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Abstract 

Purpose To predict ductal carcinoma in situ with microinvasion (DCISMI) based on clinicopathologic, conventional 
breast magnetic resonance imaging (MRI), and dynamic contrast enhanced MRI (DCE-MRI) radiomics signatures 
in women with biopsy-confirmed ductal carcinoma in situ (DCIS).

Methods Eighty-six women with eighty-seven biopsy-proven DCIS who underwent preoperative MRI and under-
went surgery were retrospectively identified. Clinicopathologic, conventional MRI, DCE-MRI radiomics, combine 
(based on conventional MRI and DCE-MRI radiomics), traditional (based on clinicopathologic and conventional MRI) 
and mixed (based on clinicopathologic, conventional MRI and DCE-MRI radiomics) models were constructed by logis-
tic regression (LR) with a 3-fold cross-validation, all evaluated using receiver operating characteristic (ROC) curve 
analysis. A clinical radiomics nomogram was then built by incorporating the Radiomics score, significant clinicopatho-
logic and conventional MRI features of mixed model.

Results The area under the curves (AUCs) of clinicopathologic, conventional MRI, DCE-MRI radiomics, traditional, 
combine, and mixed model were 0.76 (95% confidence interval [CI] 0.59–0.94), 0.77 (95%CI 0.59–0.95), 0.74 (95%CI 
0.55–0.93), 0.87 (95%CI 0.73–1), 0.8 (95%CI 0.63–0.96), and 0.93 (95%CI 0.84–1) in the validation cohort, respectively. 
The clinical radiomics nomogram based on mixed model showed higher AUCs than both clinicopathologic and DCE-
MRI radiomics models in training/test (all P < 0.05) set and showed the greatest overall net benefit for upstaging 
according to decision curve analysis (DCA).

Conclusion A nomogram constructed by combining clinicopathologic, conventional MRI features and DCE-MRI 
radiomics signatures may be useful in predicting DCISMI from DICS preoperatively.
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Background
Breast cancer is one of the most common malignant 
tumors in women worldwide [1].With medical advances, 
the number of patients with ductal cancer in situ (DCIS) 
and DCIS with microinvasion (DCISMI) is increasing 
[2]. Malignant epithelial cell growth inside the mam-
mary duct lumen but no penetration beyond the base-
ment membrane is the histological hallmark of DCIS [3]. 
DCISMI is thought to be the transitional stage between 
DCIS and invasive ductal cancer (IDC) [4]. In this study, 
we used the AJCC’s definition of “microinvasion” as one 
foci (DCISMI-one) or more foci (DCISMI-more) of 
invasive carcinoma ≤ 1  mm in diameter inside an area 
of DCIS [5]. Numerous studies indicate that DCISMI’s 
prognosis and natural history are quite similar to those 
of DCIS [6–10]. However, a large-scale clinical study [11] 
revealed that the prognosis of DCISMI is more like that 
of small invasive carcinoma than DCIS.

In comparison to mammography (MG) and ultra-
sonography (US), dynamic contrast enhanced MRI 
(DCE-MRI), a common procedure for breast MRI, offers 
the best sensitivity for identifying DCIS or DCIS coupled 
with invasive cancer [12]. It is critical to “identify MRI 
features that can be combined with clinical and biologi-
cal characteristics to better stratify risk in patients with 
DCIS” [13]. Clinically, the majority of DCIS and DCISMI 
exhibit a clinically comparable morphological appear-
ance. There have been a number of publications on char-
acteristics helping to predict microinvasion and invasion, 
including clinical findings and findings on conventional 
imaging but with inconsistent results. However, there 
have been only a few publications that have compared 
MRI findings between pure DCIS and DCISMI cases [14, 
15]. To the best of our knowledge, no previous report has 
researched the predictors of DCISMI using radiomics-
based machine learning algorithms. A radiomics-based 
signature could provide a more thorough approach by 
combining both geographical and temporal data to define 
the tumor more fully. Thus, we speculate that radiomics 
characteristics obtained from DCE-MRI may represent 
cellular and molecular data and may be able to foretell 
upstaging in females with biopsy-proven DCIS.

In this study, we aimed to compare the performance 
of clinical-pathological characteristics, conventional 
breast MRI features, DCE-MRI radiomics signatures, and 
combined multiple features in predicting DCISMI and 
to construct a nomogram to better understand the risk 
factors.

Materials and methods
Patients
The institutional ethics committee approved this retro-
spective study and granted a waiver of informed consent. 

We included 246 women who underwent preoperative 
breast MRI and US guided core needle biopsy (US-CNB) 
after MRI preoperatively with primary breast DCIS from 
January 2015 to August 2022. US-CNB was performed 
with a 14-guage automated biopsy gun (Stericut; TSK 
Laboratory, Tochigi, Japan) with five samples obtained 
from each lesion. The exclusion criteria were ① those 
who had IDC or were associated with another disease 
(n = 59); ② those who had an inadequate MRI protocol 
or poor image quality (n = 9); ③ those who had received 
therapy prior to the MRI (n = 36); ④ those whose tumors 
had unclear images (n = 13); ⑤ those who had not under-
gone surgery in our hospital (n = 25); ⑥ those who 
lacked clinicopathologic data (n = 18). This implies that 
the lesions were all US and MRI visible which would bias 
the series. Finally, the research cohort consisted of 86 
individuals (mean age 44.30 ± 9.30 years) with 87 lesions 
(Fig. 1). One patient had DCIS that was verified by biopsy 
in both breasts.

MRI Examinations
Two 3.0  T scanning systems (GE Discovery 750W and 
MAGNETOM Skyra, Siemens Healthcare), each with an 
eight-channel breast-specific coil, were used for all breast 
MRI scans. Women were in the prone position. The 
imaging protocol included a T2-weighted short tau inver-
sion recovery turbo spin-echo pulse sequence (T2WI-
FS) (repetition time [TR]/echo time [TE] = 4160/85  ms; 
matrix size = 512 × 512; field of view [FOV] = 350 × 350 
 mm2, section thickness = 5  mm for the GE 750W scan-
ner; TR/TE = 3600/53  ms, matrix size = 320 × 320, 
FOV = 340 × 340  mm2, section thickness = 4  mm for 
the Simens Skyra scanner) and a DCE-MRI (TR/
TE = 4.32/2.10; matrix size = 512 × 512; FOV = 350 × 350 
 mm2, section thickness = 0.7 mm for the GE 750W scan-
ner; TR/TE = 4.49/1.68  ms, matrix size = 320 × 320, 
FOV = 340 × 340  mm2, section thickness = 1.2 mm for the 
Simens Skyra scanner). Gadolinium-DTPA (0.5  mmol/
mL, Bayer) was power-injected at a dose of 0.1 mmol/kg 
body weight and a flow rate of 2.6  mL/s, followed by a 
15 mL saline flush. The two scanners employed the same 
contrast agent and scanning mode. To balance the sam-
ple sizes on the two MRI protocols and to avoid the effect 
of excessive sample size bias on the results, we randomly 
selected the image data of above 86 patients with the 
same DICS and DCISMI component ratio.

Data collection
Retrospective data retrieval from the hospital informa-
tion system (HIS) database and the picture archiving and 
communication system (PACS) were performed on clin-
ical-pathological and imaging data. Clinical-pathologic 
characteristics of the DCIS and DCISMI groups were 
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shown in Table 1. The clinical-pathological including age, 
body mass intensity (BMI), DCIS grades of the biopsy 
specimen (low, intermediate, or high), the status of the 
estrogen receptor (ER), progesterone receptor (PR), and 
human epidermal growth factor receptor 2 (HER2), Ki-67 
proliferation, p63 and axillary lymph node metastasis. 
HER2 positivity was defined as a protein overexpression 
score of 3 + determined by immunohistochemistry or the 
presence of gene amplification (positive in  situ hybridi-
zation) [16]. Ki-67 scores ≥ 20% were considered high 
[9]. Conventional MRI features were included in Table 2, 
including lesion side, lesion number, lesion size on DCE-
MRI scan ( ≫ 2cm,< 2cm ), and morphologic feature at 
T2WI-FS and DCE-MRI according to the Breast Imaging 
Reporting and Data System MRI lexicon. Intra tumoral 
high signal intensity (SI) [17] and peritumoral edema [18] 
were evaluated on T2WI-FS in this study. Reviewers were 
blinded to the clinicopathologic results.

Medical picture registration was done using ITK-SNAP 
programmed software (version 3.4.0; http:// www. itksn 
ap. org). In the phase of the contrast-enhanced acquisi-
tion, which clearly displayed the lesion, two radiologists 
with five years of experience delineated the tumor region 
of interest (ROI) along the edge of the lesion in each layer, 
and then duplicated the ROIs for the remaining four acqui-
sitions. The third radiologist with 10  years of experience 
reexamined and validated the final boundary after the dis-
cussion when there was a significant discrepancy between 
the two radiologists. This method produced accurate fea-
ture extraction and accurate tumor outlines. We chose the 
sets of all the lesions completed by the two radiologists 
(5 years of work experience) to assess the repeatability of 
radiomics features. The interobserver reproducibility of 
feature extraction was assessed by the intra-class correla-
tion coefficient (ICC). ICC ≥ 0.75 indicated high consist-
ency and selected for further investigation.

Fig. 1 The flow diagram of the study. Abbreviations: DCIS, ductal carcinoma in situ; DCISMI, ductal carcinoma in situ with microinvasive; IDC, 
invasive ductal carcinoma; MRI, magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced MRI; DCISMI-more, DCIS with multifocal 
of microinvasive carcinoma; DCISMI-one, DCIS with one focus of microinvasive carcinoma

http://www.itksnap.org
http://www.itksnap.org
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Establishment models
Firstly, selectkbest (P < 0.05) was used to select the 
optimal predictive features to establish the clinico-
pathologic and conventional MRI models by the logis-
tic regression (LR) classifier based on clinicopathologic 
characteristics and conventional MRI features, 
respectively.

PyRadiomics (version 3.0.1; http:// github. com/ Radio 
mics/ pyrad iomics) was used to extract radiomics fea-
tures of DCE-MRI. As the images were derived from 
two MRI scanners with different parameters, nor-
malization was performed before features could be 
extracted from the ROIs of the DCE-MRI images. To 
facilitate consistent feature extraction, the image data 

were normalized and preprocessed in the following 
steps: spatial resampling to 1 × 1 × 1  mm3 and inten-
sity discretization to a fixed bin width of 25. Radiom-
ics features can be calculated on the pre-processed 
images using the wavelet and Laplacian of Gaussian 
(LoG) flters with varying sigma (= 1.0, 2.0, 3.0, 4.0, 
5.0). To reduce overfitting or selection bias, Select Per-
centile (P < 0.05 ) and least absolute shrinkage selec-
tion operator (LASSO) were used to further select the 
optimal predictive features to establish the DCE-MRI 
radiomics model. Shape-based, first-order statistical, 
gray-level cooccurrence matrix (GLCM), gray-level 
region matrix (GLSZM), gray-level run-length matrix 
(GLRLM), and gray-level dependence matrix (GLDM) 
were extracted from original and filtered images for 
a total of 7046 features. The workflow is presented 
in Fig.  2. The clinicopathologic, conventional MRI, 
DCE-MRI radiomics, combine (including conventional 
MRI and DCE-MRI radiomics), traditional (including 
clinicopathologic and conventional MRI) and mixed 
(including clinicopathologic, conventional MRI and 
DCE-MRI radiomics) models were constructed by 
the LR classifier with a threefold cross-validation, to 
ensure that it was not affected by insufficient sample 
size. Meanwhile, we also analyzed whether the DCE-
MRI radiomics model could distinguish DCISMI-more 
from DCISMI-one.

Statistical analysis
Clinicopathologic and conventional MRI features were 
compared between the DCIS and DCISMI groups 
using the Chi-square or Fisher’s exact test for categori-
cal variables and the analysis of variance (ANOVA) or 
Kruskal–Wallis test for continuous variables.

All statistical analyses were performed with SPSS 
software version 20.0 (SPSS, Chicago, IL, USA). A two-
sided P < 0.05 was considered statistically significant. 
To evaluate the predictive ability of different models, 
the area under the curve (AUC) of the receiver oper-
ating curve (ROC), sensitivity (SEN), specificity (SPE) 
with 95% confidence interval (CI), accuracy (ACC), 
positive predictive value (PPV), and negative predic-
tive value (NPV) were calculated together by using a 
given cutoff of the predicted probability of DCISMI 
and distinguished DCISMI-more from DCISMI-one by 
the DCE-MRI radiomics model as well. AUCs between 
different models were compared using DeLong’s test. 
Calibration curves were employed to assess the pre-
dictive performance of each model. To evaluate each 
model’s clinical applicability, decision curve analysis 
(DCA) was used.

Table 1 Clinicopathologic characteristics of DCIS in comparison 
with DCISMI in the study cohort

Data values indicate the number of patients (with percentages in parentheses), 
or the mean ± standard deviation
Abbreviations: DCIS Ductal carcinoma in situ, DCISMI Ductal carcinoma in situ 
with microinvasive, BMI Body Mass Index, ER Estrogen receptor, PR Progesterone 
receptor, HER2 Human epidermal growth factor receptor 2

Features DCIS (n = 42) DCISMI (n = 45) P value

MRI protocols 0.36

 GE 28(66.7%) 34(75.6%)

 SIEMENS 14(33.3%) 11(24.4%)

Age, years 42.76 ± 8.742 45.71 ± 9.577 0.1382

BMI 23.25 ± 3.405 22.10 ± 2.548 0.0772

ER status 0.0191
 Negative 12(28.57%) 24(53.33%)

 Positive 30(71.43%) 21(46.67%)

PR status 0.0074
 Negative 15(35.71%) 29(64.44%)

 Positive 27(64.29%) 16(35.56%)

HER2 status 0.0878

 Negative 15(35.71%) 8(17.78%)

 Positive 27(64.29%) 37(82.22%)

Ki-67 proliferation index (%) 0.519

  < 20 25(59.52%) 23(51.11%)

 ≧20 17(40.48%) 22(48.89%)

p63 0.0004
 Negative 2(4.76%) 16(35.56%)

 Positive 40(95.24%) 29(64.44%)

Nuclear grade 0.0006
 Low 9(21.43%) 2(4.44%)

 Intermediate 16(38.1%) 7(15.56%)

 High 17(40.47%) 36(80%)

Axillary lymph node 
metastasis

0.4948

 Negative 42(100%) 43(95.56%)

 Positive 0 2(4.44%)

http://github.com/Radiomics/pyradiomics
http://github.com/Radiomics/pyradiomics
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Table 2 Conventional MRI characteristics in patients with DCIS in comparison with DCISMI

Features DCIS (n = 42) DCISMI (n = 45) P value

Lesion side 0.2821

 Left 16(38.10%) 23(51.11%)

 Right 26(61.90%) 22(48.89%)

Types of mammary glands 0.7581

 a 1(2.38%) 1(2.22%)

 b 4(9.52%) 7(15.56%)

 c 33(78.58%) 31(68.89%)

 d 4(9.52%) 6(13.33%)

Lesion number 0.4863

 Single 39(92.86%) 39(86.67%)

 Two and Multiple 3(7.14%) 6(13.33%)

MR type of lesion 0.6694

 NME 19(45.42) 23(51.11%)

 Mass 23(54.76%) 22(48.89%)

Extent of DCIS (cm) 0.813

  < 2.0 13(30.95%) 12(26.67%)

 ≧2.0 29(69.05%) 33(73.33%)

Intertumoral high SI on T2WI 0.2302

 No 2(4.76%) 0

 Yes 40(95.24%) 45(100.00%)

Peritumoral edema on T2WI 0.0022

 No 20(47.62%) 7(15.56%)

 Yes 22(52.38%) 38(84.44%)

Initial enhancement 0.1883

 Slow 38(90.48%) 44(97.78%)

 Medium 3(7.14%) 0

 Fast 1(2.38%) 1(2.22%)

Enhancement peak (mean ± SD) 1537 ± 206.1 1574 ± 231.9 0.4417

Delayed enhancement 0.2647

 Persistent 9(21.43%) 11(24.44%)

 Plateau 30(71.43%) 26(57.78%)

 Washout 3(7.14%) 8(17.78%)
aHeterogeneous enhancement pattern  < 0.0001

 No 24(57.14%) 3(6.67%)

 Yes 18(42.86%) 42(93.33%)

Necrosis within lasion 0.5756

 No 36(85.71%) 36(80.00%)

 Yes 6(14.29%) 9(20.00%)

BI-RADS 0.9046

 2 1(2.38%) 2(4.44%)

 3 4(9.52%) 4(8.89%)

 4 32(76.19%) 32(71.11%)

 5 5(11.91%) 7(15.56%)

NAC invasion on MRI 0.4948

 No 42(100.00%) 43(95.56%)

 Yes 0 2(4.44%)

Contralateral occult lesion on MRI 0.0631

 No 33(78.57%) 42(93.33%)

 Yes 9(21.43%) 3(6.67%)

Data indicate the number of lesions (with percentages in parentheses) or the mean ± standard deviation
Abbreviations: DCIS Ductal carcinoma in situ, DCISMI Ductal carcinoma in situ with microinvasive, SI Signal intensity, T2WI T2-weighted image, NME Non-mass 
enhancement, NAC Nipple-areolar complex
a Heterogeneous enhancement pattern includes heterogeneous, clumped, and clustered ring pattern
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Results
Clinicopathologic and conventional MRI features 
assessment
Among the 87 biopsy-confirmed DCIS lesions, 42 
(48.28%) were found to be pure DCIS in the final sur-
gical pathology, and 45 (51.72%) were upgraded to 
DCISMI. The mean age at diagnosis and BMI did not 
significantly differ between the two groups. Histologi-
cally, higher nuclear grade (P = 0.0006), negative p63 
(P = 0.0004), negative ER (P = 0.0191), and negative 
PR (P = 0.0074) were more significantly common in 
DCISMI group. The DCISMI group tended to show 
higher positive HER2 than the DCIS group; however, 
this difference did not reach statistical significance 
(P = 0.0878). The clinicopathologic features of these 
samples are summarized in Table 1.

Table  2 presents the conventional MRI features of 
the two groups. The DCISMI group tended to show 
more peritumoral edema (P = 0.0022) and heterogene-
ous enhancement (P < 0.0001) frequent than the DCIS 
group. There were no significant differences between 
groups aside from above the two features of conven-
tional MRI.

Among all the clinicopathologic and conventional 
MRI features, variables were selected by the select-
kbest to establish in subsequent machine learning by 
the LR classifier (Table  3). The results revealed that 

higher nuclear grade (odds ratio [OR] 3.208, 95% con-
fidence interval [CI]1.122–9.176) was the only inde-
pendent factor associated with histologic upgrade in 
the clinicopathologic model, and peritumoral edema 
(OR 4.098, 95%CI 1.061–15.832) and heterogene-
ous enhancement (OR 14.112, 95%CI 3.231–61.631) 
remained significant independent factors in the con-
ventional MRI model. However, the heterogeneous 
enhancement pattern remained the only significant 
independent factor in the traditional model (OR 
28.243, 95%CI 3.053–261.251). The primary features 
extracted in each model and LR results for each model 
in predicting DCISMI with OR were shown in the 
Appendix Table 1. The prediction performance of clin-
icopathologic, conventional MRI and traditional mod-
els were shown in Table 4 and Fig. 3a, b with AUCs of 
0.8 (95%CI 0.69–0.91)/0.76 (95%CI 0.59–0.94), 0.82 
(95%CI 0.71–0.93)/0.77 (95%CI 0.59–0.95), and 0.91 
(95%CI 0.84–0.99)/0.87 (95%CI 0.73–1) in training/
test set, respectively.

DCE-MRI radiomics assessment
Eleven radiomics features were independent predic-
tors of upstaging after feature selection (Table 3). The 
results revealed that the radiomics score was one of the 
significant independent factors associated with histo-
logic upgrade in the DCE-MRI radiomics model (OR 

Fig. 2 The radiomics flow chart of the study. Abbreviations: DCIS, ductal carcinoma in situ; DCISMI, ductal carcinoma in situ with microinvasive; MRI, 
magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced MRI
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639.215, 95%CI 32.954–14582.214), combine model 
(OR 475.328, 95%CI 17.018–13276.428), and mixed 
model (OR 1106.221, 95%CI 10.104–121118.327), 
respectively. The other significant independent factor 
in the mixed model was heterogeneous enhancement 
(OR 33.327, 95%CI 2.317–479.287). The primary fea-
tures extracted in each model and LR results for each 
model in predicting DCISMI with OR were shown in 
the Appendix Table 1. The prediction performance of 
the DCE-MRI radiomics, combine, and mixed models 
were shown in Table  4 and Fig.  3a, b with AUC val-
ues of 0.9 (95%CI 0.83–0.98)/0.74 (95%CI 0.55–0.93), 
0.94 (95%CI 0.88–1)/0.8 (95%CI 0.63–0.96), and 0.98 
(95%CI 0.96–1)/0.93 (95%CI 0.84–1) in training/test 
sets, respectively. The AUC of the DCE-MRI radiom-
ics model in distinguishing between DCISMI-one 
(n = 34) and DCISMI-more (n = 11) was 1 (95%CI 
1–1)/0.72 (95%CI 0.37–1) in training/test set (Table 4 
and Fig. 3c, d).

Model comparisons and establishment of a preoperative 
nomogram
DeLong’s test showed that the traditional model achieved 
higher AUCs than the clinicopathologic model in both 
the training and test sets (all P < 0.05). The mixed model 
showed better AUCs than both the clinicopathologic and 
DCE-MRI radiomics models in both the training and test 
sets as well (all P < 0.05). A comparison of the six models 
is shown as a heat map in Fig. 4a.

The calibration curves of the models are shown in 
Fig. 4b, which shows good calibration. DCA (Fig. 4c) illus-
trated that the mixed model showed the greatest overall 
net benefit for upstage and the second was the combine 
model within reasonable threshold probabilities. The 
DCE-MRI radiomics model, which showed all but the 
same net benefit as the traditional model, showed better 
than the conventional MRI model. To provide a visualized 
outcome measure, a preoperative nomogram figure was 
plotted based on training cohort by combining the p63, 

Table 3 The features selection methods and their corresponding parameters in the models

Abbreviations: DCE-MRI Dynamic contrast enhanced MRI, NA Not available

a, b, c, d and e represent phase 1, 2, 3, 4 and 5 of dynamic enhancement, respectively

Models Features SelectKBest
P value

SelectKBest Score Select Percentile
P value

Select Percentile Score Lasso coefficient

Clinicopathologic p63 0.000216545 15.65154265 NA NA NA

nuclear grade 0.023386159 5.432974831 NA NA NA

Conventional MRI heterogeneous enhance-
ment pattern

0.0000164 22.2414581 NA NA NA

peritumoral edema 
on T2WI

0.015883232 6.185856224 NA NA NA

DCE-MRI radiomics a_wavelet-LHH_glszm_
SmallAreaEmphasis

NA NA 0.010987487 6.920084579 0.001458018

a_wavelet-LHL_first-
order_Skewness

NA NA 0.017251576 6.023456627 -0.522407251

b_wavelet-HLH_glszm_
SizeZoneNonUniformi-
tyNormalized

NA NA 0.001811074 10.73097267 0.441698208

b_wavelet-HLH_glszm_
SmallAreaEmphasis

NA NA 0.000770171 12.65733984 0.350393762

c_wavelet-HHH_glcm_
MaximumProbability

NA NA 0.005073203 8.510581486 -0.006136234

c_wavelet-HHH_glrlm_
RunLengthNonUniformi-
tyNormalized

NA NA 0.038189923 4.507011169 0.275763724

c_wavelet-HHL_glszm_
SmallAreaEmphasis

NA NA 0.002185117 10.31798937 0.346955315

c_wavelet-LHH_glcm_
Imc1

NA NA 0.033946605 4.726340662 0.02556862

d_wavelet-HHL_glszm_
SmallAreaEmphasis

NA NA 0.006421524 8.018453923 0.04114306

e_gradient_glcm_Imc1 NA NA 0.028745645 5.039358324 0.379574092

e_wavelet-LHH_glcm_
Imc1

NA NA 0.031984038 4.837987471 0.089713532
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nuclear grade, peritumoral edema on T2WI, heterogene-
ous enhancement pattern and Radiomics score in Fig. 5.

Discussion
Our preliminary analysis showed that the preoperative 
clinicopathologic, conventional breast MRI and DCE-
MRI radiomics features could predict the preoperative 
histological upstage of DCIS and that DCE-MRI radiom-
ics signatures may be different for DCISMI-more from 
DCISMI-one. The mixed model showed excellent predic-
tive performance. The DCE-MRI radiomics model, which 
could be replaced by the traditional model, showed bet-
ter than the conventional MRI model. A nomogram con-
structed by combining clinicopathologic, conventional 
MRI features and DCE-MRI radiomics signatures may be 
useful in predicting DCISMI from DICS, preoperatively.

DCISMI represents an intermediate state between 
DCIS and IDC [19]. Although DCIS, DCISMI, and T1a 
IDC (invasive tumor size > 0.1 cm but ≤ 0.5 cm in great-
est dimension was classified as T1a) all have generally 
excellent prognosis, some studies revealed that DCISMI 
more closely resembles small invasive carcinoma than 
pure DCIS, and many practitioners are treating it as such 
[11, 20]. In comparison to women with pure DCIS or 
DCISMI-one, DCISMI-more is linked to a higher prob-
ability of invasive local recurrence in women with DCIS 
treated with breast conserving surgery [21]. The rate of 

axillary lymph node metastasis is approximately 0% to 
20% in DCISMI [19]. According to approved treatment 
guidelines, sentinel lymph node biopsy was used in con-
junction with mastectomy because of these relatively low 
but clinically significant rates [22]. A change in diagnosis 
from pure DCIS before surgery to DCISMI after surgery 
creates a great deal of patient anxiety and possibly a sec-
ond surgery [23]. Therefore, an accurate prediction of the 
histological DCISMI and even DICSMI-more could help 
with preoperative risk stratification and the best choice 
of patients who could benefit from more extensive sur-
gery while avoiding overtreatment of patients at low risk.

In this study, higher nuclear grade as the independent 
factor associated with histologic upgrade in the clinico-
pathologic model and both the peritumoral edema and 
heterogeneous enhancement as significant independ-
ent factors in the conventional MRI model, which were 
partly consistent with those of previous studies for pre-
dicting invasive breast cancer [15, 24–27]. Several prior 
studies have described the MRI features [14, 15, 28–32] 
that can help predict the invasive component of a biopsy-
proven DCIS. However, there have been few reports that 
have compared MRI findings between pure DCIS and 
DCISMI, rarely by the features using machine learning 
algorithms based on the clinicopathologic, conventional 
breast MRI, and DCE-MRI radiomics signatures. In 
this study, the mixed model established by the LR clas-
sifier showed that heterogeneous enhancement pattern 

Table 4 Predictive performances of the six models and DCE-MRI radiomics model in distinguishing DCISMI-more from DICSMI-one

Abbreviations: DCISMI Ductal carcinoma in situ with microinvasive, DCISMI-more DCIS with multifocal of microinvasive carcinoma, DCISMI-one DCIS with one focus 
of microinvasive carcinoma, AUC  Area under the curve, SEN Sensitivity, SPE Specificity, ACC  accuracy, PPV Positive predictive value, NPV Negative predictive value, CI 
Confidence interval, DCE-MRI Dynamic-contrast enhanced MRI
a Combine model was constructed based on conventional MRI and DCE-MRI radiomics features
b Traditional model was constructed based on clinicopathologic and conventional MRI features
c Mixed model was constructed based on clinicopathologic, conventional MRI and DCE-MRI radiomics features

Feature 
number

Models Method AUC(95% CI) SEN (95% CI%) SPE (95% CI%) ACC PPV NPV

2 Clinicopathologic test set 0.76(0.59–0.94) 0.93(0.7–0.99) 0.5(0.27–0.73) 0.72 0.67 0.88

training set 0.8(0.69–0.91) 0.87(0.7–0.95) 0.57(0.39–0.73) 0.72 0.68 0.8

2 Conventional MRI test set 0.77(0.59–0.95) 0.93(0.7–0.99) 0.57(0.33–0.79) 0.76 0.7 0.89

training set 0.82(0.71–0.93) 0.73(0.56–0.86) 0.82(0.64–0.92) 0.78 0.81 0.74

11 DCE-MRI radiomics test set 0.74(0.55–0.93) 0.73(0.48–0.89) 0.71(0.45–0.88) 0.72 0.73 0.71

training set 0.9(0.83–0.98) 0.87(0.7–0.95) 0.82(0.64–0.92) 0.84 0.84 0.85

13 aCombine test set 0.8 (0.63–0.96) 0.73(0.48–0.89) 0.64(0.3–0.84) 0.69 0.69 0.69

training set 0.94(0.88–1) 0.93(0.79–0.99) 0.89(0.73–0.96) 0.91 0.9 0.93

4 bTraditional test set 0.87(0.73–1) 1(0.8–1) 0.36(0.16–0.61) 0.69 0.63 1

training set 0.91(0.84–0.99) 0.97(0.83–1) 0.82(0.64–0.92) 0.9 0.85 0.96

15 cMixed test set 0.93(0.84–1) 0.93(0.7–0.99) 0.5(0.27–0.73) 0.72 0.67 0.88

training set 0.98(0.96–1) 0.93(0.79–0.99) 0.93(0.77–0.99) 0.93 0.93 0.93

16 DCE-MRI radiomics pre-
dicting DCISMI-more

test set 0.72(0.37–1) 0.67(0.12–0.98) 0.83(0.55–0.97) 0.8 0.5 0.91

training set 1(1–1) 1(0.65–1) 1(0.86–1) 1 1 1
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and Radiomics score were independent predictors of 
upstage. DCISMI lesions showed more heterogeneous 
enhancement, which is partly consistent with previ-
ous studies [15, 28, 33]. The main applications of breast 

radiomics investigations include the molecular catego-
rization, lymph node metastases, and molecular mark-
ers of IDC and DCIS prediction [34]. There is only one 
report based on US radiomics to predict the molecular 

Fig. 3 The receiver operating characteristic curves (ROC) of the six models in the upstaging of DICS. a The ROC curves of clinicopathologic, 
conventional MRI, DCE-MRI radiomics, combine, traditional, and mixed models based on LR algorithm in the training cohort. b The ROC curves 
of clinicopathologic, conventional MRI, DCE-MRI radiomics, combine, traditional, and mixed models based on LR algorithm in the test cohort. 
c The ROC curve of the DCE-MRI radiomics model in distinguishing DCISMI-more from DCISMI-one in the training cohort. d The ROC curve 
of the DCE-MRI radiomics model in distinguishing DCISMI-more from DCISMI-one in the test cohort. Abbreviations: ROC, receiver operating 
characteristic curves; DCIS, ductal carcinoma in situ; MRI, magnetic resonance imaging; DCE-MRI, dynamic contrast enhanced MRI; LR, logistic 
regression; CI, confidence interval; AUC, area under the curve; DCISMI-more, DCIS with multifocal of microinvasive carcinoma; DCISMI-one, DCIS 
with one focus of microinvasive carcinoma
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biomarkers of DICS [35]. Radiomics is a precision medi-
cal method for non-invasive diagnosis, evaluation of 
efficacy, and biological behavior [36]. Contrary to our 
prior hypothesis, it was found that the DCE-MRI radi-
omics model’s AUC (AUC = 0.74) was the lowest one 
below 0.8. This may be because the MRI radiomics 
mostly depend on a set of MRI sequences [35]. In our 

study, only DCE-MRI radiomics features were included 
rather than diffusion weighted imaging (DWI) or appar-
ent diffusion coefficient (ADC) radiomics features. DWI 
may provide more accurate tumor microenvironment 
monitoring [37], which has been widely explored to dif-
ferentiate benign from malignant breast lesions [38, 39], 
and showed its diagnostic ability in DCISMI [33] and 

a b

c

Fig. 4 The heatmap, calibration curves and DCA of the six models. a Heatmap comparison of the clinicopathologic, conventional MRI, DCE-MRI 
radiomics, combine, traditional, and mixed models. b Calibration curves for the clinicopathologic, conventional MRI, DCE-MRI radiomics, combine, 
traditional, and mixed models based on the LR algorithm. It is the curve with the model-predicted probability of DCISMI as the X-axis and the actual 
rate acquired by the bootstrapping method as the Y-axis. The degree of agreement between the depicted calibration curve and the 45° straight 
line reflects the predictive performance of each model. c The DCA for the clinicopathologic, conventional MRI, DCE-MRI radiomics, combine, 
traditional, and mixed models based on the LR algorithm. The Y-axis represents the net benefit. DCA showed that in six models within reasonable 
threshold probabilities, the mixed model showed the greatest overall net benefit for upstage and the second was the combine model. The DCE-MRI 
radiomics model, which showed all but the same net benefit as the traditional model, showed better than the conventional MRI model. The 
combine model added more net benefit than the traditional model at the range of 0.4 ~ 1.0. The clinicopathologic model added more net benefit 
than the conventional MRI model and DCE-MRI radiomics model from 0.65 to 1.0 and from 0.7 to 1.0, respectively. Abbreviations: DCA, decision 
curve analysis; MRI, magnetic resonance imaging; DCE-MRI: dynamic contrast enhanced MRI; LR, logistic regression
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predicting upstaging of invasive components in biopsy-
proven DCIS [29, 40]. Because some lesions were not 
visualized on DWI, DWI sequences were not included 
in this study. In our investigation, the DCE-MRI radiom-
ics model was able to distinguish between DCISMI-more 
and DCISMI-one with an AUC of 0.72 and an accuracy 
of 0.8 using a very small sample size of 11 DCISMI-more 
lesions and 34 DCISMI-one lesions. All patients under-
went sentinel lymph node surgery in this study. Patients 
with a final diagnosis of pure DCIS and DCISMI-one 
have no axillary lymph node metastasis in our institu-
tion, while there were 2 cases (4.4%) of DCISMI-more 
patients with axillary lymph node metastasis. DCE-MRI 
radiomics potential prediction in DICSMI-more and the 
relationship between DCISMI-more and axillary lymph 
node metastasis should be verified by future prospective 
multicenter studies with larger samples.

Our research revealed that, with a histologic upgrade 
rate somewhat higher than that of other studies with 
8.8%-51.5% of DCIS patients upstaged to invasive dis-
ease [15, 41], 51.72% of lesions having a preoperative 
diagnosis of DCIS were histopathologically upgraded to 
DCISMI. There might be a few reasons. Firstly, the study’s 
sample size was small. Secondly, patients with DCIS 

histopathologically upgraded to IDC were excluded from 
our analysis according to the study’s objectives. Thirdly, 
the lesions were all US and MRI visible which would bias 
the series toward a higher rate of microinvasive cancer. 
To date, few features have consistently surfaced as strong 
predictors of upstaging on excision.

We discovered that the mixed model performed excep-
tionally well for preoperatively predicting the histologi-
cal upstage of DCISMI. In our investigation, they were 
combined into a unique clinicopathologic + conven-
tional MRI + radiomics nomogram, which demonstrated 
sufficient prediction performance. The clinicopatho-
logic prediction model reflected the role of clinical and 
pathological baseline information in upstage prediction. 
While the radiomics model based on DCE-MRI included 
quantification of pictures, the conventional MRI model 
based on T2WI-FS and DCE-MRI involved qualitative 
assessment of images. The mixed model nomogram has 
the potential to increase diagnostic effectiveness and net 
benefit over the whole spectrum of threshold probabili-
ties in DCA, in addition to displaying and customizing 
the likelihood of DCISMI for each patient.

This study had several limitations that should be noted. 
First, this was a retrospective study with a relatively small 

Fig. 5 The nomogram combining nuclear grade, p63, peritumoral edema, heterogeneous enhancement pattern and radiomics scores. The 
clinical radiomics nomogram was developed for the prediction of DCISMI with nuclear grade, p63, peritumoral edema on T2WI, heterogeneous 
enhancement pattern, and radiomics scores. Abbreviations: T2WI, T2-weighted image; DCISMI, ductal carcinoma in situ with microinvasive
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sample size at a single center. Second, two different breast 
MRI protocols (3.0 T Siemens and GE) were used at our 
hospital during the study period. At the same time, this 
may reflect the stability of the models in our study. Third, 
the DWI results were not examined, which would have 
revealed more data. Fourth, it was difficult to draw the 
margin of some DCIS lesions with non-mass enhance-
ment. Finally, we did not perform an external validation 
test using an independent data set, although a 3-fold 
cross-validation was used. To verify our nomogram, 
additional external validation utilizing several independ-
ent data sets would be required.

Conclusion
Our preoperative nomogram model specifically for 
DCISMI patients with clinicopathologic, conventional 
MRI, and DCE-MRI radiomics signatures enabled a more 
accurate prediction of upstaging in women with biopsy-
proven DCIS. This could help to select women who were 
indicated for sentinel lymph node biopsy at initial sur-
gery, thus avoiding unnecessary axillary surgery and pre-
venting delayed secondary surgery. Although validation 
requires a larger sample size, DCE-MRI radiomics may 
discriminate between DCISMI-more and DCISMI-one.
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