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Abstract 

Background  The purpose of this study was to determine whether radiological measurements of radial fracture posi-
tion made in cone beam computed tomography (CBCT) projection images are comparable to those made on tradi-
tional radiographs and could potentially substitute them.

Methods  Sixteen patients with fractures of the distal radius referred for radiographs were recruited for an addi-
tional CBCT scan which was performed immediately afterwards. Projection images and volumetric data were saved 
from the CBCT scans. Measurements of ulnar variance, radial inclination and volar tilt were made from all three sets 
of images.

Results  Agreement of projection image based measurements with radiographs was nearly as good as as the agree-
ment of cross sectional image measurements with radiographs. The average difference between the results for pro-
jection images and radiographs were -1.2 mm (SD 1.9 mm), for radial inclination 0.7° (SD 2.9°) and for volar tilt 1.9° 
(SD 5.6°).

Conclusion  Differences between radiological measurements between the modalities studied are small and projec-
tion images could be used for the assessment of distal radial fractures.
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Background
Traditionally diagnosis of wrist fractures has been based 
on radiographs, and along with the clinical information, 
measurements made on radiographic images play a role 

in clinical decision making. Radiographic measurements 
such as ulnar variance, radial inclination and volar tilt are 
used clinically to determine treatment (conservative vs. 
operative) of distal radial fractures [1–3].

However, clinically relevant injuries are often 
missed on conventional radiography, so computed 
tomography (CT) is often necessary [4–6]. Due to 
the nature of three-dimensional (3D) image data, 
CT demonstrates occult fractures with greater sen-
sitivity and provides more information about frac-
ture morphology and joint surface affliction than 
conventional radiographs [7]. In addition to multi-
slice CT, cone beam computed tomography (CBCT) 
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is used for diagnosis of peripheral fractures [8–10].  
Following the basic principle in CT imaging, CBCT is 
a cross-sectional imaging technique based on numer-
ous planar projection images (PI) taken in an arc around 
the field of view using a cone shaped x-ray beam. These 
raw-data images are used to create volumetric data [11]. 
Typically, CBCT scans are interpreted based on the 3D 
images reconstructed from these projection images. 
However, the acquired raw-data projection images them-
selves could also be used for diagnostics and to guide 
clinical decision making.

Because these CBCT projection images are two dimen-
sional (like radiographs), they could potentially serve as 
a substitute for radiographs for certain clinical purposes, 
for example as a template for radiographic measure-
ments, which, to our knowledge, has not previously been 
investigated. With increasing work-load for radiologists 
and clinicians alike, fast and pragmatic image interpreta-
tion is becoming critical and superfluous imaging stud-
ies should be avoided. The purpose of this study was 
to ascertain to what degree measurements made from 
CBCT projection images are comparable to measure-
ments made on ordinary radiographs or CBCT cross sec-
tional images.

Methods
The study was conducted at Töölö Hospital, a level 
one trauma center in Helsinki, Finland. The study was 
approved by the Surgical Ethical Review Board of the 
Hospital District of Helsinki and Uudenmaa (approval 
reference number 118/13/03/02/2015) and the study 
was conducted according to the Helsinki Declaration. 
Informed consent was obtained from all individual par-
ticipants included in the study. Sixteen outpatients with 
distal radial fractures who were referred to radiographs 
in 2015–2016 were recruited for an additional CBCT 
scan.

CBCT scans were performed immediately after the 
wrist radiograph. The CBCT scans were performed with 
the wrist in neutral position. CBCT projection images 
and cross sectional images were obtained from the same 
CBCT scan.

Information about scanners
The CBCT scanner used in this study was the Carestream 
OnSight 3D Extremity System (Carestream Health Inc., 
Rochester, NY, USA). The CBCT scanner includes three 
fixed-anode x-ray tubes with 0.5  mm focus spot size. 
Three separate x-ray tubes are used in the CBCT scanner 
to avoid the cone-beam artefacts in both ends of the ver-
tical scan range. The operational range of the x-ray tubes 
are 50–90 kV tube voltages and 2–10 mA tube currents. 
The tube voltage of 90  kV and 5  mA tube current was 

used in the CBCT scans in this study. The x-ray beam fil-
tration was 2.5 mm-Al with 0.1 mm Cu added filtration. 
The estimated radiation dose is 0.01  mSv/mGycm2. The 
raw data projections were acquired with an amorphous 
silicon digital flat panel CsI(Tl) detector (Varian PaxS-
can 2530DX) which has 139  µm element size and 2 × 2 
binning used in the scans. The field-of-view used in the 
study was 219 mm wide and 216 mm in height. The scan 
time of around 25 s included an effective x-ray exposure 
time of 6 s for a 215 degrees rotation angle covered in the 
raw data projection image acquisition. The image matrix 
of 884 × 1076 pixels were used in the CBCT projection 
images. The cross-sectional image slice thickness was 
0.2604 mm with image matrix size of 884 × 884 pixels in 
the CBCT 3D image data.

Image analysis
Two radiologists, a fifth year radiology resident and an 
experienced musculoskeletal radiologist with fifteen 
years of subspecialty experience, independently ana-
lyzed the images with an interval of at least one to two 
weeks between the different modalities. Images were 
reviewed in randomized order. Measurement from pro-
jection images and radiographs were performed on an 
Impax workstation (Impax 6.6, Agfa-Gaevert, Mort-
sel, Belgium). Reconstructions and measurements from 
volume images were made using Vitrea (Vitrea 6.9.87.1, 
Vital Images Inc. Minnetonka, MN) using averaged or 
maximum intensity projection (MIP) reformatted images 
when appropriate to identify the necessary anatomical 
landmarks.

When measuring from the CBCT projection images, 
each observer chose the images which were considered 
to best correspond to posterioanterior and lateral radio-
graphs. The radiographical parameters analyzed were 
ulnar variance (UV), radial inclination (RI), and volar tilt 
(VT). Ulnar variance was defined as the long axis distance 
between the most distal extent of the ulnar head and the 
sigmoid notch (positive if the ulna was longer than the 
ulnar corner of the radius). Radial inclination was defined 
as the angle between a line perpendicular to the long 
axis of the radius and a line between the ulnar aspect of 
the articular corner of the distal radius and the tip of the 
radial styloid process. Volar tilt was defined as the angle 
between the dorsal and volar corners of the distal radial 
articular surface and a line perpendicular to the long axis 
of the radius on a lateral view (the value was negative if 
the radial articular surface was dorsally tilted) [1, 6].

Example images of each measurement projections 
images for the same patient are shown in Fig. 1.

In addition to these radiological measurements, the 
radiologists independently measured the off-centricity 
of the images: the distance from the radiocarpal joint to 
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the upper and left edges of the projection images. They 
also measured the angle between longitudinal axis of the 
radius and the z-axis of the scanner from both PA- and 
lateral PI projections. They also recorded which projec-
tion image each measurement was made from. After col-
lection of measurements, obvious errors in the data (e.g. 
incorrect sign, typographic errors) were corrected by 
consensus.

Statistical analysis
Statistical analysis was performed using Microsoft Excel 
(Microsoft Corporation, Redmond, WA) and SPSS Statis-
tics (IBM Corporation, Armonk, NY). The average values 
and standard deviations for each measurement were calcu-
lated, as well as the average differences between the three 
modalities for each measurement. In addition, the aver-
age inter-observer variation was calculated for each meas-
urement and modality. The measurements made in each 
modality were plotted against the corresponding meas-
urements in each of the other two modalities and a linear 
regression line was calculated. The agreement of the results 
for each measurement for projection images and cross 

Fig. 1  a-c Images showing projection images with measurements of (a) ulnar variance, (b) radial inclination, and (c) volar tilt

Table 1  Clinical characteristics of patients

Operative fixation 6 (37.5%)

    volar plate 4

    dorsal plate 1

    diaphyseal plate 2

Cast 11 (68.7%)

Average age 53.9 (SD 16.1)

Women 93.8% (n = 15)

Table 2  Average measurements and standard deviations (in 
parentheses) for each parameter by modality (PI projection 
images, UV ulnar variance, RI radial inclination, VT volar tilt)

Average UV [mm] Average RI [°] Average VT [°]

PI 3.1 (5.4) 17.1 (7.3) -2.8 (15.7)

Radiographs 2.2 (4.7) 16.8 (6.4) -3.1 (13.4)

Cross-sectional 
images

1.4 (4.0) 16.8 (6.9) -1.8 (14.9)

Table 3   Inter-observer variation (standard deviation in parentheses)

Average inter-observer difference 
(projection images) 

Average inter-observer 
difference
(cross-sectional images)

Average inter-
observer difference 
(radiographs)

Ulnar variance [mm] -0.5 (1.1) -0.3 (1.3) -0.3 (1.0)

Radial inclination [°] 0.2 (2.4) 0.5 (2.2) 0.3 (1.5) 

Volar tilt [°] 1.9 (4.0) 1.9 (2.1) 0.6 (3.7)
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Fig. 2  a-c Plots showing the results for ulnar variance for both observers in radiographs, projection images, and cross sectional images plotted 
against each other, with lines of best fit and r.2 values. The dashed line represents an x = y line.(UV ulnar variance, PI projection images, CSI 
cross-sectional images)

Table 4  Average differences between modalities for each parameter and standard deviations in parentheses. (PI projection images, 
CSI cross sectional images, SD standard deviation)

Average difference between 
radiograph and PI (SD)

Average difference between CSI 
and PI (SD)

Average difference 
between radiograph and 
CSI (SD)

Ulnar variance [mm] -1.2 (1.9) -1.7 (2.3) 0.5 (1.5) 

Radial inclination [°] 0.7 (2.9) 0.3 (1.9) 1.0 (2.4)

Volar tilt [°] 1.9 (5.6) 0.7 (4.1) 1.2 (4.0)
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sectional images were compared to the results for radio-
graphs (the clinical standard) using Bland–Altman plots.

Results
The imaging studies were technically successful. Three 
(18.8%) of the CBCT studies had slight motion artefacts 
visible in the cross sectional images, but these artefacts 
were insignificant.

Clinical characteristics of patients are summarized in 
Table 1. The average results and standard deviations for 
each of the imaging parameters are reported in Table 2. 
Inter-observer variation is reported in Table  3. Average 

differences between modalities for each parameter are 
reported in Table  4. Plots of the results for each meas-
urement and modality with linear correlation lines are 
shown in Figs. 2, 3 and 4.

The Bland–Altman plots showing the agreement of the 
results for projection images and cross sectional images 
compared to radiographs are shown in Figs. 5, 6 and 7.

The mean difference between projection images 
and radiographs (the clinical standard) for ulnar vari-
ance was -1.2  mm and the 95% confidence interval 
according to Bland–Altman was -4.9 – 2.6  mm; for 
radial inclination the mean difference was 0.7° and the 

a b

c

Fig. 3  a-c Plots showing the results for radial inclination for both observers in radiographs, projection images, and cross sectional images plotted 
against each other, with lines of best fit and r.2 values. The dashed line represents an x = y line. (RI radial inclination, PI projection images, CSI 
cross-sectional images)
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Bland–Altman 95% confidence interval was -4.9 – 6.3°; 
and for volar tilt the mean difference was 1.9° and the 
Bland–Altman 95% confidence interval was -9.0 – 12.8°.

The mean difference between cross-sectional images 
and radiographs (the clinical standard) for ulnar vari-
ance was 0.5  mm and the Bland–Altman 95% confi-
dence interval was -2.4 – 3.5 mm; for radial inclination 
the mean difference was 1.0° and the Bland–Altman 
95% confidence interval was -3.7 – 5.8°; and for volar 

tilt the mean difference was 1.2° and the Bland–Altman 
95% confidence interval was -6.7 – 9.1°.

The 95% confidence intervals were thus somewhat 
broader for projection images compared to radio-
graphs than for cross-sectional images compared to 
radiographs.

The absolute value of the difference between the results 
for each patient in projection images and in radiographs 
was compared to the distance between the radiocarpal 

a b

c

Fig. 4  a-c Plots showing the results for volar tilt for both observers in radiographs, projection images, and cross sectional images plotted 
against each other, with lines of best fit and r.2 values. The dashed line represents an x = y line. (VT volar tilt, PI projection images, CSI cross-sectional 
images)
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joint and the center of the image (off-centricity) and to 
deviation of the radius from the Z-axis. Neither showed 
correlation with differences in measurements between 
projection images and radiographs.

Discussion
The correlation between the results in all three modali-
ties was strong. The mean difference and the Bland–Alt-
man 95% confidence intervals for projections images 
compared to radiographs were broader than for cross 
sectional images compared to radiographs, but these 
differences were small and unlikely to have clinical rel-
evance. Interobserver variation was comparable between 
the difference modalities. Average differences between 
modalities were comparable to interobserver variation, 
usually slightly greater.

Radiographs are most commonly used in clinical prac-
tice as the basis for radiographic measures. Based on this 
study, radiological measurements performed on projec-
tion images obtained from CBCT scans are comparable 
to those performed on radiographs and CBCT volumet-
ric images. It is acknowledged that the imaging geometry 
of the CBCT scanner is different from the radiographic 

technique, in particular considering the shorter x-ray to 
detector distance. However, this did not appear to affect 
the results significantly.

Patient positioning did not affect the accuracy of the 
measurements in PI’s although the angle of the cone 
beam to the radiocarpal joint changes depending on the 
distance of the joint from the center of the image. The 
observed positioning independence may be related to 
anatomical characteristics of the radiocarpal joint. Owing 
to the concavity of radial surfaces, PI’s could accurately 
depict the anatomy of the wrist despite the off-centricity. 
This result of our study might not be applicable to other 
joints with different morphology.

Our study had some limitations including the mod-
est sample size and heterogeneous patient population 
(some patients were operatively treated and others con-
servatively). However, this heterogeneity reflects the 
normal clinical preference on the used imaging method. 
Another potential limitation was that, because 37.5% 
percentage of the fractures had been operated and had 
normal anatomic features at least partially restored, 
it may have been easier to perform measurements on 
them compared to images of untreated fractures.

Fig. 5  Bland–Altman plot comparing the differences between results for ulnar variance in projection images versus radiographs (solid dots) 
and cross-sectional images versus radiographs (hollow dots), with lines at at ± 1.96 SD (95% limits of agreement) (solid lines are the difference 
between PI’s and radiographs and dashed lines the difference between CSI’s ja radiographs). (UV ulnar variance, rad radiographs, CSI cross sectional 
images, PI projection images)
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A potential uncertainty factor could be the differing 
interpretations owing to different observers choos-
ing different CBCT projection images. However, at 
least in terms of the most clinically relevant measure-
ments performed in this study, this did not turn out to 
be a problem. Because the projection images are taken 
at over 180° around the limb (the detector spins 200° 
around the imaging target), in some cases observers 
could potentially choose an image or an opposing one 
separated by 180°. There were three cases in our study 
where the two observers chose lateral projections in 
this way. In one of these cases there was almost no dif-
ference in the measurement of volar tilt. Another case 
represented a severely deformed fracture and the third 
case was an operated wrist in which the plate partially 
obscured the joint.

Owing to the lower radiation dose per frame, CBCT 
projection images exhibit a lower contrast to noise ratio 
compared to traditional radiographs. Despite this differ-
ence, the PI’s could depict anatomical structures suffi-
ciently well for the radiographic measurements assessed 
here because there are hundreds of images which can 
be followed to identify structures as a continuum rather 

than only a few isolated projections. Three-dimensional 
imaging modalities like CBCT are increasingly used to 
detect occult fractures and assess fracture morphology, 
which raises the issue of the necessity of radiographs. It 
may not be necessary to obtain radiographs of wrist frac-
tures separately for the purpose of radiographic meas-
urements, if a CBCT scan has already been deemed 
necessary if projections images can be used as a substi-
tute for radiographs. This would reduce the need for 
additional imaging studies and promote the use of CBCT 
as a first-line imaging modality. Although typical CBCT 
scans of the wrist have a higher radiation exposure than 
plane radiographs the absolute effective dose is very low 
(in the order of few µSv level) corresponding to a very 
low radiation risk level [12].

These measurements may however be easier to per-
form on CBCT projection images as compared to 
CBCT cross-sectional images because it is not neces-
sary to make reconstructions and evaluations in dif-
ferent planes. A standard cross sectional reformatted 
image of the radius in the coronal plane might not show 
the necessary ulnar landmarks for measuring ulnar vari-
ance, and additional reformatting of the 3D volume data 

Fig. 6  Bland–Altman plot comparing the differences between results for radial inclination in projection images versus radiographs (solid dots) 
and cross-sectional images versus radiographs (hollow dots), with lines at at ± 1.96 SD (95% limits of agreement) (solid lines are the difference 
between PI’s and radiographs and dashed lines the difference between CSI’s ja radiographs). (RI radial inclination, rad radiographs, CSI 
cross sectional images, PI projection images)
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Fig. 7  Bland–Altman plot comparing the differences between results for volar tilt in projection images versus radiographs (solid dots) 
and cross-sectional images versus radiographs (hollow dots), with lines at at ± 1.96 SD (95% limits of agreement) (solid lines are the difference 
between PI’s and radiographs and dashed lines the difference between CSI’s ja radiographs). (VT volar tilt, rad radiographs, CSI cross sectional 
images, PI projection images)

could be necessary. Three dimensional images are more 
time-consuming to interpret because it is more difficult 
to find an optimal reformat plane. Particularly from the 
clinician’s point-of-view, measurements made on CBCT 
projection images could be more straightforward espe-
cially if clinicians lack time or ready access to the soft-
ware necessary for additional 3D analysis. Although 3D 
image analysis improves diagnostic accuracy, both radi-
ologists and clinicians already face an ever-increasing 
work-load caused by the large amount of data involved 
in advanced imaging methods. In the future, AI-based 
methods are likely to automize common measurements 
directly from the raw-data projection data or from the 
cross-sectional image data thus facilitating radiologist 
burden in image analysis [13, 14].

Conclusions
In conclusion, our study shows that using CBCT pro-
jection images for wrist imaging is pragmatic and offers 
sufficient accuracy for radial measurements reduc-
ing the need for radiographs and for analysis of three-
dimensional images for the purpose of making common 
radiographic measurements.
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