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Abstract
Background Differentiating between low-grade glioma and brain glial cell hyperplasia is crucial for the customized 
clinical treatment of patients.

Objective Based on multiparametric MRI imaging and clinical risk factors, a radiomics-clinical model and nomogram 
were constructed for the distinction of brain glial cell hyperplasia from low-grade glioma.

Methods Patients with brain glial cell hyperplasia and low-grade glioma who underwent surgery at the First 
Affiliated Hospital of Soochow University from March 2016 to March 2022 were retrospectively included. In this study, 
A total of 41 patients of brain glial cell hyperplasia and 87 patients of low-grade glioma were divided into training 
group and validation group randomly at a ratio of 7:3. Radiomics features were extracted from T1-weighted imaging 
(T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging 
(T1-enhanced). Then, LASSO, SVM, and RF models were created in order to choose a model with a greater level of 
efficiency for calculating each patient’s Rad-score (radiomics score). The independent risk factors were identified 
via univariate and multivariate logistic regression analysis to filter the Rad-score and clinical risk variables in turn. A 
radiomics-clinical model was next built of which effectiveness was assessed.

Results Brain glial cell hyperplasia and low-grade gliomas from the 128 cases were randomly divided into 10 groups, 
of which 7 served as training group and 3 as validation group. The mass effect and Rad-score were two independent 
risk variables used in the construction of the radiomics-clinical model, and their respective AUCs for the training group 
and validation group were 0.847 and 0.858. The diagnostic accuracy, sensitivity, and specificity of the validation group 
were 0.821, 0.750, and 0.852 respectively.

Conclusion Combining with radiomics constructed by multiparametric MRI images and clinical features, the 
radiomics-clinical model and nomogram that were developed to distinguish between brain glial cell hyperplasia and 
low-grade glioma had a good performance.
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Introduction
Brain glial cell hyperplasia is a characteristic patho-
logical process caused by the proliferation of glial cells 
under the stimulation of infection, poisoning, ischemia, 
hypoxia, trauma, ionizing radiation and other factors [1–
3]. Despite being a repair reaction, excessive gliosis will 
impede neuronal structural repair and functional recov-
ery [4–6], leading to a varaity of clinical symptoms.

Glioma is the most common malignancy of brain [7], 
which originates from normal glial cells [8]. Different 
grades and invasion features result in various treatment 
plans and prognoses. The primary issue in creating a 
treatment plan is preoperative grading, which also has 
an impact on the prognosis [9, 10]. Glial cell hyperplasia 
lacks distinctive clinical symptoms and imaging findings, 
and is frequently misdiagnosed as low-grade glioma, 
inflammation and other conditions [11]. Therefore, it is 
essential for clinical decision-making, therapy selection, 
and patient prognosis that brain glial cell hyperplasia and 
low-grade gliomas can be accurately distinguished before 
surgery.

MRI plays a key role in the identification of cere-
bral lesions given that it has the advantages of excellent 
soft tissue resolution, a clear anatomical backdrop, the 
absence of bone abnormalities, and three-dimensional 
imaging [12]. Radiomics extracts quantitative features 

contained in disease image data by mining data, and then 
detects disease image markers or predicts disease clas-
sification and grading. Radiomics’ advantages of being 
non-invasive, affordable, effective, and repeatable are 
beneficial for clinical decision-making [13–15].

This study aimed to further guide clinical decision-
making through investigating the feasibility of multi-
parametric MRI radiomics in differentiating between 
low-grade gliomas and glial cell hyperplasia.

Materials and methods
Patients
This retrospective study collected the clinical and imag-
ing data of 41 patients with glial cell hyperplasia and 
87 patients with low-grade glioma pathologically con-
firmed at the First Affiliated Hospital of Soochow Uni-
versity from March 2016 to March 2022. Both MRI plain 
and contrast-enhanced examination were performed 
on each patient. The inclusion criteria were: (1) Patho-
logical data provided completely. (2) MRI plain and con-
trast-enhanced examination performed before surgical 
treatment. (3) No treatment given to interfere with tumor 
progression prior to examination. The exclusion criteria 
were: (1) Unqualified MRI scans. (2) Incomplete clinical 
data (Fig.  1). The age range for the glial cell hyperpla-
sia group was 11 to 78 years (mean, 49.51 ± 17.55 years). 

Fig. 1 Shows the inclusion and exclusion criteria for 41 patients with glial cell hyperplasia and 87 patients with low-grade glioma
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Patients with pathologically confirmed low-grade glioma 
were randomly selected whose age ranged between 7 and 
83 years, with a mean age of (53.74 ± 16.51) years.

MR protocol
Images were obtained with 3.0T MRI system (Magnetom 
Skyra, Siemens Healthineers, Signa, GE Medical Sys-
tems). The patients should be instructed to maintain their 
heads motionless and, if required, to apply a gasket before 
the examination. The Siemens Skyra 3.0T MRI scanning 
parameters were as follows: T1WI: TE16ms, TR2170ms, 
thickness5mm, matrix256 × 256, T2WI: TE95ms, 
TR3400ms, thickness5mm, matrix384 × 384, DWI: 
TE87ms, TR4800ms, b = 1000s/mm2, thickness5mm, 
matrix168 × 180. The scanning settings after contrast 
injection were: TE2.26ms, TR2300ms, thickness1mm, 
matrix256 × 256. The GE 3.0T MRI scanning param-
eters were as follows: T1WI: TE28.25ms, TR:1962.20ms, 
thickness5mm, matrix512 × 512, T2WI: TE123.26ms, 
TR5100ms, thickness5mm, matrix512 × 512, DWI: 
TE75.10ms, TR5400.00ms, b = 1000s/mm2, thick-
ness5mm, matrix256 × 256  mm. The scanning settings 
after contrast injection were: TE26.85ms, TR2693.36ms, 
thickness5ms, thickness512 × 512.

Image analysis and region of interested segmentation
Two radiologists A and B (with experience of imag-
ing diagnosis for 5 and 8 years, respectively) completed 
the image reading of T1WI, T2WI, DWI, T1-enhanced 
jointly without knowing the patients’ pathology results. 
Areas of tumor necrosis, cystic degeneration, and bleed-
ing should be avoided when sketching. In case of dis-
agreement, the two radiologists shall confer to reach a 
decision. The inter-class correlation coefficient (ICC) 
was then calculated with 30 lesions that were ran-
domly chosen by the senior radiologist (Reader B). (1) 
ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.
php?n=Downloads.SNAP3) was used to manually seg-
ment the whole tumor lesion, and volume of interest 
(VOI) was defined along the tumor margin (Fig.  2). (2) 
Before feature extraction, the image was normalized and 
resampled to 3 mm×3 mm×3 mm voxel. Then FAE0.4.0 
(https://github.com/salan668/FAE) was used to extract 

the ROI imaging features of tumor lesions. Based on 
the standardized images, 1781 radiomics features were 
extracted, including shape, first-order, gray-level cooc-
currence matrix (GLCM), gray-level size zone matrix 
(GLSZM), gray-level dependence matrix (GLDM), and 
neighboring gray tone difference matrix (NGTDM). All 
extracted radiomics features are subjected to Mean Nor-
manlization. The greatest linear correlation coefficient 
among all the characteristics in each T1WI, T2WI, DWI, 
and T1-enhanced model was screened out with the Per-
son test for the subsequent analysis. (3) Texture feature 
selection: The included texture features were selected 
through the least absolute shrinkage and selection opera-
tor LASSO regression 10-fold cross validation method.

During sketching the tumor, maximum tumor diam-
eter, tumor shape, mass effect, hemorrhage, cystic degen-
eration, necrosis, garland pattern enhancement, edema 
of the lesion were recorded at the same time.

Construction of the radiomics prediction models
The LASSO, SVM and RF models were established fol-
lowing preprocessing of the extracted features based 
on the 10 times 7:3 random segmentation method. The 
AUC, accuracy, sensitivity, and specificity were applied to 
assess the performance. The precise procedure involved 
randomly splitting glial cell hyperplasia and gliomas 
into 10 portions, of which 7 were employed as the train-
ing group and 3 as the validation group. Each test can 
obtain the corresponding model prediction probability. 
The mean value of each prediction efficiency index was 
obtained as the final evaluation result of model efficiency 
after ten repetitions of 7:3 random split testing. Delong’s 
test was used to compare the AUC of the three models, 
then the radiomics model with highest efficiency was 
selected for further analysis.

Radiomics-clinical model construction and performance 
evaluation
To obtain the regression coefficients, the optimal 
radiomics features were put into a logistic model. The 
Rad-score for each patient was subsequently calculated 
with a linear method based on the different weighting 
coefficient. Finally, the clinical features and Rad-score 

Fig. 2 (a-d) The red areas showed the tumor level of T1WI, T2WI, DWI, T1-enhanced, (e) the generated tumor 3D-VOI
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were filter out with logistics univariate analysis, the vari-
ables that showed statistically significant distinction were 
retained (P < 0.05), and logistics multivariate analysis 
was performed to determine the independent predictors 
(P < 0.05). The radiomics-clinical model for distinguishing 
glial cell hyperplasia from glioma was then constructed 
with these independent predictors. The performance 
could be evaluated through the calibration curve and 

AUC of training set and validation set. In order to fur-
ther confirm the clinical value of the radiomics-clinical 
model, decision curve analysis was performed.

Statistical analysis
The SPSS (25.0, IBM, Armonk, NY, USA) and R software 
(4.1.3:www.R-project.org) were applied for the statistical 
analysis. The Mann-Whitney U test and the Chi-square 
test were employed to determine whether there were sta-
tistically significant differences between in clinical fea-
tures and imaging features.

Results
General clinical data
The study involved 128 patients, including 87 cases of 
low grade glioma and 41 cases of glial cell hyperplasia. 
Table  1 displays the patients’ clinical data and imaging 
findings.

The establishment and evaluation of the imaging model
The delineation results of both observers demonstrated 
good intergroup agreement, as determined by ICC analy-
sis (ICC ≥ 0.85). Out of the 1781 characteristics in each 
model of T1WI, T2WI, DWI, and T1-enhanced, the 
Person-test maintained the 14 features with the highest 
linear correlation coefficient. Then the LASSO, SVM, and 
RF models were established, which AUCs for distinguish-
ing between glial cell hyperplasia and low grade glioma 
were 0.782, 0.779, 0.780 (Table 2; Fig. 3). As is shown, the 
LASSO model, which was utilized to build the combined 
model, had the best predictive performance. Delong’s test 
indicated that there was no significant difference between 
the pairings of each model (P > 0.05) (Table  3). The 
LASSO model retained 24 optimal radiomics features, 
including two first-order, one shape, fifteen GLCM, two 
GLDM and four NGTDM (Fig.  4), which were linearly 
combined into one feature with the logistic model. The 
corresponding Rad-score is obtained with a Rad-score 
formula. Univariate and multivariate logistic regression 
analyses were used for calculating the Rad-score and 
clinical independent predictors, as depicted in Table  4. 
Mass effect (HR 3.674, 95% CI 1.011–13.359, P < 0.05) 
and Rad-score (HR 0.908, 95%CI 0.880 − 0.337, P < 0.05) 
were determined as two independent predictors.

Table 1 The clinical data and imaging findings of patients
Characteristic glial cell 

hyperplasia
low grade 
glioma

χ2/z p

n 41 87

Gender, n (%) 0.040 0.841

Male 26 (63.4%) 52 (59.8%)

Female 15 (36.6%) 35 (40.2%)

Clinical symptoms, 
n (%)

1.000

Absent 3 (7.3%) 6 (6.9%)

Present 38 (92.7%) 81 (93.1%)

Tumor shape, n (%) 0.114 0.735

Irregular 19 (46.3%) 36 (41.4%)

Regular 22 (53.7%) 51 (58.6%)

Mass effect, n (%) 15.240 < 0.001

Absent 29 (70.7%) 28 (32.2%)

Present 12 (29.3%) 59 (67.8%)

Cystic degeneration, 
n (%)

4.473 0.034

Absent 33 (80.5%) 52 (59.8%)

Present 8 (19.5%) 35 (40.2%)

Hemorrhage, n (%) 0.241

Absent 34 (82.9%) 79 (90.8%)

Present 7 (17.1%) 8 (9.2%)

Necrosis, n (%) 2.526 0.112

Absent 36 (87.8%) 64 (73.6%)

Present 5 (12.2%) 23 (26.4%)

Garland pattern
enhancement, n (%)

4.944 0.026

Absent 30 (73.2%) 44 (50.6%)

Present 11 (26.8%) 43 (49.4%)

Edema, n (%) 0.203 0.652

Absent 18 (43.9%) 33 (37.9%)

Present 23 (56.1%) 54 (62.1%)

Age, median (IQR) 51 (35, 63) 57 (42, 66) -1.201 0.231

Maximum tumor
diameter, median 
(IQR)

26 (18, 35) 34 (25.5, 45) -3.191 0.001

Table 2 The comparison of the three model performance
Selection approach Feature size Cohort AUC (95%CI) Accuracy Sensitivity Specificity
LASSO24 24 Training 0.851(0.764–0.928) 0.778 0.759 0.787

Validation 0.782(0.585–0.954) 0.816 0.667 0.885

SVM19 19 Training 0.845(0.748–0.934) 0.811 0.862 0.787

Validation 0.779(0.586–0.955) 0.816 0.667 0.885

Random Forest20 20 Trianing 1.000(1.000–1.000) 1.000 1.000 1.000

Validation 0.780(0.608–0.926) 0.790 0.583 0.885

http://www.R-project.org
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The establishment of nomogram and evalution
Figure  5a shows the nomogram constructed with two 
independent predictors. The AUC, accuracy, sensitivity, 
and the specificity of the training group is 0.847, 0.764, 
0.690, 0.800 respectively, compared to the validation 
group’s 0.858, 0.821, 0.750, and 0.852 (Fig. 5b, c). The H-L 
test results indicate that the radiomics-clinical model 

fits well (P = 0.987). In the training set and the validation, 
the calibration curve shows the good consistency of the 
prediction and the actual results (Fig.  5d, e). The deci-
sion curve (DCA) shows that the combined model has a 
higher overall net income and clinical decision effective-
ness (Fig. 5f ) .

Discussion
Glial cell hyperplasia is a kind of intracranial benign 
lesion. Surgery is not necessary when the symptoms are 
mild, and follow-up can be possible [16]. Chemotherapy 
is typically unneeded in individuals who have apparent 
symptoms that require surgery, and their prognosis is 
better [17]. At the same time, some scholars believe that 
it is the early stage of the development of glioma and can 
evolve into glioma. Although the incidence is minimal, 
it has a bearing on how patients are treated and what 
their prognosis will be. Due to the potential for substan-
tial neurological damage following blind surgery, preop-
erative illness detection is crucial. Glial cell hyperplasia 
and low-grade glioma are difficult to identify from one 
another due to the absence of distinctive clinical signs, 
which may result in unnecessary medical injury. The 
radiomics model may be effectively utilized to differen-
tiate the tumor properties for patients who have lesions 
that are difficult to resect and are located in crucial func-
tional regions. Therefore, it is of clinical significance to 
differentiate glial cell hyperplasia and glioma [18]. And 
radiomics can be used to distinguish the two. In this 
study, based on T1WI, T2WI, DWI, T1-enhanced image, 
the LASSO, SVM, and RF models were constructed by 
logistic regression algorithm, and the diagnostic efficacy 
was evaluated. Among the three models, the LASSO 
model shows the highest performance, with an AUC of 
0.782, indicating that MRI images are feasible for the 

Table 3 The results of Delong’s test
Variable 1 Variable 2 P
LASSO SVM 0.933

LASSO RF 0.981

SVM RF 0.980

Fig. 4 The 24 best feature information and the corresponding feature weight

 

Fig. 3 The ROC curve of the three radiomics model
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differentiation of glial cell hyperplasia and low-grade gli-
omas. The 24 optimal radiomics features were retained in 
the LASSO model, which are often difficult to be inter-
preted and analyzed visually but they can reflect the 
heterogeneity and complexity of the tumor microenvi-
ronment [19], Shape_Flatness represents the relationship 
between the largest and smallest principal components 
in the ROI shape, which shows difference because glio-
mas are malignant tumors with considerable heterogene-
ity. Dependence non uniformity normalized refers to the 
similarity of adjacent voxels in the entire image, which 
the lower the value, the higher the homogeneity between 
adjacent voxels. The joint distribution of two pixels 
with a certain spatial position relationship is described 
by GLCM and may be linked to variations in cell origin 
[20]. Firstorder reflects voxel intensity distribution in the 
image region, NGTDM quantifies the sum of differences 
between the gray level of a pixel or voxel and the aver-
age gray level of its neighboring pixels or voxels within a 
predefined distance. Even though these features are diffi-
cult to be identified by the naked eye, radiomics can fully 
exploit these traits, which can provide significant infor-
mation for the diagnosis and prediction of diseases [21].

In this study, clinical features were combined to 
establiesh a radiomics-clinical model to explore whether 
the combination of clinicopathological risk factors may 
improve the prediction accuracy of glial cell hyper-
plasia. Recent studies have revealed that diagnosis of 
glioma is highly related to the presence or absence of 
clinical symptoms, regular shape, mass effect [22], cys-
tic degeneration, hemorrhage, necrosis, garland pattern 
enhancement [23], edema, and maximum tumor diam-
eter [24]. The differentiation of glial cell hyperplasia 
and low-grade glioma was shown to be strongly corre-
lated with mass effect and Rad-score by the findings of 
univariate and multivariate logistic regression analysis. 
Mass effect and Rad-score are independent predictors 

for glioma. Gliomas develop rapidly and the mass effect 
is more obvious. Glial cell hyperplasia is a benign intra-
cranial lesion and develops slowly. Since gliomas are 
extremely cancerous, they typically require postoperative 
radiotherapy and chemotherapy [25]. The prognosis of 
glial cell hyperplasia is better. In our study, only 5 cases 
of glial cell hyperplasia were treated with radiotherapy 
and chemotherapy, while 42 cases of glioma were treated 
with radiotherapy and chemotherapy, demonstrating the 
clinical importance of being able to differentiate between 
the two. The radiomics-clinical model, which was con-
structed via mass effect and Rad-score, was superior to 
the single radiomics model in the validation group, and 
the AUC of the validation set was 0.858. Finally, the pre-
sentation of the nomogram showed improved predic-
tion accuracy. The calibration curve further proved the 
high consistency between the predicted probabilities and 
pathological result. The decision curve indicated that the 
combined model could achieve higher clinical decision 
effectiveness than the radiomics model, which could sup-
port clinical precision care and follow-up of patients with 
glial cell hyperplasia.

However, there are several limitations to our study. 
First, considering that the study was retrospective, a 
selective bias in a small group of patients from a single 
institution might have existed. Second, the sample size is 
relatively small and thus data from multiple centers are 
required to detect the overall performance of the model 
from external validation. In addition, the tumor ROI was 
drawn manually, which may lead to some errors. In the 
future, the lesions will be automatically segmented with 
the deep learning technique.

In conclusion, our results have been demonstrated that 
the radiomics features extracted from MRI, combining 
important clinicopathological risk factors, are of great 
significance in differentiating glial cell hyperplasia from 

Table 4 Univariate and multivariate logistic regression analysis
Factors Univariate Multivariate

OR(95%CI) P OR(95%CI) P
Gender 0.823(0.333–2.035) 0.673

Age 0.994(0.968–1.020) 0.642

Clinical symptoms 2.500(0.279–22.437) 0.413

Maximum tumor diameter 0.960(0.928–0.994) 0.020 1.009(0.965–1.054)
0.698

Tumor shape 0.693(0.285–1.684) 0.419

Mass effect 0.172(0.065–0.458) < 0.001 0.243(0.068–0.865) 0.029
Hemorrhage 3.717(0.959–14.406) 0.057

Cystic degeneration 0.369(0.123–1.105) 0.075 0.917(0.276–3.044)
0.887Necrosis 0.325(0.086–1.220) 0.096

Garland pattern enhancement 0.369(0.142–0.960) 0.041
Edema 0.798(0.326–1.952) 0.622

Rad-score 1.121(1.069–1.176) < 0.001 1.111(1.054–1.172) < 0.001
Bold suggests statistical significance at the level of P < 0.05. OR, odds ratio
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Fig. 5 (a) is nomogram constructed based on combined model, (b) and (c) are the ROC curves of the training cohort and the validation cohort of the 
combined model, (d) and (e) are the calibration curves, (f) is the decision curve to differentiate glial cell hyperplasia from low-grade gliomas
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low-grade glioma at an early stage, and can assist in the 
formulation of diagnosis and treatment individually.
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