
Liang et al. BMC Medical Imaging          (2023) 23:120  
https://doi.org/10.1186/s12880-023-01091-6

RESEARCH

Effective automatic detection of anterior 
cruciate ligament injury using convolutional 
neural network with two attention mechanism 
modules
Chen Liang1, Xiang Li2, Yong Qin1, Minglei Li2, Yingkai Ma1, Ren Wang1, Xiangning Xu1, Jinping Yu1, 
Songcen Lv1* and Hao Luo2* 

Abstract 

Background  To develop a fully automated CNN detection system based on magnetic resonance imaging (MRI) 
for ACL injury, and to explore the feasibility of CNN for ACL injury detection on MRI images.

Methods  Including 313 patients aged 16 – 65 years old, the raw data are 368 pieces with injured ACL and 100 pieces 
with intact ACL. By adding flipping, rotation, scaling and other methods to expand the data, the final data set is 630 
pieces including 355 pieces of injured ACL and 275 pieces of intact ACL. Using the proposed CNN model with two 
attention mechanism modules, data sets are trained and tested with fivefold cross-validation.

Results  The performance is evaluated using accuracy, precision, sensitivity, specificity and F1 score of our proposed 
CNN model, with results of 0.8063, 0.7741, 0.9268, 0.6509 and 0.8436. The average accuracy in the fivefold cross-valida-
tion is 0.8064. For our model, the average area under curves (AUC) for detecting injured ACL has results of 0.8886.

Conclusion  We propose an effective and automatic CNN model to detect ACL injury from MRI of human knees. This 
model can effectively help clinicians diagnose ACL injury, improving diagnostic efficiency and reducing misdiagnosis 
and missed diagnosis.

Keywords  Anterior cruciate ligament (ACL) injury, Convolutional neural network (CNN), Magnetic resonance imaging 
(MRI), Artificial intelligence (AI)

Background
The anterior cruciate ligament (ACL) starts from the 
anterior medial aspect of the tibial intercondylar ridge, 
heals at the anterior angle of the lateral meniscus, and is 
oblique to the posterior superior lateral aspect, with fib-
ers scalloped to the medial aspect of the lateral femoral 
condyle. The ACL, one of the ligaments connecting the 
femur to the tibia in the knee joint, is among the most 
vulnerable ligaments in the knee joint. It can prevent 
excessive anterior displacement of the tibia and provides 
knee stability during rotation [1], making an ACL injury 
the most common knee ligament injury in athletes. After 
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an ACL injury, the ACL cannot easily heal itself owing 
inadequate blood supply [2], and it is at high risk for addi-
tional damage to the meniscus and cartilage. This dam-
age can cause osteoarthritis (OA) of the knee in the long 
term, resulting in severe knee pain, deformity, and lim-
ited motion on the affected side, which can reduce one’s 
the quality of life and increase the risk of knee replace-
ment as well as the financial burden on patients. There-
fore, timely surgical intervention, such as ACL repair or 
reconstruction, is usually required after an ACL injury to 
reduce the risk of additional meniscal and cartilage dam-
age and the long-term OA associated with knee instabil-
ity [3].

Thus, the accurate assessment of an ACL injury is criti-
cal for diagnosis and treatment. The diagnosis of an ACL 
injury relies primarily on clinician examination of the 
patient (e.g., anterior drawer test, Lachman test [4]) and 
magnetic resonance imaging (MRI) [5] of the knee, but 
diagnosis in this manner depends on the clinical experi-
ence of the orthopedic clinicians and on the diagnostic 
experience of radiologists. The amount of experience has 
a decisive impact on the diagnosis of an ACL injury, and 
knee MRI also requires ample time for accurate interpre-
tation. Therefore, a new clinical diagnostic aid system to 
minimize the underdiagnosis and misdiagnosis of ACL 
injuries.

In recent years, deep learning by artificial intelligence 
(AI) image analysis has been widely used in medical 
imaging. Many deep learning target detection systems 
are based on a convolutional neural network (CNN) 
because it can reduce the complexity of the whole net-
work and the training parameters, and it can keep data 
relatively constant in panning, distortion, and scaling. 
Furthermore, the network structure is easy to train, opti-
mize, and control. Over time, deep learning has made 
significant progress in the diagnosis of lung diseases [6, 
7], breast cancer [8], thyroid tumors [9], skin lesions [10], 
sarcopenia [11], meniscus tears [12], and other diseases. 
Because sports injuries such as ligament tears exhibit 
subtle abnormalities, clinicians cannot rely entirely on 
MRI images and physical examination to achieve 100% 
diagnosis accuracy. As it is impractical to perform the 
"gold standard" diagnostic method, arthroscopy, on every 
patient, new complementary diagnostic methods are 
necessary.

The main objective of our study was to develop a fully 
automated CNN-based MRI detection system for ACL 
injury identification using arthroscopy as a reference 
standard, and to explore the feasibility of a CNN for ACL 
injury detection on MRI images. Our model is based 
on ResNet and includes a dual attention mechanism 
to improve the performance of the model in diagnos-
ing ACL injury. The proposed model was evaluated and 

compared with existing CNN models like MobileNet, 
EfficientNet-B0, EfficientNet-B1, VGG, ResNet-34, and 
ResNet-50.

Methods
Patients diagnosed with an ACL injury from 2012 to 
2020 were recruited from the Department of Minimally 
Invasive Surgery and Sports Medicine of The Second 
Affiliated Hospital of Harbin Medical University. Of 
the 400 cases considered for study inclusion, 10 cases 
were excluded after ACL reconstruction, 27 cases were 
excluded for severe OA, and 50 cases were excluded 
owing to a poor signal-to-noise ratio or motion artifacts. 
Finally, 313 patients aged 16–65 were included, includ-
ing the MRI data of 368 subjects with an ACL injury and 
100 subjects with intact ACL injury. The baseline charac-
teristics of the population are shown in Table 1. All ACL 
diagnoses were confirmed by arthroscopic pathology and 
used as a reference standard for diagnosis.

Inclusion criteria: Patients diagnosed with an ACL 
injury and underwent ACL reconstruction in hospital 
records.

Exclusion criteria: (1) Failing to find damaged ACL 
images in MRI; (2) Loss of imaging data of patients; (3) 
The patient was diagnosed with ACL injury before the 
operation, but the ACL was not treated during the opera-
tion, that is, no severe ACL injury was observed under 
arthroscopy; (4) The patient is younger than 18 years and 
older than 65 years.

The MRI data of all the patients included in the study 
were selected and labeled by three orthopedic doctors. 
First, the layers with ACL images were selected in the 
sagittal MRI sequence of the knee joint to be cut into a 
single case of data. Second, three orthopedic surgeons 
marked whether the ACL was injured according to the 
images (Label 0 or Label 1, Fig. 1). Finally, the accuracy 
of the labeling results was determined by an orthopedic 
expert. A total of 468 knees sagittal MRI T1 sequence 
data were obtained, of which 100 were healthy, and 368 
had an ACL injury, accompanied by the specified ACL 

Table 1  Baseline characteristics of the population (*: 
Mean ± Standard Deviation)

Items results

Numbers 313 patients

Injured ACL-220 patients(70.29%); 
Intact ACL-93 patients(29.71%)

Age(y)* 38.54 ± 12.14

Female/Male 131(41.85%) /182(58.15%)

BMI(kg/m2)* 24.55 ± 3.79

Selected Side 162-Left(51.76%)/151-Right(48.24%)
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diagnosis. The auxiliary diagnosis results outputted by 
our model were classified as Label 0 (Intact ACL) or 
Label 1 (Injured ACL).

First, the length and width of the original data varied, 
so in the image preprocessing, we normalized all the 
original data, and the image size was 320 × 320. Second, 
we obtained a total of 468 images, of which 368 pieces 
were labeled “1,” and 100 pieces were labeled “0.” As few 
pieces were Label 0, we needed to solve the data imbal-
ance problem to prevent underfitting in our trained 
model. By adding flipping, rotation, scaling, and other 
methods to expand the data, we expanded the dataset 
Label 0 to 275 pieces. All data were reviewed by a chief 
orthopedic physician before being processed through 

machine learning, with the same exclusion criteria as 
above, and then 13 pieces of Label 1 that did not meet the 
criteria were removed. The final data set was 630 pieces, 
including 355 pieces of Label 1 and 275 pieces of Label 0. 
The block diagram of our model’s operation procedure is 
shown in Fig. 2, including four main stages.

In the data input stage, the patient’s knee MRI images 
are cut into a single piece of data. In the second stage, 
the data pre-processing stage, all single data are normal-
ized, and the data augmentations are expanded by flip-
ping, rotating, scaling and other methods [13]. The CNN 
model recognition stage is completed by our proposed 
CNN model. On the base of ResNet, two different atten-
tion mechanism modules are added that enhance the rec-
ognition ability of the model and effectively improve the 
accuracy of the model to identify ACL injuries. Then the 
performance is measured and compared by random five-
fold cross-validation. Finally, the identification results of 
the CNN model (Label 0 or Label 1) are output by detect-
ing the ACL injury.

The proposed CNN model is based on a 13-layer 
ResNet [14] and adopts two attention mechanism mod-
ules which were inspired by previous research (ATM1 
[15] and ATM2 [16]) to improve the accuracy of model 
recognition, as shown in Fig.  3. General, the attention 
mechanism is mainly applied to the processing of the 
middle layer feature map of the neural networks, which 
aims to improve the ability of feature extraction to 
achieve better identification.

Fig. 1  Yellow arrow: A Label 0-the intact ACL; B Label 1-the injured 
ACL

Fig. 2  Flow chart of the proposed CNN model. The four stages include “Original Data”, “Data Pre-processing”, “CNN block” and “Output”
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The utility of the attention mechanism (ATM) in neural 
networks for image processing has been widely noticed 
by scholars, and several classical ATM networks exist, 
such as SENet [17] and ECA [16]. The ATM’s working 
principle can be considered as simulating the human 
visual attention mechanism; by scanning the entire target 
image, focusing on the target region, and then devoting 
more resources to this region to obtain key informa-
tion. Through the ATM, limited attention resources 
can be used to quickly identify key information from a 
large amount of information, reduce attention to other 

information, and even filter out irrelevant information. 
The mechanism can therefore improve the efficiency and 
accuracy of image processing. In medical imaging, the 
ATM can help neural networks focus on key information 
when processing large amounts of medical image data. As 
a result, the ATM has been applied to the medical field, 
including in assisting clinicians with the identification of 
melanoma [18], retinal lesions [19], the pathological sec-
tions of colorectal cancer [20] and breast cancer [21], and 
it has achieved excellent results. Thus, we believe that 
adding ATM to our CNN model can effectively improve 

Fig. 3  Structure of our convolutional neural network model. The CNN model proposed in this paper is roughly divided into two parts. The first 
part is mainly supported by ATM1, which enhances feature extraction. The latter part is mainly supported by ATM2 to enhance the classification. 
The lower left is the structure of the ResNet, and the “ReLU” is the activation function of the ResNet. The method used for down-sampling was max 
pooling with a step size of 2
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the recognition efficiency and accuracy of the model for 
knee MRI images.

In short, when the ATM was computing, the input 
medical image feature was defined as Q(queries), K(keys), 
and V(values). The ATM was to calculate the attention 
weight between Q and K, and then enhanced V, which 
Q, K, and V came from the same medical image feature. 
The formula for ATM was given in (1) [22], which com-
puted the attention function on a set of queries simulta-
neously, packed together into a matrix Q. The keys and 
values were also packed together into matrices K and V. 
So essentially ATM was a weighted sum of the values of 
the elements in the source, and Q and K are used to com-
pute the weight coefficients of the corresponding values. 
Then ATM computed the dot products of the Q with all 
K, divided each by dk  , and applied a Softmax function 
to obtain the weights on the values. Thus, it simulated 
the human visual attention mechanism, devoting more 
resources to key information and less attention to other 
information.

ATM1 is mainly used in the primary stage of the net-
work. At this time, the feature size is large, and the 
number of channels is small, so ATM1 is mainly used to 
capture the lesion part of the image’s spatial characteris-
tics. Therefore, a spatial attention module is designed in 
the front of the network. In image segmentation, ATM1 
enhances the ability of the network to extract image fea-
tures through three stages: feature extraction, feature 
similarity calculation, and original feature enhance-
ment. The attention module aims to extract similar fea-
tures in the CNN; and then uses similarity to enhance 
the original features. In short, the function of ATM1 is 
to map the original features of data to three spaces: A, 
B, and C. Because the features in the A, B, and C spaces 
roughly follow the same distribution, the features’ simi-
larity in the A and B spaces can enhance the features in 
the C space, improving the feature extraction ability and 
enhancing the ability of original features. The structure of 
the ATM1 module is shown in Fig. 4.

ATM2 draws on an efficient channel attention (ECA) 
module. Because involves fewer parameters, it reduces 
the computational complexity of the neural network 
model and produces a clear performance gain. In our 
CNN proposed model, ATM2 is mainly used in the late 
stage of the network. In this stage, the image features are 
mainly transformed into abstract high-level features, and 
these extracted features are used to map to the lesion cat-
egory. Therefore, it is necessary to strengthen the map-
ping function in the back of the network. A channel 

(1)Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

attention module is designed to strengthen the classifica-
tion ability of the model to extract features. The diagram 
of the ATM2 module is shown in Fig. 5.

Overall, the ATM1 was a spatial attention mechanism 
and the ATM2 was a channel attention mechanism, 
where the former further enhanced the features through 
the spatial similarity of the extracted features, while 
the latter focused on the classification ability of feature 
extraction. Our proposed ATM1 + ATM2, on the other 
hand, joined ATM1 and ATM2 into the whole network 
to fully utilize the respective features of the two attention 
mechanisms in order to enhance the effectiveness of the 
whole network. However, previous studies only added 
one type of ATM to the CNN model, so our research 
focused on adding two different ATM modules to the 
CNN model to verify whether it could improve the per-
formance of the CNN model and whether it performed 
better than one ATM alone by using the mechanism of 
different ATMs. Therefore, we were inspired by existing 
studies and choose two ATMs to add to our proposed 
CNN model.

Results
Our model with the dual attention mechanism was tested 
on 630 training data sets and achieved the following per-
formance: accuracy: 0.8063, precision: 0.7741, sensitiv-
ity: 0.9268, specificity: 0.6509, the area under the curve 
(AUC): 0.8886, and F1-score: 0.8436. Meanwhile, our 
model had lighter Parameters than other models. The 
evaluation results of our model compared with those 
of MobileNet, EfficientNet-B0, EfficientNet-B1, VGG, 
ResNet-34, and ResNet-50 are shown in Table 2. Moreo-
ver, the results of ATM1 and ATM2 show that one atten-
tion mechanism in the network structure was based on 
our CNN model. The results show that our model com-
bining ATM1 and ATM2 in the neural network per-
formed better, and that although the accuracy of ATM1 
was higher than the combination, its AUC, sensitivity, 
and F1 scores were lower. Thus, overall, the combination 
of ATM1 and ATM2 performed better than ATM1 alone. 
We also showed the results compared with existing atten-
tion mechanisms in Table  3. Also, our model had bet-
ter performance than SENet and CBAM. The confusion 
matrix of all data is shown in Fig. 6, which shows the true 
positive, true negative, false positive, and false negative of 
Label 0 and Label 1. Our model visualization of the iden-
tification of ACL injuries on input data is shown in Fig. 7.

In the five-fold cross-validation, 80% of the dataset was 
randomly selected for training each time, and 20% of the 
remaining dataset was used as the validation set. The 
confusion matrix of five-fold cross-validation is shown in 
Fig. 8(A-E). The average accuracy in the five-fold cross-
validation was 0.8064.
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Figure  9 shows the receiver operating characteristic 
curve (ROC curve); of all the CNN models, our model 
achieved the highest AUC (0.8886), and it outper-
formed MobileNet (0.7030), EfficientNet-B0 (0.7820), 

EfficientNet-B1 (0.8126), VGG (0.8523), ResNet-34 
(0.8335), and ResNet-50 (0.8627). Meanwhile the loss 
graph of training and testing dataset was shown in 
Fig. 10, which told that test-loss has stabilized.

Fig. 4  Structure of attention mechanism module 1(ATM1). Green block and yellow block are the symmetrical features in the encoding 
and decoding process. To reduce the dimension of the channel, a convolutional layer is connected after the green block and the yellow block, 
obtaining the grey block. Purple block is the finally result of enhanced feature extraction. R denotes reshape, S denotes softmax activation function, 
□denotes matrix multiplication, ⊕denotes matrix addition

Fig. 5  Diagram of attention mechanism module 2(ATM2). The white block is the feature obtained by convolution which height is H, width is W, 
channel dimension is C), and the green block’s size is 1 × 1 × C. In this block, ATM2 carries out fast 1D convolution with size k (k is adaptive selected 
with the channel dimension C), and the result is the yellow block. Then it is calculated with the features before the ATM2 calculation, gaining 
the finally result which is the blue block
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Discussion
In this study, we demonstrated, in detail, a CNN model 
for automatic ACL detection. We studied the problem 
using 13 layers of a CNN custom residual network based 
on deep learning to effectively detect ACL damage. We 
also compared the performance of our model using two 
different attention mechanisms against that of ATM1 and 
ATM2 alone. As shown in Fig.  11, the performance of 
models with ATM1 and ATM2 alone were similar to that 

of combined applications. This result shows that ATM1 
and ATM2 were beneficial to the model, in which the 
AUC (ATM1 + ATM2) is better than AUC (ATM2) and 
AUC (ATM1), as shown in Fig. 11. The average accuracy 
of five-fold cross-validation was 0.8064.

At the same time, there were some limitations in our 
research: (1) Complete damage and partial damage could 
not be distinguished, and the fine features of the model 
on the image still need to be improved; (2) For patients 
with obsolete injuries, if the ACL had been absorbed 
such that there was no ACL in the MRI image of the 
patient, the model would identify it as Label 0; (3) We did 
not have much model training data, and we lacked exter-
nal data validation; (4) Anomaly identification appeared 
in the thermal map of model identification whether ACL 
had been damaged or not, as shown in Fig. 12.

Subsequently, we randomly selected 50 cases of data 
in the original data set, including 37 cases of Label 1 and 
13 cases of Label 0. We asked two orthopedic residents, 
one orthopedic chief physician, two radiology residents, 
and one radiology resident in our hospital, all of whom 
had been blinded to the experiment, to annotate these 50 
cases of data. One of the two residents annotated directly, 
and the other one annotated the diagnosis results with 
the aid of our CNN model. At the time of the resident’s 
diagnosis, in addition to the MRI images, we also pro-
vided a heat map of these images after they had been 
identified by our CNN model, as in the results in Fig. 7. 
This approach assisted the resident in the diagnosis. 

Table 2  Evaluation of CNN Models. Our model performed well in accuracy, sensitivity, AUC, F1-score and had lighter parameters

Model Accuracy Precision Sensitivity Specificity AUC​ F1-score Parameters

MobileNet 0.6397 0.6975 0.6366 0.6036 0.8335 0.7979 5.35M

EfficientNet-B0 0.7413 0.7500 0.8113 0.6059 0.7820 0.7794 5.22M

EfficientNet-B1 0.7460 0.7481 0.8282 0.6400 0.8126 0.7861 7.72M

VGG 0.7619 0.8213 0.7380 0.7927 0.8523 0.7774 15.29M

ResNet-34 0.7524 0.7386 0.8676 0.6036 0.8335 0.7979 22.36M

ResNet-50 0.7889 0.7921 0.8479 0.7127 0.8627 0.8190 25.32M

Ours 0.8063 0.7741 0.9268 0.6509 0.8886 0.8436 2.23M

Table 3  Comparison of ATMs. Compared with SENet and CBAM, our model had better performance in accuracy, sensitivity, AUC, and 
F1-score

Model Accuracy Precision Sensitivity Specificity AUC​ F1-score

SENet 0.7905 0.8005 0.8366 0.7309 0.8646 0.8128

CBAM 0.8127 0.8496 0.8113 0.8145 0.8842 0.8300

ATM1 0.8111 0.8041 0.8789 0.7236 0.8786 0.8398

ATM2 0.7667 0.8824 0.6761 0.8836 0.8831 0.7656

Ours 0.8063 0.7741 0.9268 0.6509 0.8886 0.8436

Fig. 6  Confusion matrix of our CNN model testing all data
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Then, the diagnostic accuracy and sensitivity were cal-
culated. The results are shown in Table 4. Although the 
accuracy and sensitivity of the residents with the assis-
tance of the CNN model were much lower than those 
of the chief physicians, the CNN model still improved 
the diagnostic accuracy of residents for ACL injuries. In 
addition, it did not take much time for the CNN model to 
identify data, which can greatly accelerate the diagnostic 
efficiency of clinicians. Inevitably, the accuracy and spec-
ificity of our proposed model for identifying ACL injuries 
were far from that of experienced chief orthopedic sur-
geons and chief radiologists. We believed that the pos-
sible reasons for this include: (1) the sample size of this 
randomly selected test was slightly small, which lead to 
a large gap in the results; (2) although the efficacy of the 
model was good and the test loss shown in Fig.  10 was 
stabilized, the number of training sets was not sufficiently 
large and there was no validation of the external data. 
So, our research direction was not only to further opti-
mize the structure of the network with the dual-attention 
mechanism but also to collect more training data sets 
and external data to improve the efficacy of the network.

In existing studies using CNN to assist clinicians in the 
diagnosis of ACL injuries, Štajduhar et al. [23]. obtained 
a highly effective model by training it on 917 data sets 

in 2017. A classic study used Bien et  al.’s MRNet [24], 
using 1370 cases of data in which the accuracy of an ACL 
injury was 0.867, the sensitivity was 0.759, and the AUC 
was 0.965. However, when Štajduhar et al.’s 917 data sets 
were used as external data for validation, the efficiency 
of the model decreased. Therefore, the external data 
validation of the CNN model was highly important, and 
external validation was needed to test the generalization 
ability of the model. Irmakci et  al. [25] also used Bien’s 
data set to train three different CNN models, and they 
concluded that ResNet-18 had better performance. Fur-
thermore, Tsai et al. [26] proposed a new model. On the 
same data set, the model’s performance was better than 
that of MRNet, and they achieved good results on the 
external data set of Štajduhar et al. Awan et al. [27] also 
used the data set training of Štajduhar et al. to identify an 
intact ACL, partially torn ACL and ruptured ACL based 
on the ResNet model, and they achieved the best results 
thus far (intact ACL: accuracy = 0.92, AUC = 0.98; partial 
tear ACL: accuracy = 0.91, AUC = 0.97; ruptured ACL: 
accuracy = 0.93, AUC = 0.99). Other studies used simi-
lar methods to customize novel CNN models, and they 
used classical data sets or data collected by researchers 
to test the auxiliary diagnostic efficiency of the model. 
They achieved good outcomes, proving that a CNN can 

Fig. 7  Top: Input data with injured ACL; Middle: the areas that may have injured ACL identified by the model, and the “Hotter” areas indicate 
the existence of injured ACL; Bottom: Visualization of model identification results on input data
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Fig. 8  Confusion matrix of fivefold cross-validation. A Acc = 0.8175; B Acc = 0.7619; C Acc = 0.7937; D Acc = 0.8175; E Acc = 0.841

Fig. 9  The area under curves of our Model compared with other CNN models
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be used as an efficient tool to help clinicians detect ACL 
injuries.

With the iteration of the CNN model, it is bound to be 
updated, and more efficient models will be used for train-
ing and learning. This means that the existing research 
results will always be covered by iterative models and 

algorithms, which cannot achieve the purpose of trans-
forming research results and providing more help to cli-
nicians. Additionally, the data set contains limitations. 
In the existing research, the original data set of CNN 
learning, training and verification are mostly the same. 
The issue with using different CNN models to train and 

Fig. 10  The loss graph of training and testing dataset

Fig. 11  The area under curves of our Model compared with SENet, CBAM, and only use ATM1 or ATM2
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analyze the same data is that new model are generally 
superior to older ones, casting doubt on the generaliza-
tion ability of the model. That is, when a CNN model 
analyzes unknown data, its efficiency may not be as good 
as when learning and training known data, so the exter-
nal verification of the model is particularly important.

In sum, the theories of using a CNN as a clinical deci-
sion support system to assist clinicians in the diagnosis of 
ACL injury have been mature. In the continuous updat-
ing of the CNN model, a CNN can also achieve better 

accuracy and sensitivity. Moreover, the input data of the 
model are no longer limited to similar data sets, and the 
classification criteria are no longer divided into whether 
the ACL is injured, or uninjured, so we must turn to the 
prediction of ACL injuries [28] and ACL reconstruction 
failures. However, the process of transforming clinical 
trial result and applying this technology in a such a way 
that helps clinicians remains stagnant. Therefore, future 
research should focus on interdisciplinary medicine and 
engineering. Researchers should speed up the transfor-
mation of clinical trial results, so that CNN models, as 
a clinical decision support system, can be used by cli-
nicians as soon as possible, reducing the misdiagnosis 
rate of ACL injuries and increasing clinician’s diagnostic 
efficiency.

Conclusion
In this paper, an effective automatic CNN model was 
proposed to detect ACL injuries from MRI images of 
the knees. The model is based on ResNet and uses a dual 
attention mechanism to identify an ACL injury in an MRI 
image. We obtained an AUC of 0.8886 and performed 
testing by five-fold cross-validation. The result indicated 
that the model can effectively help orthopedic clinicians 

Fig. 12  Abnormal identification of damaged area by our model. Top: Input data with injured ACL; Middle: the areas that may have injured ACL 
identified by the model, and the “Hotter” areas indicate the existence of injured ACL; Bottom: Visualization of model identification results on input 
data. But the damage area identified by the model is not the area of injured ACL

Table 4  The result of the selected data. Residents gained well 
outcomes with the aiding of CNN model. The diagnostic result of 
randomly selected data set

Operator Accuracy Sensitivity

Chief orthopedic physician 0.98 0.97

Orthopedic resident 1 0.74 0.70

Orthopedic resident 2 with CNN 0.82 0.81

Chief Radiologist 0.96 0.97

Radiology resident 1 0.76 0.73

Radiology resident 2 with CNN 0.84 0.84
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and radiologists diagnose ACL injuries, improve diag-
nostic efficiency, and reduce misdiagnosis and missed 
diagnoses.

Abbreviations
ACL	� Anterior cruciate ligament
ATM	� Attention mechanism
MRI	� Magnetic resonance imaging
CNN	� Convolutional neural network
AUC​	� Average area under curves
ROC curve	� Receiver operating characteristic curve

Acknowledgements
No applicable.

Authors’ contributions
All authors planned the experimental design of the study. The analysis and 
interpretation of the MR imaging and results interpretation were performed 
by Yingkai Ma, Ren Wang, Xiangning Xu, Jinping Yu.  The structures of our 
convolutional neural network and statistical analysis were provided by Xiang 
Li, Minglei Li contributed. The supervision of algorithm and convolutional 
neural network were provided by Hao Luo. The supervision of whole process 
of the experiment was performed by Chen Liang, Yong Qin and Songcen Lv. 
Chen Liang performed the analysis and interpretation of the MR imaging and 
results interpretation and wrote the final paper with edits from all authors. The 
author(s) read and approved the final manuscript.

Funding
This study was funded by the 2021 National Orthopedics and Sports Reha-
bilitation Clinical Medical Research Center Innovation Fund Project (grant 
number 2021-NCRC-CXJJ-ZH-11; grant number 2021-NCRC-CXJJ-PY-20).

Availability of data and materials
The datasets used and analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were 
in accordance with the ethical standards of the institutional and national 
research committee and with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards. Informed consent was 
obtained from all individual participants included in the study. The study was 
approved by the Ethics Committee of the 2nd Affiliated Hospital of Harbin 
Medical University in China (KY2022-233).

Consent for publication
No applicable.

Competing interests
The authors declare no competing interests.

Received: 22 December 2022   Accepted: 30 August 2023

References
	1.	 Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J. Anatomy 

of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 
2006;14(3):204–13. https://​doi.​org/​10.​1007/​s00167-​005-​0679-9. (Epub 
2005 Oct 19 PMID: 16235056).

	2.	 Negahi Shirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. Ante-
rior cruciate ligament: structure, injuries and regenerative treatments. 

Adv Exp Med Biol. 2015;881:161–86. https://​doi.​org/​10.​1007/​978-3-​319-​
22345-2_​10. (PMID: 26545750).

	3.	 Bach BR Jr, Levy ME, Bojchuk J, Tradonsky S, Bush-Joseph CA, Khan NH. 
Single-incision endoscopic anterior cruciate ligament reconstruction 
using patellar tendon autograft. Minimum two-year follow-up evaluation. 
Am J Sports Med. 1998;26(1):30–40. https://​doi.​org/​10.​1177/​03635​46598​
02600​12201. (PMID: 9474398).

	4.	 Musahl V, Karlsson J. Anterior cruciate ligament tear. N Engl J Med. 
2019;380(24):2341–8. https://​doi.​org/​10.​1056/​NEJMc​p1805​931. (PMID: 
31189037).

	5.	 Li K, Du J, Huang LX, Ni L, Liu T, Yang HL. The diagnostic accuracy of mag-
netic resonance imaging for anterior cruciate ligament injury in compari-
son to arthroscopy: a meta-analysis. Sci Rep. 2017;7(1):7583. https://​doi.​
org/​10.​1038/​s41598-​017-​08133-4. (PMID:28790406;PMCID:PMC5548790).

	6.	 Lakhani P, Sundaram B. Deep learning at chest radiography: automated 
classification of pulmonary tuberculosis by using convolutional neural 
networks. Radiology. 2017;284(2):574–82. https://​doi.​org/​10.​1148/​radiol.​
20171​62326. (Epub 2017 Apr 24 PMID: 28436741).

	7.	 Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers 
RM. Deep Convolutional neural networks for computer-aided detection: 
CNN architectures, dataset characteristics and transfer learning. IEEE Trans 
Med Imaging. 2016;35(5):1285–98. https://​doi.​org/​10.​1109/​TMI.​2016.​
25281​62. (Epub 2016 Feb 11. PMID: 26886976; PMCID: PMC4890616).

	8.	 Byra M, Galperin M, Ojeda-Fournier H, Olson L, O’Boyle M, Comstock C, 
Andre M. Breast mass classification in sonography with transfer learning 
using a deep convolutional neural network and color conversion. Med 
Phys. 2019;46(2):746–55. https://​doi.​org/​10.​1002/​mp.​13361. (Epub 2019 
Jan 16. PMID: 30589947; PMCID: PMC8544811).

	9.	 Shao J, Zheng J, Zhang B. Deep convolutional neural networks for thyroid 
tumor grading using ultrasound b-mode images. J Acoust Soc Am. 
2020;148(3):1529. https://​doi.​org/​10.​1121/​10.​00019​24. (PMID: 33003892).

	10.	 El-Khatib H, Popescu D, Ichim L. Deep learning-based methods for auto-
matic diagnosis of skin lesions. Sensors (Basel). 2020;20(6):1753. https://​
doi.​org/​10.​3390/​s2006​1753. (PMID:32245258;PMCID:PMC7147720).

	11.	 Blanc-Durand P, Schiratti JB, Schutte K, Jehanno P, Herent P, Pigneur 
F, Lucidarme O, Benaceur Y, Sadate A, Luciani A, Ernst O, Rouchaud A, 
Creze M, Dallongeville A, Banaste N, Cadi M, Bousaid I, Lassau N, Jegou S. 
Abdominal musculature segmentation and surface prediction from CT 
using deep learning for sarcopenia assessment. Diagn Interv Imaging. 
2020;101(12):789–94. https://​doi.​org/​10.​1016/j.​diii.​2020.​04.​011. (Epub 
2020 May 22 PMID: 32451309).

	12.	 Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, Zerbib 
J, Fournier L. Artificial intelligence to diagnose meniscus tears on MRI. 
Diagn Interv Imaging. 2019;100(4):243–9. https://​doi.​org/​10.​1016/j.​diii.​
2019.​02.​007. (Epub 2019 Mar 28 PMID: 30928472).

	13.	 Shorten C, Khoshgoftaar TM. A survey on image data augmenta-
tion for deep learning. J Big Data. 2019;6:60. https://​doi.​org/​10.​1186/​
s40537-​019-​0197-0.

	14.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recogni-
tion," 2016. IEEE Conference Computer Vision Pattern Recog (CVPR). 
2016;2016:770–8. https://​doi.​org/​10.​1109/​CVPR.​2016.​90.

	15.	 Li X, Jiang Y, Li M, Yin S. Lightweight attention convolutional neural 
network for retinal vessel image segmentation. IEEE Trans Industr Inf. 
2021;17(3):1958–67. https://​doi.​org/​10.​1109/​TII.​2020.​29938​42.

	16.	 Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo and Q. Hu, "ECA-Net: Efficient Channel 
Attention for Deep Convolutional Neural Networks," 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 
USA, 2020, pp. 11531–11539 https://​doi.​org/​10.​1109/​CVPR4​2600.​2020.​
01155.

	17.	 J. Hu, L. Shen and G. Sun, "Squeeze-and-Excitation Networks," 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition, Salt Lake 
City, UT, USA, 2018, pp. 7132–7141 https://​doi.​org/​10.​1109/​CVPR.​2018.​
00745.

	18.	 Li Z, Wang H, Han Q, Liu J, Hou M, Chen G, Tian Y, Weng T. Convolu-
tional neural network with multiscale fusion and attention mecha-
nism for skin diseases assisted diagnosis. Comput Intell Neurosci. 
2022;14(2022):8390997. https://​doi.​org/​10.​1155/​2022/​83909​97. (PMID:35
747726;PMCID:PMC9213118).

	19.	 Xu L, Wang L, Cheng S, Li Y. MHANet: a hybrid attention mechanism for 
retinal diseases classification. PLoS One. 2021;16(12):e0261285. https://​

https://doi.org/10.1007/s00167-005-0679-9
https://doi.org/10.1007/978-3-319-22345-2_10
https://doi.org/10.1007/978-3-319-22345-2_10
https://doi.org/10.1177/03635465980260012201
https://doi.org/10.1177/03635465980260012201
https://doi.org/10.1056/NEJMcp1805931
https://doi.org/10.1038/s41598-017-08133-4
https://doi.org/10.1038/s41598-017-08133-4
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1002/mp.13361
https://doi.org/10.1121/10.0001924
https://doi.org/10.3390/s20061753
https://doi.org/10.3390/s20061753
https://doi.org/10.1016/j.diii.2020.04.011
https://doi.org/10.1016/j.diii.2019.02.007
https://doi.org/10.1016/j.diii.2019.02.007
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TII.2020.2993842
https://doi.org/10.1109/CVPR42600.2020.01155
https://doi.org/10.1109/CVPR42600.2020.01155
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1155/2022/8390997
https://doi.org/10.1371/journal.pone.0261285


Page 13 of 13Liang et al. BMC Medical Imaging          (2023) 23:120 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

doi.​org/​10.​1371/​journ​al.​pone.​02612​85. (PMID: 34914763; PMCID: 
PMC8675717).

	20.	 Zhou P, Cao Y, Li M, Ma Y, Chen C, Gan X, Wu J, Lv X, Chen C. HCCANet: 
histopathological image grading of colorectal cancer using CNN based 
on multichannel fusion attention mechanism. Sci Rep. 2022;12(1):15103. 
https://​doi.​org/​10.​1038/​s41598-​022-​18879-1. (PMID:36068309;PMCID:
PMC9448811).

	21.	 Yao H, Zhang X, Zhou X, Liu S. Parallel structure deep neural network 
using cnn and rnn with an attention mechanism for breast cancer histol-
ogy image classification. Cancers (Basel). 2019;11(12):1901. https://​doi.​
org/​10.​3390/​cance​rs111​21901. (PMID:31795390;PMCID:PMC6966545).

	22.	 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, 
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all 
you need. In Proceedings of the 31st International Conference on Neural 
Information Processing Systems (NIPS’17). Curran Associates Inc., Red 
Hook, NY, USA, 6000–6010. https://​doi.​org/​10.​48550/​arXiv.​1706.​03762.

	23.	 Štajduhar I, Mamula M, Miletić D, Ünal G. Semi-automated detection of 
anterior cruciate ligament injury from MRI. Comput Methods Programs 
Biomed. 2017;140:151–64. https://​doi.​org/​10.​1016/j.​cmpb.​2016.​12.​006. 
(Epub 2016 Dec 15 PMID: 28254071).

	24.	 Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, 
Yeom KW, Shpanskaya K, Halabi S, Zucker E, Fanton G, Amanatullah DF, 
Beaulieu CF, Riley GM, Stewart RJ, Blankenberg FG, Larson DB, Jones 
RH, Langlotz CP, Ng AY, Lungren MP. Deep-learning-assisted diagnosis 
for knee magnetic resonance imaging: development and retrospective 
validation of MRNet. PLoS Med. 2018;15(11):e1002699. https://​doi.​org/​10.​
1371/​journ​al.​pmed.​10026​99. (PMID: 30481176; PMCID: PMC6258509).

	25.	 I. Irmakci, S. M. Anwar, D. A. Torigian and U. Bagci, "Deep Learning for Mus-
culoskeletal Image Analysis," 2019 53rd Asilomar Conference on Signals, 
Systems, and Computers, 2019, pp. 1481–1485, https://​doi.​org/​10.​1109/​
IEEEC​ONF44​664.​2019.​90486​71.

	26.	 Tsai C-H, Kiryati N, Konen E, Eshed I, Mayer A. Knee Injury Detection using 
MRI with Efficiently-Layered Network (ELNet). In: Tal A, Ismail Ben A, Mar-
leen de B, Maxime D, Herve L, Christopher P, editors. Proceedings of the 
Third Conference on Medical Imaging with Deep Learning; Proceedings 
of Machine Learning Research: PMLR; 2020. p. 784--94

	27.	 Awan MJ, Rahim MSM, Salim N, Mohammed MA, Garcia-Zapirain B, 
Abdulkareem KH. Efficient detection of knee anterior cruciate ligament 
from magnetic resonance imaging using deep learning approach. Diag-
nostics (Basel). 2021;11(1):105. https://​doi.​org/​10.​3390/​diagn​ostic​s1101​
0105. (PMID:33440798;PMCID:PMC7826961).

	28.	 Tamimi I, Ballesteros J, Lara AP, Tat J, Alaqueel M, Schupbach J, Marwan Y, 
Urdiales C, Gomez-de-Gabriel JM, Burman M, Martineau PA. A prediction 
model for primary anterior cruciate ligament injury using artificial intel-
ligence. Orthop J Sports Med. 2021;9(9):23259671211027544. https://​doi.​
org/​10.​1177/​23259​67121​10275​43. (PMID:34568504;PMCID:PMC8461131).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0261285
https://doi.org/10.1038/s41598-022-18879-1
https://doi.org/10.3390/cancers11121901
https://doi.org/10.3390/cancers11121901
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1016/j.cmpb.2016.12.006
https://doi.org/10.1371/journal.pmed.1002699
https://doi.org/10.1371/journal.pmed.1002699
https://doi.org/10.1109/IEEECONF44664.2019.9048671
https://doi.org/10.1109/IEEECONF44664.2019.9048671
https://doi.org/10.3390/diagnostics11010105
https://doi.org/10.3390/diagnostics11010105
https://doi.org/10.1177/23259671211027543
https://doi.org/10.1177/23259671211027543

	Effective automatic detection of anterior cruciate ligament injury using convolutional neural network with two attention mechanism modules
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgements
	References


