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Abstract
Objectives To build a combined model based on the ultrasound radiomic and morphological features, and evaluate 
its diagnostic performance for preoperative prediction of central lymph node metastasis (CLNM) in patients with 
papillary thyroid carcinoma (PTC).

Method A total of 295 eligible patients, who underwent preoperative ultrasound scan and were pathologically 
diagnosed with unifocal PTC were included at our hospital from October 2019 to July 2022. According to ultrasound 
scanners, patients were divided into the training set (115 with CLNM; 97 without CLNM) and validation set (45 with 
CLNM; 38 without CLNM). Ultrasound radiomic, morphological, and combined models were constructed using 
multivariate logistic regression. The diagnostic performance was assessed by the area under the curve (AUC) of the 
receiver operating characteristic curve, accuracy, sensitivity, and specificity.

Results A combined model was built based on the morphology, boundary, length diameter, and radiomic score. The 
AUC was 0.960 (95% CI, 0.924–0.982) and 0.966 (95% CI, 0.901–0.993) in the training and validation set, respectively. 
Calibration curves showed good consistency between prediction and observation, and DCA demonstrated the 
clinical benefit of the combined model.

Conclusion Based on ultrasound radiomic and morphological features, the combined model showed a good 
performance in predicting CLNM of patients with PTC preoperatively.
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Introduction
The incidence of thyroid cancer has increased dramati-
cally worldwide in recent years [1]. Papillary thyroid 
carcinoma (PTC), accounting for 80–89% of thyroid 
carcinoma, is the most common thyroid carcinoma [2, 
3]. Cervical lymph node metastasis, which occurs in 
approximately 35–80% of patients with PTC, is the most 
important risk factor related to recurrence and poor 
overall survival [4, 5]. As central lymph node metastasis 
(CLNM) is the first station of metastasis and the most 
frequently involved area, central compartment neck dis-
section (CCND) is often performed for patients with 
positive CLNM, which can significantly reduce the recur-
rence rate and mortality [6]. However, approximately 38% 
of PTC patients have been reported to have CLNM even 
in patients with no clinical evidence of nodal metasta-
sis [7]. As preventive CCND increases the incidence of 
surgical complications, such as parathyroid and laryn-
geal recurrent nerve injuries, preventive CCND is con-
troversial in CLNM-negative patients [8]. Therefore, to 
reduce the unnecessary CCND, an accurate and non-
invasive method for preoperative assessment of CLNM is 
essential for selecting the optimal treatment strategy for 
patients with PTC.

Ultrasonography (US) is the preferred modality for 
the preoperative evaluation of patients with PTC and 
it is widely used to screen thyroid nodules and lymph 
node metastases. Studies have demonstrated that several 
ultrasound morphological features are associated with 
CLNM [9–11], such as tumor size, extrathyroidal exten-
sion, microcalcification, etc. However, the diagnostic 
performance show greatly varying degrees among dif-
ferent US physicians due to the subjectivity of the expe-
rience and application of diagnostic criteria [12–15]. 
Therefore, an effective and stable method is needed to 
evaluate the central lymph nodes of patients with PTC. 
Radiomics is an emerging technique, which can not only 
improve the accuracy and consistency of disease diagno-
sis but also reduce the time to output results. Based on 
these superiorities, several limited studies have inves-
tigated radiomics to predict the CLNM in PTC patients 
[16, 17]. However, the models in these studies are based 
on US-reported central lymph nodes status. As the US 
has a low detection rate for central lymph nodes owing to 
the influence of air, bone, or glandular tissues [18], it may 
lead to some impact on the accuracy of the model. Thus, 
the radiomic model in this study is based on the thyroid 
nodules themselves, which can avoid the above problems 
to some degree. In addition, different from previous stud-
ies that only determine the risk factors of CLNM [19, 20], 
the aim of our study is not only to identify risk factors 
for predicting CLNM, but also to develop and validate 
the models for predicting CLNM. Moreover, few stud-
ies have evaluated the overall diagnostic performance of 

the combined model, which has integrated the radiomics 
with conventional morphological features.

Therefore, to fill the gap of the available literature, our 
study aims to build an ultrasound radiomic model and 
compare its diagnostic value with a conventional mor-
phological model for predicting CLNM in patients with 
PTC. We further construct a combined model based 
on ultrasound radiomic and morphological features, to 
assist clinical selection of the best treatment.

Materials and methods
Patients
The retrospective study was approved by our institutional 
review board, and the informed consent was waived. 
Consecutively patients with pathologically confirmed 
PTC from October 2019 to July 2022 were retrospec-
tively collected in our hospital. Inclusion criteria were as 
follows: (1) patients who underwent thyroidectomy and 
lymph node dissection in the central region of the neck; 
and (2) patients who underwent ultrasound examination 
within two weeks before surgery. Exclusion criteria were 
as follows: (1) patients who had received preoperative 
treatment (radiofrequency or microwave ablation, radio-
therapy, radioiodine therapy, or chemotherapy); (2) mul-
tiple thyroid nodules with confirmed PTC in one lobe; 
and (3) poor image quality. Details of the patient recruit-
ment in this study were shown in the flow chart (Fig. 1).

Finally, a total of 295 patients with PTC were included 
in this study, including 49 men and 246 women, with a 
mean age of 43.23 (20–73) years.

Ultrasound radiomic model
Image acquisition
To preserve maximum longitudinal images of bilateral 
lobe nodules of the thyroid gland according to thyroid 
and neck ultrasound examination specifications, images 
obtained with Mindray Resona 7 and Mindray DC-80 
color Doppler ultrasound diagnostic instruments from 
Mindray, L14–5WU, and L14–5WE line array probes 
with frequencies from 4 to 14  MHz. were included. 
According to the different ultrasound scanners, patients 
who underwent Mindray Resona 7 scan were included 
in the training set (115 with CLNM, 97 without CLNM), 
while those who underwent the Mindray DC-80 scan 
were enrolled in the validation set (45 with CLNM, 38 
without CLNM).

Image segmentation
The two-dimensional (2D) ultrasound images included in 
this study were imported into the ITK-SNAP software in 
DICOM format, and the region of interest (ROI) of the 
lesion was manually contoured by a US physician with 
5 years of experience in thyroid ultrasound diagnosis. 
To evaluate the inter-observer agreement, another US 
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physician with 10 years of experience in thyroid ultra-
sound diagnosis outlined 30 randomly selected cases. 
Both US physicians were blind to the pathological result. 
The reliability was evaluated through the intraclass cor-
relation coefficient (ICC). The features with ICCs > 0.75 
indicated a high reproducibility, which was reserved for 
further analysis. The representative images were shown 
in Fig. 2.

Feature extraction
Owing to the different acquisition parameters of the two 
ultrasound scanners, all the original images were first 
resampled at a spatial resolution of 1 × 1 × 1 mm3 through 
a linear interpolation algorithm to ensure the rotationally 
invariant and comparable texture features between dif-
ferent scanners [21]. In addition, a fixed bin count of 32 
was used to discretize voxel intensity values and reduce 
the noise. Then, the PyRadiomics package (https://

pyradiomics.readthedocs.io) was used to extract the 
radiomic features [22], including first-order, morphologi-
cal, and texture features [gray-level cooccurrence matrix 
(GLCM), gray-level dependence matrix (GLDM), gray-
level run length matrix (GLRLM), gray-level size zone 
matrix (GLSZM), and neighborhood gray-tone differ-
ence matrix (NGTDM)]. Gray level co-occurrence matrix 
(GLCM) and gray-level dependence matrix (GLDM) 
features are computed from each 3D directional matrix 
and averaged over the 3D directions, and gray level size 
zone matrix (GLSZM), neighboring grey level depen-
dence matrix (NGLDM), and neighboring gray-tone dif-
ference matrix (NGTDM) features are computed from 
a 3D matrix. Details of radiomic features were available 
at https://pyradiomics.readthedocs.io/en/latest/fea-
tures.html.Then, to obtain the filtered derived image and 
extract the corresponding ultrasound radiomic features, 

Fig. 1 The flow diagram of patients selection. CLNM, central lymph node metastasis
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the wavelet transform is applied to the original image. 
Finally, a total of 464 radiomic features were extracted.

Model construction
Z-score normalization was first applied to standardize 
the radiomic features in the training set. The least abso-
lute shrinkage and selection operator (LASSO) was used 
to avoid overfitting the radiomic features and select the 
most significant predictive features. To find an optimal 
regulation weight in LASSO logistic regression, 10-fold 
cross-validation with minimum criteria was used, in 
which the value of λ yielded the minimum binomial devi-
ance. Then, multivariate logistic regression analysis, with 
stepwise regression selection method and Akaike infor-
mation criterion (AIC) was used to construct the final 
ultrasound radiomic model. Ultimately, we validate the 
model with an independent validation set. The selected 
features were linearly weighted to calculate the radiomic 
score (Rad-score).

Ultrasound morphological model
Ultrasound morphological features in this study 
included: location, length diameter, morphology, bound-
ary, color doppler flow imaging, and microcalcifica-
tions of the nodules. Two ultrasonographers with 5 and 
10 years of experience in diagnostic thyroid ultrasound 

completed the thyroid nodule morphologic feature evalu-
ation independently. Any disagreement was resolved by 
negotiation and discussion. If disagreement was insisted, 
a senior ultrasonographer with 15 years of experience 
made the final determination. All ultrasonographers 
were unaware of the corresponding pathologic histologic 
findings before evaluating the images. All morphological 
features were included in a univariate logistic regression 
analysis to assess the predictive power of central lymph 
node metastasis. Subsequently, features with P < 0.05 
were placed into a multivariate logistic regression analy-
sis, and the final morphological model was constructed 
using the stepwise regression selection method and AIC.

Building combined model
The ultrasound radiomic and morphological features 
with P < 0.05 were subjected to a multivariate logistic 
regression analysis, and independent risk predictors for 
central lymph node metastasis were determined using 
the stepwise regression selection method and AIC to 
construct the final combined model.

Statistical analysis
As a prediction model study for diagnostic purposes, 
this study followed the transparent reporting of a 

Fig. 2 Representative images and segmentation results of thyroid nodules. (A, B) A female with central lymph node metastasis. (C, D) A female without 
central lymph node metastasis. (A, C) Original images and (B, D) segmentation results
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multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) statement [23].

SPSS (version 25.0), R software (version 4.2.1), and 
MedCalc (version 19.6.4) were used for statistical anal-
ysis. Group differences were evaluated through the 
Mann-Whitney U test for continuous variables, and the 
chi-square test or Fisher test for categorical variables. 
A two-sided P < 0.05 was indicative of a significant dif-
ference. The diagnostic performance of the combined, 
ultrasound radiomic and morphological models were 
assessed using the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. The opti-
mal threshold value of the ROC curve was determined 
through the Youden index. The corresponding accuracy, 
sensitivity, and specificity values were calculated, and a 
95% confidence interval (CI) was calculated by the Bino-
mial exact method. The Hosmer-Lemeshow test was per-
formed to estimate the goodness-of-fit of each model, 
and the calibration curves were plotted for each model, 
which was capable of visualizing the consistency of mod-
els. Finally, the clinical decision curve analysis (DCA) 
was used to evaluate the clinical application value of each 
model.

Result
Baseline characteristics
The clinical and ultrasound morphological character-
istics of 295 thyroid nodules were presented in Table 1, 
in which there were significant differences in color dop-
pler flow imaging, microcalcifications, morphology, 
boundary, and length-diameter between groups in both 
the training and validation sets (all P < 0.05). Significant 
differences were found in gender between groups in the 
training set (P = 0.018), but not in the test set (P = 0.483). 
No significant differences were found in age and location 
between groups in both the training and validation sets 
(all P > 0.05).

Ultrasound radiomic model
In total, 284 of the 464 ultrasound radiomic features 
had high reproducibility (ICC > 0.75). The process of 
the ultrasound radiomic feature selection was shown 
in Fig.  3. After selecting, five features remained to con-
struct the ultrasound radiomic model. The formula was 
as follows: ln(P/1-P) = 0.226 + 1.457 × wavelet.HH_first_
order_Median + 1.287 × wavelet.LL_first_order_Range 
− 1.185 × wavelet.LL_GLCM_Imc2–2.239 × wavelet.
HH_GLDM_SmallDependenceHighGrayLevelEmpha-
sis + 2.331 × wavelet.HL_GLSZM_ZoneEntropy, in which 

Table 1 Clinical and ultrasound morphological features of the patients
Training set Validation set
with CLNM
(n = 115)

without CLNM
(n = 97)

P with CLNM
(n = 45)

without CLNM
(n = 38)

P

Gender 0.018* 0.438
 Male 21 7 10 11
 Female 94 90 35 27
Age 42.93 ± 11.95 43.43 ± 9.74 0.781 42.42 ± 12.00 44.61 ± 10.26 0.528
Microcalcification 0.001* < 0.001*

 Yes 91 57 38 18
 No 24 40 7 20
Color doppler flow imaging < 0.001* 0.014*

 Avascularity 21 55 8 11
 Mainly peripheral vascularity 45 17 14 20
 Mainly central vascularity 37 18 19 7
 Mixed vascularity 12 7 4 0
Location 0.510 0.143
 Up 22 25 16 9
 Middle 44 34 18 12
 Down 49 38 11 17
Morphology < 0.001* < 0.001*

 Regular 20 57 8 22
 Irregular 95 40 37 8
Boundary < 0.001* 0.031*

 Circumscribed 19 39 7 9
 Ill-defined 42 40 16 21
 Irregular margin 54 18 22 8
Length diameter 1.16 ± 0.71 0.72 ± 0.45 < 0.001* 1.20 ± 0.75 0.63 ± 0.24 < 0.001*

CLNM, central lymph node metastasis. * P < 0.05
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P is the probability of CLNM, with a cutoff value > 0.498. 
To standardize the features by Z-score before calculation, 
the mean and standard deviation of these features were 
detailed in Table 2.

Ultrasound morphological model
Univariate logistic regression analysis showed that gen-
der, microcalcifications, color doppler flow imaging, 
morphology, boundary, and length-diameter were risk 
factors for predicting CLNM (all P < 0.05) (Table  3). 

According to the multivariate logistic regression analy-
sis, based on the length diameter of the nodes (OR, 
2.623; 95% CI, 1.199–5.738, P = 0.016), morphology 
(OR, 4.114; 95% CI, 1.896–8.926, P < 0.001), color dop-
pler flow imaging (OR, 7.194; 95% CI, 2.865–18.067, 
P < 0.001) and boundary (OR, 3.558; 95% CI, 1.352–
9.363, P = 0.016) to construct an ultrasound morphologi-
cal model. The formula was: ln(P/1-P) = − 2.911 + 1.404 
× morphology(irregular) + 1.309 × boundary(irregular 

margin) + 0.440 × boundary(ill−defined) + 1.818 × color doppler 
flow imaging(mainly central vascularity) + 0.933 × color doppler 
flow imaging(Mainly peripheral vascularity) − 0.197 × color dop-
pler flow imaging(mixed vascularity) + 0.937 × length diam-
eter, where P was the probability of CLNM, with a cutoff 
value > 0.747.

Combined model
According to the multivariate logistic regression anal-
ysis (Table  3), the final combined model was con-
structed based on the morphology (OR, 10.466; 95% CI, 
3.016–36.323, P < 0.001), boundary (OR, 9.767; 95% CI, 

Table 2 Means and standard deviations of ultrasound radiomic 
features
Features Mean SD
wavelet.HH_first_order_Median − 0.035 0.145
wavelet.LL_first_order_Range 553.065 209.601
wavelet.LL_GLCM_Imc2 0.978 0.014
wavelet.HH_GLDM_SmallDependenceHighGray-
LevelEmphasis

24.693 33.561

waveletHL_GLSZM_ZoneEntropy 5.199 0.178
SD, standard deviation. GLCM, gray-level cooccurrence matrix. GLDM, gray-
level dependence matrix; GLSZM, gray-level size zone matrix

Fig. 3 The process of the ultrasound radiomic feature selection. (A) Flow chart of ultrasound radiomic features selection. (B) Radiomic feature selection 
by applying the LASSO binary logistic regression model. The vertical lines on the left side of the horizontal coordinate represent the tuning parameter 
lambda (λ) chosen in the LASSO model using 10-fold cross-validation via minimum criteria. (C) Coefficient convergence plot of the screened features, 
with the best log (λ) value screening out 12 histological features with non-zero coefficients. LASSO, least absolute shrinkage, and selection operator; PTC, 
papillary thyroid carcinoma; AIC, Akaike information criterion
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2.262–42.173, P = 0.02), length diameter (OR, 0.392; 95% 
CI, 0.161–0.955, P = 0.039) and Rad-score (OR, 3.577; 95% 
CI, 2.372–5.395, P < 0.001) (Table  3). The formula was: 
ln(P/1-P) = − 1.764 + 2.348 × morphology(irregular) + 2.279 
× boundary(irregular margin) + 0.579 × boundary(ill−defined) 
− 0.936 × length diameter + 1.275 × Rad-score, where P is 
the probability of CLNM, with a cutoff value > 0.486.

Model performance
The ROC curves of the combined, ultrasound radiomic 
and morphological models in the training and validation 
sets are shown in Fig. 4. The AUCs of the models for pre-
dicting CLNM were 0.956 (95% CI, 0.928–0.984), 0.920 
(95% CI, 0.875–0.953), 0.836 (95% CI, 0.786–0.886) in 
the training set, and 0.973 (95% CI, 0.951–0.995), 0.901 
(95% CI, 0.815–0.955), 0.796 (95% CI, 0.742–0.850) in 
the validation set, respectively.The accuracy, sensitivity, 

Table 3 Univariate and multivariate logistic regression analysis of ultrasound radiomic and morphological features
Characteristics Univariate logistic regression analysis Multivariate logistic regression analyses

OR 95% CI P OR 95% CI P
Gender
 Male # 1 /
 Female 0.348 0.141–0.859 0.022* / / /
Age 0.996 0.972–1.021 0.739 / / /
Microcalcification
 No # 1 /
 Yes 2.661 1.453–4.871 0.002* / / /
Color doppler flow imaging
 Avascularity # 1 /
 Mainly peripheral vascularity 5.384 2.530–11.454 < 0.001* / / /
 Mainly central vascularity 6.933 3.271–14.692 < 0.001* / / /
 Mixed vascularity 4.490 1.557–12.947 0.005* / / /
Location
 Up # 1 /
 Middle 1.471 0.711–3.043 0.298 / / /
 Down 1.465 0.719–2.988 0.293 / / /
Morphology
 Regular # 1 1
 Irregular 6.769 3.608–12.699 < 0.001* 10.466 3.016–36.323 < 0.001*

Boundary
 Circumscribed # 1 1
 Ill-defined 2.155 1.072–4.335 0.031* 1.783 0.557–5.710 0.330
 Irregular margin 6.158 2.865–13.233 < 0.001* 9.767 2.262–42.173 0.002*

Length diameter 4.675 2.414–9.052 < 0.001* 0.392 0.161–0.955 0.039*

Rad-score 2.718 2.065–3.579 < 0.001* 3.577 2.372–5.395 < 0.001*

OR, Odds ratio; 95% CI, 95% confidence interval; Rad-score, Radiomic score
# Characteristics were set as the reference. * P < 0.05

Table 4 Diagnostic performance of each model in predicting central lymph node metastasis in the training and validation sets
AUC (95% CI) Accuracy Sensitivity Specificity

Training set Combined model 0.956
(0.928–0.984)

0.882
(0.836–0.925)

0.922
(0.886–0.958)

0.835
(0.785–0.885)

Ultrasound radiomic model 0.920
(0.880–0.956)

0.834
(0.790–0.889)

0.870
(0.824–0.914)

0.804
(0.751–0.858)

Morphological model 0.836
(0.786–0.886)

0.693
(0.631–0.755)

0.522
(0.455–0.589)

0.897
(0.856–0.938)

Validation set Combined model 0.973
(0.951–0.995)

0.916
(0.879–0.953)

0.933
(0.899–0.967)

0.895
(0.853–0.936)

Ultrasound radiomic model 0.918
(0.836–0.967)

0.807
(0.754–0.860)

0.822
(0.771–0.874)

0.789
(0.735–0.844)

Morphological model 0.796
(0.742–0.850)

0.614
(0.548–0.680)

0.378
(0.313–0.443)

0.895
(0.854–0.936)

95% CI, 95% confidence interval
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and specificity of each model were listed in Table 4. The 
AUCs of the combined model were significantly higher 
than ultrasound radiomic and morphological models in 
both the training and validation sets, and the combined 
model showed significant higher AUC than three sonog-
raphers in the validation cohort (all P < 0.05) (Table  5). 
The Hosmer-Lemeshow test showed non-significant 
results for the models in the training and validation sets 
(all P > 0.05), and the calibration curves showed good 
consistency between prediction and observation (Fig. 5A 
and B C). The DCA analysis demonstrated that the com-
bined model had a higher net clinical benefit compared 
with the other models (Fig. 5D).

We concluded the TRIPOD type of this study could be 
type 2b.

Discussion
PTC is the most common thyroid carcinoma with low 
mortality and good prognosis, with a 10-year survival 
rate of 97% [24]. However, the recurrence rate of PTC 
with cervical lymph nodes can reach 22% [25]. In par-
ticular, metastases in the central region of the neck are 
the most common [26]. Among the currently used imag-
ing modalities, the efficacy of computed tomography 
(CT) and US in the evaluation of thyroid and CLNM are 

not significantly different [27], and magnetic resonance 
imaging (MRI) has a slightly higher diagnostic sensitiv-
ity than US [28]. However, CT is radioactive and insensi-
tive to soft tissue; MRI is expensive and took a long time. 
The US is considered the imaging test of choice for the 
evaluation of thyroid nodules and lymph node metas-
tases owing to its lack of radiation damage and ease of 
universal access. However, the US has a high specificity 
(93–98%) and low sensitivity (33–64%) for central lymph 
nodes owing to the influence of air, bone, or glandular 
tissues [15, 18, 27, 29]. In this study, the sensitivity of the 
US morphological model for the detection of CLNM was 
52%, and the specificity was 90%, which is consistent with 
the literature. Since preoperative US is prone to miss or 
misdiagnosis of CLNM, prophylactic CCND can reduce 
the tumor recurrence rate. However, it also increases the 
incidence of surgical complications [30]. The Chinese and 
Japanese thyroid guidelines advocate aggressive prophy-
lactic CCND, while the American Thyroid Association 
does not recommend prophylactic CCND [31], which is 
controversial. Therefore, accurate preoperative assess-
ment of the status of central lymph node metastasis of 
PTC is critical for the clinical selection of whether to dis-
sect the central lymph nodes to improve the therapeutic 
efficacy without increasing surgical complications.

Table 5 Comparison of the diagnostic performance of the models in predicting central lymph node metastasis in the training and 
validation sets
Model Training set Validation set

Z P Z P
Combined model vs. Ultrasound radiomic model 2.864 0.004 2.019 0.044
Combined model vs. Morphological model 4.706 < 0.001 3.392 < 0.001
Ultrasound radiomic model vs. Morphological model 2.920 0.003 2.036 0.042

Fig. 4 The receiver operating characteristic (ROC) curves of combined, ultrasound radiomic, and morphological models. (A) training set, (B) validation set
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Previous literature reported that US features of PTC, 
such as tumor size, microcalcifications, irregular shape 
and multifocality, were associated with CLNM [10, 11]. 
In this study, we found significant differences between 
the CLNM and no-CLNM groups in the morphology, 
boundary, length-diameter, color doppler flow imaging, 
and microcalcifications of the PTC lesions using uni-
variate logistic regression. However, multivariate logistic 
regression showed that only the lesion length-diameter, 
morphology, boundary, and color doppler flow imaging 
were significantly associated with CLNM. Some of the 
US morphological features, such as microcalcifications, 
were different from those reported in the literature and 
were associated with CLNM in the univariate logistic 
regression analysis of this study. However, microcalcifica-
tions were not an independent risk factor for CLNM in 
the multivariate logistic regression analysis. This may be 
related to its pathological basis, such as the mummifica-
tion of some benign thyroid nodules, whose US presenta-
tion is also similar to microcalcifications [32]. Ultimately, 
we created morphological model using the above fea-
tures. However, the sensitivity of this model is only 52%. 

Thus, a more effective method is needed for predicting 
CLNM.

Radiomics is an emerging frontier discipline that can 
extract a large number of quantitative imaging features 
from medical images for deep mining of tumor bio-
logical information and analysis of tumor heterogeneity. 
Moreover, radiomic analysis based on image features has 
objectivity and is valuable in predicting clinical outcomes 
[33, 34]. Previously, models based on radiomic features 
have been applied to predict lymph node metastasis in 
several tumors [35, 36]. For example, shear wave elas-
tography combined with grayscale ultrasound for pre-
dicting CLNM of PTC [37]. It shows the feasibility of 
applying ultrasound radiomics features to predict CLNM 
in patients with PTC. In this study, we used radiomic 
analysis to predict the presence of CLNM, and the 
results demonstrated that the ultrasound radiomic model 
could predict CLNM in PTC patients in both the train-
ing (AUC, 0.920) and validation sets (AUC, 0.901) with 
higher efficacy than the US morphology model, which 
indicates the value of radiomics in predicting the pres-
ence of CLNM in patients with PTC.

Fig. 5 Calibration curves and clinical decision curves of each model. (A) Combined model calibration curve, (B) Ultrasound radiomic model calibration 
curve, (C) Morphological model calibration curve, (D) clinical decision curve
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In previous studies [10], investigators have often used 
US morphological or radiomic features alone for the pre-
diction of lymph node metastasis. They have not evalu-
ated the diagnostic accuracy and additional benefit of 
combined US morphological and radiomic features. A 
much higher diagnostic value of preoperative predic-
tion of CLNM has been reported in patients with PTC 
when CT and US or US and clinical are combined [27, 
38]. Therefore, we developed and validated a combined 
model in this study for predicting CLNM in PTC patients 
that combine ultrasound morphological and radiomic 
features. The combined model had higher diagnostic 
efficacy and more stable sensitivity and specificity in 
both the training and validation sets than the morpho-
logical or radiomic models alone. The combined model 
provided better net clinical benefit than the ultrasound 
radiomic or morphological models over the most rea-
sonable threshold probability ranges, as demonstrated 
by DCA. Additionally, calibration curves showed good 
agreement between predicted and actual values for each 
model. The DeLong test depicted significant differences 
in AUC between the ultrasound radiomic, morphologi-
cal, and combined models. These results demonstrated 
that our combined model can greatly facilitate the pre-
operative individualized prediction of CLNM in patients 
with PTC. Many studies have been conducted on this 
topic. Tong et al. [17] established a nomogram based on 
ultrasound-reported lymph node status and radiomic 
features to predict CLNM in patients with PTC. How-
ever, the exploration of central lymph nodes was limited 
due to gas, bone, etc., which may affect the reporting 
of lymph node status and thus have an impact on the 
results, by contrast, our study was directly targeting the 
tumor itself, which greatly avoids the problem of display-
ing central lymph nodes. Zhou et al. [39] developed a 
radiomics nomogram based on dual-energy CT derived 
iodine maps, which showed favorable performance in 
predicting CLNM in PTC patients with an AUC of 0.837. 
However, CT involves radiation exposure, and iodinated 
contrast agents have a risk of contrast allergy. Moreover, 
this examination might delay radioactive iodine therapy, 
which limits its clinical application. Li et al. [40] develop 
a CT-based radiomics model to predict CLNM preopera-
tively in patients with PTC. Compared with the study, our 
combined model has better sensitivity and specificity and 
eliminates the need for CT examinations, which reduces 
the financial stress and radiation damage to patients and 
can be performed in the clinic to serve the patients more 
effectively.

With the popularity of artificial intelligence in recent 
years, radiomics and deep learning have been widely used 
in the studies of tumor imaging. For example, Abbasian 
Ardakani A et al. [41] used both machine learning (ML) 
and deep learning (DL) models on multi-center databases 

to predict lymph nodes metastatic preoperatively in 
patients with PTC. Although this was a multicenter study, 
its sample size was limited. This may have some implica-
tions for model construction. In addition, the model for 
this study was based on US images of lymph nodes. This 
will ignore some of the central lymph nodes that are not 
shown due to gas, bone, etc. This may lead to the omis-
sion of some patients with CLNM. Comparing with this 
study, our study is based on the tumor itself, avoiding the 
above makes for more accurate results. However, only 
internal and not external validation was performed in our 
study. While there is a lot of research on DL [42–44], the 
underlying parameters of DL algorithms were inherently 
in black box, there is a lack of a sufficient number of stud-
ies performing external validation on DL algorithms and 
a limited number of publications focusing on DL proto-
cols, which limits the extent to which the results could be 
generalized. Compare with DL models, radiomics model 
has better protocols and fewer data requirements. This 
makes the model more reproducible. And the disadvan-
tage of radiomics is that some radiomics models in the 
process of outlining the region of interest are manual-
segmentation of the image and lack certain criteria.

Limitations of this study were that this was a retro-
spective and single-center study with a limited sample 
size. However, the result of the validation dataset from 
another ultrasound scanner, makes our radiomic model 
more convincing. Thus, future large multi-center stud-
ies are still warranted to assure the generalizability of our 
results. In addition, the diagnostic performance of the 
model in this study isn’t comparing with human readers. 
It is a challenge for a sonographer to directly determine 
whether a lymph node is metastatic without scanning it. 
As for the central lymph nodes, it’s more difficult due to 
impact of air, bone, or glandular tissues and the experi-
ence of the doctor. Futhermore, our study only using 
a single 2D ultrasound image, and did not incorporate 
other multimodal ultrasound images such as elastogra-
phy, ultramicro flow imaging, contrast-enhanced ultra-
sound, etc.

Conclusion
Our combined model is a noninvasive predictive tool 
that combined ultrasound radiomic and morpho-
logical features, which showed a better ability to pre-
dict CLNM preoperatively compared with ultrasound 
radiomic or morphology models, and can help clinicians 
to select more reasonable treatment modalities and avoid 
overtreatment.
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