by a 
label cropping algorithm based on the region of interest. 
The data source and annotation pipeline were described 
in detail in the data descriptor paper [6]. A representa-
tive image and its ground truth labels can be found in the 
results section. The Cx22 dataset stored data using MAT-
LAB.mat files with hdf5 data format. For convenience, 
these files were converted into image and mask files with 
jpeg format using Python code. The Cx22 dataset con-
tained a training dataset and a testing dataset with 400 
and 100 samples, respectively. Every sample consists of 
an image and two mask files, one for cytoplasm annota-
tion and the other for nuclei annotation. All images have 
a resolution of 512*512 pixels. For model selection and 
hyperparameter tuning, the training dataset was further 
split into a new training dataset and a tuning dataset with 
a ratio of 0.9 and 0.1. The Cx22 dataset contains a prede-
fined test dataset and the sample size of test dataset is not 
very small, for the convenience of comparing the perfor-
mance our algorithm with that of baseline, in this study 
cross validation was not adopted.

Overall architecture
In this study, both cytoplasm segmentation and nucleus 
segmentation were considered as semantic segmentation 
tasks. These two tasks can be solved by either one multi-
class classifier or two independent binary-class classi-
fiers. To decouple the interference between cytoplasm 
segmentation and nucleus segmentation and simplify the 
hyper-parameter setting process, the latter method was 
adopted. According to common practice, the positive 
class stands for cytoplasm or nucleus and the negative 
class for background.

The flowchart of the automated cervical cell segmenta-
tion algorithm is shown in Fig. 1. Given an image, cyto-
plasm and nucleus were segmented independently. For 
every segmentation task, the image was inputted to mul-
tiple base models. The final predictions were obtained by 
aggregating results from multiple models using model 
ensemble method.

Base models
To get a good ensemble model, base models should be as 
more accurate as possible, and as more diverse as pos-
sible [20]. Six different model architectures specifically 
U-Net, U-Net +  + , DeepLabV3 [21] DeepLabV3Plus 
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[22], Transunet [23], and Segformer [24] were chosen as 
candidate models. These models belong to three differ-
ent architectures, i.e., encoder-decoder, dilated convolu-
tion and vision transformer, and all of which were widely 
used. Some other U-Net variants including attention 
U-Net [25], R2U-Net [26] were also tested during pre-
experiments on this tasks, because they did not perform 
better than U-Net and U-Net +  + and consume more 
GPU memory, they were abandoned in this study. Like-
wise, Swin transformer for semantic segmentation model 
[27] was not adopted because during pre-experiments on 
other tasks it did not perform better than its counterpart 
Transunet and Segformer models.

For every U-Net and U-Net +  + model, two differ-
ent encoders resnet34 and densenet121 were used. 

Likewise, resnet34 and resnet50 were used as encod-
ers of every DeepLabV3 and DeepLabV3Plus model. 
Densenet121 was replaced by resnet50 in DeepLabV3-
series models was because there exist some bugs related 
to DeepLabV3-series models in the SMP implementation 
[16]. For the architecture of TransUnet and SegFormer, 
only the default setting was used. Setting of Transunet: 
vit_blocks = 12, vit_heads = 12, vit_dim_linear_mhsa_
block = 3072, patch_size = 8, vit_transformer_dim = 768, 
vit_transformer = None, vit_channels = None. Setting 
of SegFormer: dims = (32, 64, 160, 256), heads = (1, 2, 5, 
8), ff_expansion = (8, 8, 4, 4), reduction_ratio = (8, 4, 2, 
1), num_layers = 2, decoder_dim = 256. Model imple-
mentation details can be found in the source code. For 
convenience, if a model has both an architecture name 

Fig. 1 The flowchart of automated cervical cell segmentation. The two dashed boxes demonstrate two ensemble models, one for cytoplasm 
segmentation and the other for nucleus segmentation. The model ensemble method is unweighted average
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and an encoder name, it was named by combining the 
architecture name and encoder name. For example, 
Unet_resnet34 means that the model has the U-Net 
architecture and resnet34 encoder. Characteristics of 
candidate base models are shown in Table 1.

These models were trained independently, afterwards 
model selection was conducted based on performance 
metrics. Finally, four models, i.e., Unet_resnet34, Unet_
densenet121, UnetPlusPlus_resnet34 and UnetPlusPlus_
densenet121 were chosen as the base models. Model 
performance comparisons were depicted in the results 
section.

Ensemble model
Although the performance differences among all mod-
els were significant, the performance differences among 
selected models were very small. Multiple ensemble 
methods, which include weighted averaging (using vali-
dation loss as weighting factor), unweighted averaging 
and stacking, were tested in preliminary experiments. 
Even though any ensemble method performed better 
than any single model, there was no obvious difference 
in the performance of the using different ensemble meth-
ods. For simplicity, unweighted average was chosen as 
the model ensemble method [20, 28]. It not only elimi-
nated the need of setting parameters in weighted aver-
age or training a new model in stacking, but also did not 
decrease performance. Given an image, for each pixel 
four base models independently gave their predicted 
probabilities. The number of base models was set to 4 
was because further increasing the number of base mod-
els would not result in perceivable performance improve-
ment, but it would increase training time and slow down 
inference speed. The final probabilities were obtained 
by aggregating these outputted probabilities of multi-
ple models using the unweighted average method. If its 

predicted probability was above a predefined threshold, 
the pixel was considered as positive, otherwise negative. 
For simplicity, the default value of 0.5 was used as the 
cut-off value. The mathematical formula for every pixel 
prediction is:

For a pixel,  pi is the predicted probability of model No i. 
M is the number of base models and in this case is equal 
to 4. If pred_class is true, the pixel is predicted as cyto-
plasm or nucleus depending on the segmentation task.

Training strategies
The sample size of Cx22 is not large, so real-time image 
augmentation was adopted during training to avoid over-
fitting. Compared with beforehand image augmentation, 
real-time image augmentation is more flexible. Image 
augmentation included random horizontal and vertical 
flipping, random brightness and contrast modifications, 
gaussianBlur transformation, hue/saturation color trans-
formation and among others were used. Image augmen-
tation was implemented with the albumentations library 
and PyTorch dataset class.

The data distribution of cytoplasm segmentation was 
relatively balanced, so binary cross-entropy was used as 
the loss function of cytoplasm segmentation. However, 
the nucleus occupies only a small area of the image, to 
tackle this class imbalance weighted binary cross-entropy 
was used as the loss function of cytoplasm segmenta-
tion and the weight factor for positive class was set to 8. 
Compare with similarity based loss functions such as the 
Dice loss and IOU loss, the binary cross-entropy loss has 
smooth gradients [29] and so as to train faster.

For models except for SegFormer and Transunet, 
encoders have corresponding easy to obtain ImageNet 

pred_class =
M
i=1 pi

M
> 0.5

Table 1 Characteristics of candidate base models

Conv layer and ASPP stand for convolutional layer and atrous spatial pyramid pooling layer, respectively. Segformer and Transunet are transformer-based models, 
their encoder and decoder structures are not listed

Model Parameters Encoder Decoder

Unet_resnet34 24,436,369 33 conv layers 10 conv layers

Unet_densenet121 13,607,633 117 conv layers 10 conv layers

UnetPlusPlus_resnet34 26,078,609 33 conv layers 10 conv layers

UnetPlusPlus_densenet121 30,072,273 117 conv layers 10 conv layers

DeepLabV3_resnet34 26,007,105 33 conv layers 1 conv layer + ASPP

DeepLabV3_resnet50 39,633,729 49 conv layers 1 conv layer + ASPP

DeepLabV3Plus_resnet34 22,437,457 33 conv layers 2conv layers + ASPP

DeepLabV3Plus_resnet50 26,677,585 49 conv layers 2conv layers + ASPP

Segformer 7,717,473 / /

Transunet 67,875,963 / /
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pre-trained models. Consequently, these models were 
trained under two settings: trained from scratch, 
encoders initialized from ImageNet pre-trained models 
and then all layers were fine-tuned.

Adam [30] with lookahead [31] (k = 5, alpha = 0.5) was 
used as the optimizer. Automatic mixed precision train-
ing [32] was used to speed up the training and inference 
processes and save GPU memory. Label smoothing 
(ε = 0.1) was used to calibrate probabilities and improve 
generalizability [33]. The batch size was set to 32 and 
the number of epochs were set to 20. The initial learn-
ing rate was set to 1e-3, and multiplied by a factor of 
0.1 at 30%, 60% and 90% of the training epochs. Every 
model was trained 3 times under the same setting, and 
the model with the minimum validation loss was cho-
sen as the final model. During training, performances 
were not sensitive to these hyper-parameters.

Evaluation metrics
In the original Cx22 data descriptor paper, the Dice, 
true positive rate (sensitivity) and false positive rate 
(1-specificity) [34] were used to quantitatively assess 
baseline models. To make a fair comparison, in this 
study these same performance metrics were used.

A P value of less than 0.05 was considered statistically 
significant. Bootstrap method on the pixel level with 
a resampling number of 500 was used to calculate the 
95% CIs. For simplicity, confidence intervals only cal-
culated on performance indicators of ensemble models.

Experimental settings
Hardware: Intel Core i7-10,700, 128  GB Memory, 
Nvidia GTX 3090 * 2.

Software: Ubuntu 20.04, Cuda 11.3, Anaconda 4.10.
Programming language and libraries: Python 3.8, 

Pytorch 1.10, Torchvision OpenCV, NumPY, SciPY, 
Sklearn, Matplotlib, Pandas, Albumentations, segmen-
tation_models_pytorch, Tqdm. Detailed information 
about these software libraries can be found in the file 
requirements.txt of the source code.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Dice =
2TP

2TP + TN + FP

Results
Training and validation loss curves were used to demon-
strate convergence speed and determine whether there 
exists overfitting. Loss curve graphs of cytoplasm seg-
mentation and of nucleus segmentation are shown in the 
supplement Figure S1 and Figure S2, respectively. These 
graphs illustrate that the training speed of these models 
is fast and there is no obvious overfitting. The reason loss 
curves of Transunet Segformer models were not included 
is that during training some models did not converge and 
performances of other models were pretty bad.

All performance analyses were conducted on the test-
ing dataset. Performance comparison of different models 
trained from scratch is shown in Table 2.

Performance comparison of different models, which 
encoders were initialized by corresponding ImageNet 
pre-trained models, is shown in Table 3.

As shown in Table  2, in all cases, the U-Net-series 
models were consistently better than the DeeplabV3-
series models. No matter on which segmentation task 

Table 2 Performance comparison of base models trained from 
scratch

In the first column, cytoplasm and nucleus stand for the cytoplasm 
segmentation task and the nucleus segmentation task, respectively. The symbol 
“/” indicates that the model is collapsed as it predicts all pixels as negative or 
positive. Bold values represent the best results

Task Type Model Dice Sensitivity Specificity

Cytoplasm Unet_resnet34 0.926 0.9275 0.9777

Unet_densenet121 0.9259 0.9202 0.9801
UnetPlusPlus_resnet34 0.9229 0.926 0.9762

UnetPlusPlus_
densenet121

0.9289 0.953 0.9708

DeepLabV3_resnet34 0.9146 0.918 0.9736

DeepLabV3_resnet50 0.9159 0.9393 0.967

DeepLabV3Plus_
resnet34

0.9282 0.948 0.9721

DeepLabV3Plus_
resnet50

0.924 0.9323 0.9747

Transunet / / /

Segformer 0.8717 0.8894 0.9554

Nucleus Unet_resnet34 0.6299 0.8504 0.9931

Unet_densenet121 0.6676 0.9017 0.9935

UnetPlusPlus_resnet34 0.6966 0.9212 0.9941
UnetPlusPlus_
densenet121

0.697 0.9287 0.9941

DeepLabV3_resnet34 0.5326 0.8715 0.9887

DeepLabV3_resnet50 0.531 0.8917 0.9881

DeepLabV3Plus_
resnet34

0.5237 0.8127 0.9896

DeepLabV3Plus_
resnet50

0.5593 0.8129 0.9912

Transunet / / /

Segformer / / /
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and what the model architecture was used, compared 
with training from scratch, using the ImageNet pre-
trained encoders apparently improved the perfor-
mances. Even though Transunet [23] and Segformer 
[24] obtained very good or even SOTA results on 
many image segmentation benchmarks, in this study 
they performed much worse than their CNN coun-
terparts. In most cases, these models even collapsed 
and predicted all pixels as negative or positive. Finally, 
according to performance metrics, for every segmenta-
tion task, 4 models Unet_resnet34, Unet_densenet121, 

UnetPlusPlus_resnet34, and UnetPlusPlus_densenet121 
were chosen as base models, all of which were trained 
by the transfer learning strategy.

Although not every performance indicator of the 
ensemble model was better than that of any single 
model, all performance metrics of the ensemble model 
were better than the arithmetic mean of performance 
metrics of base models. Performance comparison of 
ensemble models and the arithmetic means of base 
models on the testing dataset is depicted in Table 4. The 
performance metrics of ensemble models were better 
than arithmetic means of performance metrics of base 
models (P < 0.05). ROC curves including AUC scores of 
cytoplasm segmentation and nucleus segmentation are 
shown in Fig. 2.

The data descriptor paper [6] also provided multi-
ple baseline models including U-Net, U-Net +  + and 
U-Net +  +  + . In this study, for every task we chose 
the best baseline metrics to compare. Performance 
comparison of the baseline model and the ensemble 
model is shown in Table  5. Except for the specificity 
on nucleus segmentation, the ensemble model outper-
formed the best baseline model with a moderate margin 
on all tasks. The specificity on nucleus segmentation of 
the ensemble model was very close to that of baseline 
model, and both were near perfect.

Besides quantitative analyses, qualitative analyses 
were also conducted in this study. From a human’s sub-
jective point of view, predicted masks were very close 
to ground truth annotations. A randomly selected case 
including the image, its ground truth annotations and 
predicted masks are shown in Fig. 3. It should be men-
tioned that most of these false positives are not actually 
false positives. The region marked by red color in the 
predicted cytoplasm image is a cytoplasm area. Because 
the main part of the cell was cropped by its neighbor 
image, the remaining small portion of cytoplasm was 
not labeled. Likewise, the noise areas in the predicted 
nucleus image marked by red circles are small nucleus 
neglected by human annotations.

Table 3 Performance comparison of base models, which 
encoders were initialized from ImageNet pre-trained models

In the first column, cytoplasm and nucleus stand for the cytoplasm 
segmentation task and the nucleus segmentation task, respectively. Bold values 
represent the best results

Task Type Model Dice Sensitivity Specificity

Cytoplasm Unet_resnet34 0.9497 0.9596 0.9819

Unet_densenet121 0.9527 0.9625 0.9828

UnetPlusPlus_resnet34 0.9533 0.9616 0.9835

UnetPlusPlus_
densenet121

0.9525 0.9594 0.9837

DeepLabV3_resnet34 0.9407 0.9496 0.9795

DeepLabV3_resnet50 0.9386 0.9492 0.9783

DeepLabV3Plus_
resnet34

0.9455 0.9475 0.9833

DeepLabV3Plus_
resnet50

0.9494 0.9598 0.9817

Nucleus Unet_resnet34 0.7411 0.9431 0.9951

Unet_densenet121 0.7506 0.9566 0.9952

UnetPlusPlus_resnet34 0.8055 0.9481 0.9967
UnetPlusPlus_
densenet121

0.7731 0.9653 0.9957

DeepLabV3_resnet34 0.6088 0.947 0.9906

DeepLabV3_resnet50 0.6419 0.9506 0.9918

DeepLabV3Plus_
resnet34

0.6721 0.9053 0.9936

DeepLabV3Plus_
resnet50

0.7353 0.9483 0.9949

Table 4 Performance comparison of ensemble models and the arithmetic means of base models on the testing dataset

In the first column, cytoplasm and nucleus stand for the cytoplasm segmentation task and the nucleus segmentation task, respectively. For every task, the first row 
depicts performance metrics of the ensemble model and the second row depicts the average performance metrics of base models. Bold values represent the best 
results, and confidence intervals are depicted in brackets

Task Type Model Dice Sensitivity Specificity

Cytoplasm Ensemble model 0.9535
(0.9534–0.9536)

0.9621
(0.9619–0.9622)

0.9835
(0.9834–0.9836)

Average value 0.9521 0.9601 0.9830

Nucleus Ensemble model 0.7863
(0.7851–0.7876)

0.9581
(0.9573–0.959)

0.9961
(0.9961–0.9962)

Average value 0.7676 0.9533 0.9957
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Fig. 2 The ROC curves including AUC scores of cytoplasm segmentation and nucleus segmentation

Table 5 Performance comparison of baseline and ensemble models on the testing dataset

In the first column, cytoplasm and nucleus stand for the cytoplasm segmentation task and the nucleus segmentation task, respectively. Bold values represent the best 
results, and confidence intervals are depicted in brackets

Task Type Model Dice Sensitivity Specificity

Cytoplasm Best Baseline Model 0.948 0.954 0.9823

Ensemble model 0.9535
(0.9534–0.9536)

0.9621
(0.9619–0.9622)

0.9835
(0.9834–0.9836)

Nucleus Best Baseline Model 0.750 0.713 0.9988
Ensemble model 0.7863

(0.7851–0.7876)
0.9581
(0.9573–0.959)

0.9961
(0.9961–0.9962)
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Discussion
Based on the above results, the following assump-
tions were proposed: under the conditions of medical 
image segmentation with small to medium sample size, 
U-Net variants are better than DeeplabV3 variants, and 
vision transformer models are much worse than CNNs. 
Vision transformers have fewer priors so that they need 
more training data. Even though both Transunet and 
Segformer adopt a CNN-like hierarchical structure 
and using a few convolutional layers at the lower level, 
they still need more data to train than U-Net variants. 
Whether these assumptions hold true for medical image 
segmentation tasks other than cervical cytology cell seg-
mentation should be further investigated.

This study has both strengths and limitations. The 
strengths of this study include on the cytoplasm segmen-
tation task, the proposed ensemble model outperformed 
the best baseline model on all performance metrics with a 
moderate margin. And on the nucleus segmentation task, 
the proposed ensemble model outperformed the best 
baseline model on all performance metrics except for 
specificity with a moderate margin. Moreover, this study 
compared the performances of different model architec-
tures, different encoders, and different training strategies. 
These comparison results may be extended to other med-
ical image segmentation tasks. This study also has some 
limitations. First and most importantly, cells are impor-
tant objects in cervical cancer cytology screening, and 
both cytoplasm and nuclei are important parts of a cell. 
However, the semantic segmentation models only classify 
every pixel, they do not identify objects. Regarding to this 
issue, both adding a post-processing algorithm after the 

semantic segmentation model to do object identification 
and using instance segmentation algorithm are feasible 
solutions. Unfortunately, both solutions will bring a cer-
tain degree of complexity. Second, this study only used 
the Cx22 dataset, the generalization ability of the models 
was not guaranteed. We plan to conduct a new study in 
the future, which will add the ability of cell object identi-
fication and carry out external validation.

Conclusions
In this study, we have developed an automated cervi-
cal cytology cell segmentation algorithm using the Cx22 
dataset by means of deep ensemble learning. The algo-
rithm obtained the Dice, sensitivity, and specificity of 
0.9535 (CIs:0.9534–0.9536), 0.9621 (0.9619–0.9622), 
0.9835 (0.9834–0.9836) and 0.7863 (0.7851–0.7876), 
0.9581 (0.9573–0.959), 0.9961 (0.9961–0.9962) for cyto-
plasm segmentation and nucleus segmentation, respec-
tively. On most performance metrics, our algorithm 
outperformed the best baseline models (P < 0.05) with 
a moderate margin. In the future, after adding the cell 
identification functionality and conducted sufficient 
external validation, it can be used in automatic cervical 
cancer cytology screening system.

Abbreviations
CNN  Convolutional neural network
ASPP  Atrous spatial pyramid pooling layer;
DICE  Dice similarity coefficient
FP  False positive
FN  False negative
TP  True positive
TN  True negative
ROC  Receiver operating characteristic

Fig. 3 A representative image, its ground truth annotations and predicted masks. The image, ground truth annotations are shown in the first row. 
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