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Abstract 

Background Accurate diagnosis of breast cancer (BC) plays a crucial role in clinical pathology analysis and ensuring 
precise surgical margins to prevent recurrence.

Methods Laser‑induced fluorescence (LIF) technology offers high sensitivity to tissue biochemistry, making it 
a potential tool for noninvasive BC identification. In this study, we utilized hyperspectral (HS) imaging data of stimu‑
lated BC specimens to detect malignancies based on altered fluorescence characteristics compared to normal tissue. 
Initially, we employed a HS camera and broadband spectrum light to assess the absorbance of BC samples. Notably, 
significant absorbance differences were observed in the 440–460 nm wavelength range. Subsequently, we developed 
a specialized LIF system for BC detection, utilizing a low‑power blue laser source at 450 nm wavelength for ten BC 
samples.

Results Our findings revealed that the fluorescence distribution of breast specimens, which carries molecular‑scale 
structural information, serves as an effective marker for identifying breast tumors. Specifically, the emission at 561 nm 
exhibited the greatest variation in fluorescence signal intensity for both tumor and normal tissue, serving as an optical 
predictive biomarker. To enhance BC identification, we propose an advanced image classification technique that com‑
bines image segmentation using contour mapping and K‑means clustering (K‑mc, K = 8) for HS emission image data 
analysis.

Conclusions This exploratory work presents a potential avenue for improving "in‑vivo" disease characterization using 
optical technology, specifically our LIF technique combined with the advanced K‑mc approach, facilitating early 
tumor diagnosis in BC.
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Introduction
BC is a prevalent and life-threatening disease affecting 
women worldwide. Early diagnosis is crucial for improv-
ing survival rates among individuals with BC [1–3]. 
Unfortunately, more than 8% of women are expected 
to develop this malignancy at some point in their lives 

[4]. BC ranks as the second most common tumor in the 
United States [5]. It is characterized by the uncontrolled 
proliferation of breast cells, with invasive ductal carci-
noma (IDC) and invasive lobular carcinoma (ILC) being 
the most prevalent types [6, 7]. The female breast primar-
ily comprises adipose, glandular, and connective tissues, 
as well as lymphatic and blood vessels. It consists of sev-
eral lobes, each connected to different lactiferous ducts 
[8–11]. Additionally, the breast stroma includes stromal 
cells and the cellular membrane (CM), composed of vari-
ous proteins, water molecules, and polysaccharides [12]. 
The CM plays a critical role in the interaction between 
stromal cells and the transmission of biochemical and 
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biophysical signals. Changes in CM structure, along 
with inflammatory cell infiltration and fibroblast sepa-
ration, have been associated with BC development [13]. 
Early detection of BC is vital for improved treatment 
outcomes and reduced mortality rates [14]. Mammog-
raphy and computed tomography are standard diagnos-
tic procedures used to identify potentially cancerous or 
benign masses or lumps in breast tissue. However, these 
methods have limitations such as inaccuracy, high costs, 
exposure to radiation, and patient discomfort during the 
examination [15]. Additionally, there is a lack of clinically 
accessible intraoperative resection edge methods, making 
breast medical treatments challenging. Consequently, up 
to 37% of identified BC cases are found at the resection 
edge [16–19]. Moreover, previous studies have linked 
tumor recurrence and metastasis to the presence of posi-
tive resection margins [20]. Various approaches have 
been employed to assess resection edges during breast-
conserving surgeries (BCS) to minimize the presence of 
tumor-positive margins [21–23]. While these methods 
have gained popularity and proven beneficial, they also 
have limitations. Physical examinations may struggle to 
detect small cancers, and mammography often produces 
false-positive results [24]. Optical spectroscopy and 
imaging techniques for diagnosing breast tumors are still 
in the early stages of development. However, the need for 
sensitive and early cancer diagnosis, coupled with tech-
nological advancements, has played a significant role in 
driving research in this field.

Fluorescence spectroscopy [25–28] has been used 
to many various sorts of materials during the last few 
decades, ranging from individual biochemical species 
to organs of living persons. It has been used for practi-
cally every form of BC, both in-/ ex-vivo, and has shown 
advantages over other light-based approaches in terms of 
sensitivity, speed, and safety. NADH, FAD, collagen, elas-
tin, lipids, aromatic acids, and porphyrins are the most 
significant endogenous fluorophores that glow in the 
UV/VIS spectral region [29]. Fluorescence in heterogene-
ous systems, such as tissue, is caused by all of the fluoro-
phores present. Such alterations occur during malignant 
cell transformations, and they are reflected in the fluo-
rescence characteristics of the BC tissue. Fluorescent 
approaches are now capable of detecting and characteriz-
ing metabolic and pathological alterations in precancer-
ous and cancerous tissues as compared to normal tissue 
[30, 31]. Fluorescence spectroscopy for BC detection 
typically involves the acquisition of fluorescence signals 
across a range of wavelengths using specialized detectors 
[32, 33]. These signals can be processed and analyzed to 
extract relevant information about the tissue’s biochemi-
cal and morphological properties. Differences in fluores-
cence intensity, emission spectra, or fluorescence lifetime 

between cancerous and non-cancerous regions can be 
indicative of the presence of BC [34–36]. Comparing flu-
orescence spectroscopy with other imaging techniques, 
such as mammography or magnetic resonance imaging 
(MRI), reveals its unique strengths. Mammography pro-
vides excellent spatial resolution but is limited in its abil-
ity to distinguish between benign and malignant lesions 
accurately [37]. MRI offers superior soft tissue contrast 
but is more expensive and time-consuming [38]. On 
the other hand, the non-ionizing nature of fluorescence 
spectroscopy makes it a safer alternative to ionizing radi-
ation-based imaging modalities like mammography and 
computed tomography [39]. It offers the potential for 
repeated examinations without excessive radiation expo-
sure. Moreover, fluorescence spectroscopy can provide 
real-time results, making it suitable for intraoperative 
assessment and guiding surgeons during BCS.

In our research, we aimed to develop a novel and 
straightforward method for non-destructive and non-
contact imaging of breast tissues. We initiated the pro-
cess by illuminating the examined breast samples with 
a broad-spectrum halogen lamp, followed by scanning 
them using a HS camera. This allowed us to detect the 
spectral absorption bands of the studied BC samples 
and determine the optimal laser wavelength that induces 
fluorescence in these samples. To generate a unique 
fluorescence signature of BC areas, we employed LIF 
spectroscopy. We utilized a blue laser source to induce 
fluorescence with a higher yield in the BC samples. 
Simultaneously, the HS camera was employed to accu-
rately measure the emission spectra of the examined 
specimens. The HS camera proved to be instrumen-
tal in extracting the optical features of the samples and 
capturing fluorescence signals. Its capability to perform 
spectrometry on distant target snapshots facilitated the 
acquisition of a series of images in cube format [40, 41]. 
These images provided valuable data on target bright-
ness and irradiance within a confined spectral band-
width of approximately 5  nm. Our approach enabled 
the identification of the optimal wavelength capable of 
discriminating between precancerous and cancerous tis-
sues. The results obtained from our two-imaging setup, 
along with the scattering and emission spectra recorded 
by the HS camera, allowed for successful confirmation 
of tumor locations. Furthermore, we implemented rapid 
image segmentation using the k-mc approach with con-
tour delineation (K = 8). The motivation behind utilizing 
the k-mc with delineation approach in our study lies in 
its potential to enhance the accuracy and efficiency of 
BC detection and delineation [42]. Traditional imaging 
techniques often face challenges in precisely identifying 
the boundaries of malignant tissue and distinguishing 
it from healthy tissue. This limitation hampers surgical 
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interventions, as it becomes difficult to ensure complete 
tumor removal and minimize the risk of tumor-positive 
resection margins. By incorporating k-mc into our meth-
odology, we aim to overcome these limitations. K-mc is 
an unsupervised machine learning algorithm that can 
effectively classify data into distinct clusters based on 
their similarities [43]. In the context of BC detection, this 
clustering approach enables the differentiation of cancer-
ous and non-cancerous regions based on the fluorescence 
signals acquired from the examined breast samples. The 
application of k-means clustering in our delineation 
approach offers several advantages. Firstly, it provides an 
automated and objective means of segmenting the breast 
tissue into different clusters, thereby facilitating the iden-
tification of malignant regions. This assists in precise 
delineation and localization of tumors within the breast 
tissue. Additionally, the clustering approach can handle 
large datasets efficiently, enabling rapid processing and 
analysis of fluorescence signals, which is crucial in a clini-
cal setting where time is of the essence.

Through our research, we have developed and pre-
sented a novel method that integrates LIF spectroscopy, 
HS imaging, and k-mc for the differentiation and delinea-
tion of malignant and non-malignant breast tissues. This 
innovative approach holds great promise in enhancing 
the diagnostic capabilities of BC detection, ultimately 
leading to more accurate and targeted interventions. Fur-
thermore, the non-destructive and non-contact nature of 
our method offers distinct advantages in preserving the 
integrity of the examined tissue samples, allowing for fur-
ther analysis and potential follow-up studies. By combin-
ing advanced imaging techniques and machine learning 
algorithms, our work contributes to the advancement of 
BC early detection and clinical practice.

Materials and methods
Between October 2019 and February 2020, the investiga-
tion took place at the "Kobri El Koba Military Complex 
Hospital." The work received ethical approval from the 
Faculty of Medicine at Ain Shams University in Egypt and 
complied with the Declaration of Helsinki’s Ethical Prin-
ciples for Medical Research Involving Human Subjects. 
P.T.REC/009/003156 is the reference number. Before start-
ing data collection, each respondent read and agreed to 
two copies of a written agreement. Thirty separate patients’ 
normal tissue and breast tumor were removed for the study 
that was just presented. The samples under investigation 
are pathology slides that have BC diagnoses. Our study 
concerned females who had BC growth and underwent a 
full breast extermination procedure. Patients who met the 
following requirements were included in the study: (1) 
a recent diagnosis of breast cancer confirmed by needle 
biopsy; (2) no prior chemotherapy or hormone therapy; (3) 

tumor size between 1–3 cm; (4) unilateral BC; (5) no prior 
breast surgery; and (6) no motion artefacts. Both MRI and 
ultrasound were used by a radiologist to confirm the BC 
diagnosis. The patient information for this research is sum-
marized in Table A 1 in the Appendix. Following the rig-
orous procedure, the patients were randomly selected, and 
breast tumor samples were obtained for histological evalu-
ation. The tumors were prepared for HS imager from the 
removed breasts after breast concealment. Breast tumor 
HS images were collected. These experimental breast tissue 
samples were sliced and placed in an ice box with deion-
ized saline with measurements of (200 mm × 300 mm) and 
sample thickness of 3 ~ 5 mm. This extracted biopsy con-
sists of normal tissue and the tumor. Analysis was con-
ducted at 25 °C, a standard sample temperature of 23 to 25 
degrees Celsius predicted before each preparatory and kept 
in the fridge up to -70 °C. It was generally accepted that the 
region 50–100 mm away from the tumor was healthy, and 
pathology results supported this belief.

Before using our proposed delineation technique, two 
distinct steps of laboratory research on breast cancer 
(BC) specimens were conducted. In the initial phase, we 
focused on determining the common absorption wave-
lengths of the 10 BC samples across the visible-near 
infrared (VIS/NIR) range. This was achieved through 
HS scanning and the utilization of broad-spectrum illu-
mination at an acceptable level. Subsequently, in the sec-
ond setup, we employed a laser beam with a wavelength 
falling within the absorption bandwidth identified in the 
first phase. This laser beam was used to excite the BC 
specimens, and HS imaging was employed to capture 
optical signature readings based on LIF at the same dis-
tance. The schematic representation of the HS first setup 
is shown in Fig.  1. We should calibrate the HS imagery 
to produce the highest S/R outcome before beginning 
our experimental work. To achieve geometric calibration, 
we first employed a ruler with known geometric proper-
ties. By rotating the utilized F/10 lens until we achieved 
optimal focusing, we were able to rectify the HS picture 
for any geometric aberrations. The background response 
is then determined using a spectral picture taken from a 
white reference sheet with a high reflectivity standard. A 
non-reflective dark cover is entirely fitted over the cam-
era lens to generate the black appearance. The formula 
below is then used to calculate the relative reflectance for 
the captured images using these two acquired reference 
images [44].

where  Ifc is the corrected spectra response captured 
image,  Ioc is the raw spectra response captured image,  IDc 
is the dark recorded image, and  IBc is the white recorded 

(1)Ifc =
Ioc − IDc

IBc−IDc
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image. The visible-NIR F/1.9 lens of the SOC710 HS line 
scan camera was initially focused on scanning the whole 
landscape for each investigated breast tissue. After the 
final line of scanning was finished, the references in black 
and white were recorded down. The HS system’s wave-
length dispersion part is just a grating with a CCD detec-
tion. The spectrograph divides the dispersed spectrum 
generated by the reflected beam into several directions 
while retaining its spatial information based on wave-
length. After the dispersed light has been established 
onto the sensor the scanning line’s spatial data (520 pix-
els per row) and spectral data are separated into separate 
dimensions. On the SOC710 imager in use, the sensor 
has been moved behind the lens. The result is a full 3D 
HS picture cube. Figure  2 displays the average diffused 
spectra characteristic profiles gathered by the SOC710 
HS camera for the ten breast samples. On the other hand, 
Fig. 3 presents the statistical measures of our HS imaging 
setup, including histogram, mean, and standard deviation 
(SD), providing an overview of the tested samples.

Examining the resultant cube image and the related 
statistical analysis, as shown in Figs.  2 and 3, reveals 
that the examined BC samples exhibit considerable 
absorption in the spectral range between 440 and 

460  nm. As a consequence of this finding information 
and the distribution outcomes of pixel intensities in 
the investigated images, we decided to continue with 
LIF testing using a laser source whose wavelength is 
450 nm (blue in color), which is the mean of the char-
acteristic absorption spectra of the BC samples under 
investigation. At 450  nm, we found that the differ-
ence in absorbance characteristics between the two 
types of tissues was larger compared to the difference 
observed at 560  nm. This larger difference in absorb-
ance intensity at 450  nm facilitated the differentiation 
process between tumor and normal tissue. By choosing 
this wavelength for our LIF approach, we were able to 
excite a broader range of endogenous fluorophores pre-
sent in the BC samples, resulting in a more distinct and 
discernible fluorescence signal compared to normal 
tissue. Moreover, Shorter wavelength stimulation has 
been found to excite more bands, which improves the 
ability to detect malignancies [25, 27]. At shorter wave-
lengths such as 450 nm, the energy of the incident light 
is higher, and it can interact with a broader range of 
fluorophores in the tissue [45, 46]. This includes a wider 
variety of endogenous molecules that are often associ-
ated with cellular activities and biochemical processes. 

Fig. 1 The HS optical imaging system schematic illustration for breast absorption characteristics computations
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As a result, shorter wavelength stimulation can excite 
more fluorescent bands in the tissue, leading to a more 
informative fluorescence signature. In the context of 
detecting malignancies, cancerous tissues often exhibit 
changes in cellular composition compared to normal 
tissues. These changes can result in differences in the 
abundance and distribution of certain fluorophores 
and chromophores, which can be detected through 
their unique fluorescence response to shorter wave-
length stimulation. The suggested LIF imaging mecha-
nism consists of a HS camera (Surface Optics, SOC710, 
USA) with a VIS/NIR wavelength range (380–1050 nm) 
and a 50-mW commercial blue laser (450  nm) with a 
1.1 mm beam size and 0.6 m rad beam divergence. The 

blue laser source used to excite the biopsy samples was 
roughly 100 cm away from the optical bench and about 
90 degrees off-axis from the HS camera. The camera’s 
installed lens is (Schneider, 400–1000  nm, Germany). 
The schematic representation of the HS setup with 
LIF with the exact imaging configuration is shown 
in Fig.  4 (a) and (b), respectively. Each gathered cube 
image had 128 spectral frames with a spatial resolution 
of fewer than 40 microns and a spectral resolution of 
5  nm. As a consequence, the system was lighted, and 
all elements were fixed throughout all of the study tri-
als. The utilized optical lens had a viewing field of 10°, 
capturing a picture with dimensions of 6 cm × 8 cm at 
50  cm, which is appropriate for high focusing for the 

Fig. 2 The combined average of the 10 breast test samples’ diffused spectra characteristics

Fig. 3 The average compound of the measured histogram, Mean and SD for the ten breast tested samples
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Fig. 4 a HS optical imaging system schematic illustration based on LIF; b The exact configuration setup
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HS camera and the analyzed samples. Figure 5 depicts 
the flowchart image processing path that led to our 
encouraging results, analysis, and ultimate conclusion. 
A device (laptop) that runs software (HS-Analysis TM 
Data Analysis) managed the linear scanner’s motors, 
adjusted exposure, and gathered the emission charac-
teristics data extracting the LIF information for dif-
ferent samples of the biopsied specimens on the white 
reference that settled all on the optical board.

After implementing image acquisition, we adopted 
an approach known as 8-bit normalization to scale the 
intensity values of each pixel to an 8-bit range (0–255), 
which is equivalent to a typical RGB picture. This nor-
malization technique serves multiple purposes, includ-
ing facilitating data visualization and analysis, as well as 
ensuring compatibility with our processing tool, DAD-
iSP 6.5. By applying this step, we effectively reduced the 
influence of variability and noise in the gathered data, 
while ensuring equal weighting of all spectral bands in 
the subsequent clustering analysis. In the image pro-
cessing proposed work, we used the K-mc intention 
is to establish k centers, one for every grouping. Typi-
cally, they should be placed as widely apart as feasi-
ble in order to improve recognition rate and limit the 
occurrence of false signals. Now next procedure is to 
associate every point within a particular set of data 
with the nearest cluster center. In this approach, each 
category will have one center point, and the outcome 
gets progressively consistent as iterations rise, indi-
cating that they have reached an  assent.  According to 
our histogram computations for the examined breast 
specimens, we determined the optimum choice of k = 8 
for the k-mc applied to the normalized HS image data. 
By selecting this value, we aimed to strike a balance 
between accuracy and computational efficiency. Conse-
quently, our application of k-mc to the normalized HS 
image data with k = 8 allowed us to effectively analyze 
and classify the breast specimens in an efficient and 

accurate manner. The fundamental steps in the K-mc 
(K = 8) algorithm for selecting clusters are described in 
Eqs. (2) and (3) [47, 48]. The optimal solution, J*(V), is 
first minimized by this approach utilizing:

where “||zi – cei||” is the Euclidean distance between zi 
and cei, “m” is the number of cluster centers, “mi” is the 
number of data points in ith clustering, Zi is the collection 
of data sets to be clustered, and cej.

Is the set of d-dimensional centroids. The formula for 
the minimum-distance classifier is used to generate the 
new cluster centroid, cei [47]

The DADiSP 6.5 software served as the primary foun-
dation for the image processing algorithm sequence (DSP 
Development Corporation, USA). With the use of our 
method for processing images, accurate image spectral 
data was made available that could be utilized to cluster 
the tumor from the surrounding healthy tissue using the 
LIF method.

Results and analysis
The proposed LIF setup for BC detection involves the 
response of specimens to 450 nm source excitation light. 
The HS camera computes the emitted spectra of light, 
allowing for the selection of the appropriate wavelength 
for tumor classification using our algorithm. Fluores-
cence occurs when molecules are excited by a steady 
light source, and the difference in fluorescence intensity 
between normal and malignant breast tissues could be 
our optical marker for our BC differentiation process. By 
utilizing our LIF approach with a wavelength of 450 nm, 
we induced a significantly greater state in the investi-
gated breast samples. The emission of the fluorescence 

(2)J∗(V ) =
∑m

i=1

∑mi

j=1

(

�zi − cej�
)2

(3)cej =
1

mi

mi

j=1
zi

Fig. 5 Image processing algorithm sequence and tool block diagram for this investigation utilizing the HS system for tumor detection based on LIF
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signature allows the stimulated matter to return to its 
baseline state, and the emitted photons represent all 
potential energy transitions of the stimulated material. 
The SOC710 HS imager accurately measures the LIF sig-
nature, which can be utilized to identify the biochemis-
try of tissue structure. The fluorescent data was collected 
and managed using the HS-Analysis TM Data Analysis 
software. In our HS imaging investigation, we analyzed a 
total of 10 BC specimens, collecting HS images from each 
patient. A quantitative analysis comparing the emitted 
spectra of normal and cancerous tissue was conducted 
based on the emitted radiation of the spectrum images. 
When the tested samples were illuminated with a blue 
laser source, they exhibited a high photoluminescence 
signature at longer wavelengths, as represented in Figs. 6 

and 7 illustrates the statistical measures of our proposed 
LIF imaging setup for the tested samples, including the 
histogram, mean, and SD. The error bars in the figure 
represent the variation observed in the data.

Figure  6 demonstrates the fluorescence signature 
obtained when the sample was stimulated with a 50-mW 
blue laser source. It is observed that the fluorescence sig-
nature varies depending on the tested tissue sample. We 
identified a distinct wavelength, 561  nm, at which the 
maximum variation in emitted fluorescent signal occurs 
for both tumor and normal tissue. The average intensity 
value of the tumor at 561 nm is approximately 136 (dB), 
while it is about 127 (dB) for the normal tissue. This fluo-
rescence signature at 561 nm serves as a crucial guide for 
selecting the optimal spectral image that can effectively 

Fig. 6 Average LIF signature for the BC tissue samples; a normal and tumor overlaid; b Spectrum characteristic scaled logarithmically
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differentiate between the tumor and normal tissue, 
thereby enabling accurate optical diagnosis of BC tissue. 
Figure 7 illustrates the calculation of histogram, SD, and 
mean, which provide valuable insights into the range and 
distribution of fluorescence intensities. These statistical 
measures can offer information about tissue properties 
and the presence of specific biomarkers associated with 
BC. Our analysis revealed that the mean and SD values 
for tumor tissue are 0.106726 and 0. 192,092, respec-
tively, while for normal tissue, the corresponding values 
are 0.115898 and 0.217098. These findings contribute to 
a better understanding of the differences in fluorescence 
characteristics between tumor and normal tissue, aid-
ing in the development of more accurate BC detection 
method using our proposed LIF approach.According to 
our imaging results, we selected this optimal fluorescence 
emission frequency for implementing our image pro-
cessing methodology. This involved utilizing image seg-
mentation with K-mc to analyze the variance in emitted 
spectra in response to the spectral image corresponding 
to the fluorescence signature at 561  nm for breast tis-
sue sample #5 (Fig. 8(a)). In order to facilitate the image 
processing of the studied specimens, a pre-processing 
approach was applied to the 561  nm spectral image, as 
depicted in Fig. 8 (b). The application of calculated con-
tour mapping of the spectral image (561 nm) with K-mc 
(K = 8) is clearly illustrated in Fig.  8 (c), demonstrating 
the differentiation and characterization of normal tissue 
using the 0.561 µm spectral image.

Figure  8 illustrates our successful detection of the 
malignant area and its clustering relative to the normal 
tissue, utilizing the emitted signal intensity difference 

at 561  nm. By applying our classification method based 
on fluorescence, the tumor location induced by the blue 
laser was clearly discernible. Additionally, Fig.  9 dem-
onstrates the application of a contour mapping mask to 
identify the BC regions based on a specified threshold 
applied to the 561 nm image captured by the SOC710 HS 
camera on samples #5.

As shown in Fig. 9, we were able to overlay a contour 
mapping mask over the investigated sample #5 based on 
the specified threshold for the immediate grouping of 
malignant breast tissues.After the pathology examina-
tion, the effectiveness of the proposed LIF system tech-
nique was evaluated by comparing the results with the 
findings from the pathologist. The RGB image for breast 
sample #5, following the pathology analysis, is presented 
in Fig. 10.

Comparing our results shown in Fig.  9 with the 
pathology examination displayed in Fig.  10, we might 
apply our methodology using LIF to unknown breast 
samples with promising outcomes in BC instant detec-
tion. BC diagnosis demands utmost sensitivity and 
specificity, making the binary classification approach a 
vital aspect of our study [42, 49]. Our meticulous exam-
ination at the wavelength of 561 nm has yielded high-
quality outcomes. By comparing these results with the 
gold standard histology examinations, we calculated 
True Positive (TP), True Negative (TN), False Posi-
tive (FP), and False Negative (FN) values to assess pixel 
accuracy. Any misclassification of a malignant pixel in 
the histology map was labeled as FN, while any errone-
ous identification of non-cancerous tissue as cancerous 
was recorded as FP. These evaluations were performed 

Fig. 7 Visual representation of the distribution of fluorescence intensity values across the 10 tested samples, including histogram computation 
and related mean and SD
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Fig. 8 a The picture taken at 561 nm by the HS imager for sample #5; b The 561 nm image after applying image pre‑processing; c The prepared 
Image with the K‑mc (K = 8) on the given threshold value ≥ 1.7 for delineating the BC spots using our LIF results
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individually for each of the ten breast samples. our 
method demonstrated remarkable performance, with 
an average sensitivity of 94.33% and an average specific-
ity of 97.14% across all ten breast samples. These results 
indicate a highly reliable and accurate BC detection 
capability, showcasing the effectiveness of LIF with HS 
Imaging and k-mc approach. Table  1 summarizes the 
sensitivity and specificity values for each sample:

According to Table 1, These promising outcomes indi-
cate that the photoluminescence signature effect after 
stimulation by the blue light laser enables novel label-
free fluorescence BC detection and delineation. Each 
material clearly exhibits a unique photoluminescence 
signature. We may use these characteristics to instantly 
detect the tumor’s location. The fluorescent signal inten-
sity may assist considerably in distinguishing between the 

Fig. 9 Applying a contour mapping mask for the BC regions based on the specified threshold to the taken image for sample #5 at 561 nm based 
on LIF outcomes

Fig. 10 Ordinary camera’s RGB pictures of an original stained sample #5 after the pathology examination
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tumor and the surrounding cells at this candidate fluo-
rescence frequency (561 nm). Finally, we applied our LIF 
approach to BC samples 6 and 7, which confirmed our 
proposed technique. We applied image preprocessing to 
the selected image related to the wavelength mentioned 
in the cube image related to these samples. Figures 11 (a) 
and 12 (a) show the selective 561 nm spectral image and 
the demarcated normal tissue from BC after applying a 
pre-processing approach to improve image size and qual-
ity, as shown in Figs. 11 (b) and 12 (b). Figures 13 and 14 
show the application of a contour mapping mask for the 
BC regions based on the specified threshold after apply-
ing the proposed K-mc (K = 8) approach to the 561  nm 

image taken by the SOC710 HS camera on samples 6 and 
7, respectively.

We successfully characterized and clustered, as shown 
in Figs.  11  and 12, BC with respect to the normal tis-
sue for samples 6 and 7 using our fluorescent stimula-
tion experimental setup by a blue light laser source. As 
demonstrated in Figs. 13 and 14, we applied our imaging 
approach based on the K-mc technique to the 561  nm 
emitted spectral image, which is selected according to 
our results to be a marker to cluster between the tumor 
and normal tissue. Finally, we could overlay a contour 
mapping mask based on the given threshold for the 
instant grouping of non-cancerous breast tissues on the 
studied samples 6 and 7, respectively. According to our 
pilot study, we have developed a novel approach that 
relies on LIF with HS imaging and k-mc. Our proposed 
method has provided promising results in distinguish-
ing between cancerous and healthy breast tissues without 
the need to use exogenous dyes. Using our proposed LIF 
spectroscopy, we have been able to detect and analyze 
the fluorescence emitted from tissues in response to laser 
excitation. By carefully selecting the excitation wave-
length (450  nm) and employing a hyperspectral imager, 
we collected detailed fluorescence data across a range 
of wavelengths, capturing valuable information about 
BC diagnosis. One of the significant advantages of our 
approach is that it eliminates the need to use exogenous 
dyes for tissue staining. While some previous studies 
have employed dyes like Rhodamine 6G, an activatable 

Table 1 Sensitivity and Specificity of the proposed LIF 
classification for the ten samples at 561 nm

Sample Sensitivity (%) Specificity (%) FN ratio (%) FP ratio (%)

1 96.2 97 3.8 3

2 93.4 95.8 6.6 4.2

3 95 98.1 5 1.9

4 93 97.6 7 2.4

5 94.6 98.5 5.4 1.5

6 93.3 97.7 6.7 2.3

7 95.2 97.2 4.8 2.8

8 94.5 96.4 5.5 3.6

9 93.6 97.5 6.4 2.5

10 94.5 95.6 5.5 4.4

Fig. 11 a The picture recorded at 561 nm by the HS imager for sample #7; b The 561 nm image after applying image pre‑processing for delineating 
the BC spots using our LIF results
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Fig. 12 a The picture taken at 561 nm by the HS imager for sample #7; b The 561 nm image after applying image pre‑processing for delineating 
the BC spots using our LIF results

Fig. 13 Applying the proposed k‑mc and a contour mapping mask for the BC regions based on the specified threshold to the taken image 
for sample #6 at 561 nm based on LIF outcomes
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polymeric or sodium fluorescein as presented in [25, 
27, 32], our method utilizes endogenous fluorophores 
present within the tissue itself. This not only avoids the 
potential toxicity and hazards associated with exogenous 
dyes but also simplifies the diagnostic process by making 
it non-invasive and reducing the preparation steps which 
includes fluorescence detection equipment and spec-
tral analysis software. Moreover, the use of k-mc in our 
methodology further enhances the accuracy of tissue seg-
mentation and BC detection. By automating the segmen-
tation process, k-mc streamlines the analysis and ensures 
our objective results [50–52]. The advantages of our pilot 
study for BC using label-free fluorescence, which lever-
ages LIF with HS Imaging and K-mc, can be summarized 
as follows:

➢ Non-invasive and label-free: Our method utilizes 
endogenous fluorophores within the tissue, elimi-
nating the need for exogenous dyes and making the 
diagnostic process non-invasive and label-free.

➢ Reduced risk and hazards: By avoiding the use of 
exogenous dyes, our approach mitigates potential 
risks and hazards associated with dye administra-
tion, ensuring patient safety and comfort.

➢ Objective results: The combination of LIF and 
k-mc offers objective results, enhancing the reli-
ability and consistency of tissue segmentation and 
BC detection.

➢ Potential for real-time applications: The non-inva-
sive nature of our proposed method and the rapid 
data processing provided by K-mc open the pos-
sibility for real-time intraoperative applications, 
enabling prompt decisions during BC surgical 
interventions.

By avoiding the limitations associated with exogenous 
dyes, our method offers a safer, more efficient, and accurate 
alternative for early BC diagnosis, which could aid clinical 
pathological inspectors in making an instant estimation.

Discussion
Clinically pathological analysis has recently greatly ben-
efited from accurate disease diagnosis as a method to 
assess the pathological alterations in cells. The current 
usual protocol is biopsy [53]. However, one drawback 
of a biopsy is that a sample of the body’s tissue is taken 
out. Biopsy causes a great deal of physically agony to suf-
ferers even though it is one way to diagnose diseases. In 

Fig. 14 Applying the proposed k‑mc and a contour mapping mask for the BC regions based on the specified threshold to the taken image 
for sample #7 at 561 nm based on LIF outcomes
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some severe forms, this procedure may also take a long 
time and result in inaccurate or delayed final diagnosis. 
The patients’ desire to lower the cost of medical care is 
another reason to minimize the requirement for the sur-
gical setting that needed extracting tissue samples and 
doing histology. So, prompt diagnostic information is 
required in order to reduce the amount of time the patient 
has wait for a response and, at the same time, to lessen 
any potential spiritual harm that might happen [54]. In 
the recent times, attention has turned to an innovative 
approach of disease detection called "in-vivo" descrip-
tion of disease using optical technology. With accuracy, 
responsiveness, and selectivity, the LIF approach can be 
automated and provide real-time detection and discrimi-
nation. As a non-invasive monitoring technique that can 
locate and identify abnormal tissue areas in real time, LIF 
have a significant impact on the identification of malig-
nancies [55]. Spectra typically have a higher predictive 
precision than a judgment made only on the basis of a 
biopsy. Repeated biopsies may not be necessary as often 
thanks to LIF emission spectra [56]. Fluorescence inten-
sity can indeed serve as a differentiating factor between 
malignant and normal tissue in our proposed studies, 
indicating the presence of specific molecules, meta-
bolic activities, and structural changes within the tissue 
[57–59]. In the context of BC, alterations in the concen-
tration and distribution of fluorophores, molecular com-
position, cellular metabolism, and tissue architecture are 
often observed in malignant tissues compared to normal 
tissues. These differences can result in changes in the 
quantum yield of fluorophores present in the malignant 

tissue. By quantifying and analyzing the differences in 
fluorescent intensity, we can propose an approach for BC 
detection and discrimination. This allows us to explore 
the potential of fluorescence intensity as a valuable tool in 
identifying and characterizing BC.

We assessed our promising outcomes by calculating the 
fluorescence lifetime between the normal and malignant 
breast tissues. This involves recording the fluorescence 
intensity as a function of time after excitation. The aver-
age duration a fluorophore spends in the excited state 
before reverting to the ground state by producing a fluo-
rescence photon is referred to as the fluorescence lifetime 
[60, 61]. By measuring the fluorescence decay curves for 
the two different molecular structures of both normal 
and malignant specimens for samples (5, 6, and 7), we 
could compute the cross-correlation between the normal 
and malignant fluorescence decay curves and measure 
the similarity between two signals as a function of the 
time delay between them, as shown in Fig. 15. This figure 
illustrates the time delay variance between the tumor and 
the normal breast regions, which evaluates our findings 
about the emittance intensity difference for the malig-
nant tissue, which is presented as our optical marker for 
BC detection based on the proposed LIF approach.

Using the SOC710 HS imager enables us in our pro-
posed imaging setup to get the fluorophore’s chemical 
environment and elemental compositions both influ-
ence the Stokes shift’s amplitude after stimulated the BC 
specimens by the blue (450 nm) light laser. The desired 
outcomes are achieved by applying an associated image 
processing algorithm using K-mc (K = 8) with contour 

Fig. 15 The fluorescent life time change between malignant and normal tissue with respect to the reference excited signal using 
the cross‑correlation
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delineation in the (380-1050  nm) spectral band. Our 
imaging processing grouping technique might be 
applied to cluster the tumor location in “in-vivo” opera-
tions during surgery with the LIF technique.

Conclusion
Our study introduces an integrated technique for the 
classification of emitted hyperspectral (HS) images, 
aiming to detect cancerous tissue in a more efficient 
and less invasive manner. Traditional diagnostic meth-
ods, such as postoperative pathological approaches, 
have limitations in terms of complexity and time-con-
suming tissue preparation. In our approach, we first 
determined the common absorption wavelengths of the 
studied breast cancer (BC) samples using HS imaging 
and broad-spectrum illumination. Notably, we observed 
a significant absorbance difference in the range of 440 
to 460  nm. Subsequently, we developed a customized 
laser-induced fluorescence (LIF) method utilizing blue 
laser excitation to measure fluorescence in both healthy 
and cancerous ex vivo human breast tissues. Our system 
achieved high classification outcomes, which were con-
firmed by pathology results, validating its effectiveness 
in detecting cancerous tissue. The combination of the 
HS classification technique and our research methodol-
ogy enabled precise localization of tumors and the iden-
tification of structural changes within tissues. We found 
that extracellular protein emissions contributed signifi-
cantly to the fluorescence spectra and that variations in 
their intensity could be utilized to detect tissue abnor-
malities. The use of a 450 nm blue laser source provided 
optimal observation of these differences. In addition to 
utilizing photoluminescence signature for BC detection, 
we also identified that signal intensity can serve as a dis-
tinguishing factor. Our findings showed that the inten-
sity of malignant tissue is higher than that of normal 
tissue, providing an optical diagnostic marker for BC. 
This prospective noninvasive technique, made possible 
by HS imaging, allows for the examination and evalua-
tion of a substantial portion of tissue without the need 
for invasive procedures or tissue sample removal. Fur-
thermore, this technique has the potential to enhance 
a surgeon’s visual capabilities and can be considered as 
a virtual biopsy tool, allowing real-time examination 
of suspected cancerous tissue during surgery. By com-
bining our unique imaging methodology based on LIF 
spectrophotometric analysis with our K-mc strategy and 
contour delineation, we have laid the foundation for a 
new and efficient "in-vivo" description of diseases using 
optical technology, particularly in the early detection 
of tumors. This approach holds promise for improving 
diagnostic accuracy and guiding surgical interventions 
with enhanced precision.
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