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Abstract 

Hybrid quantum systems have shown promise in image classification by combining the strengths of both classical 
and quantum algorithms. These systems leverage the parallel processing power of quantum computers to perform 
complex computations while utilizing classical algorithms to handle the vast amounts of data involved in imaging. 
The hybrid approach is intended to improve accuracy and speed compared to traditional classical methods. Further 
research and development in this area can revolutionize the way medical images are classified and help improve 
patient diagnosis and treatment. The use of Conventional Neural Networks (CNN) for the classification and diag-
nosis of medical images using big datasets requires, in most cases, the use of special high-performance comput-
ing machines, which are very expensive and hard to access by most researchers. A new form of Machine Learning 
(ML), Quantum machine learning (QML), is being introduced as an emerging strategy to overcome this problem. 
A hybrid quantum–classical CNN uses both quantum and classical convolution layers designed to use a parameter-
ized quantum circuit. This means that the computing model utilizes a quantum circuits approach to construct QML 
algorithms, which are then used to transform the quantum state to extract image hidden features. This computational 
acceleration is expected to achieve better algorithm performance than classical CNNs. This study intends to evaluate 
the performance of a Hybrid Quantum CNN (HQCNN) against a conventional CNN. This is followed by some optimizer 
modifications for both proposed and classical CNN methods to investigate the possible further improvement of their 
performance. The optimizer modification is based on forcing the optimizer to be directly adaptive to model accuracy. 
The optimizer adaptiveness is based on the development of an optimizer with a loss base adaptive momentum. 
Several algorithms are developed to achieve the above-mentioned goals, including CNN, QCNN, CNN with the adap-
tive optimizer, and QCNN with the Adaptive optimizer. The four algorithms are tested against a Kaggle brain dataset 
containing over 7000 samples. The test results show the hybrid quantum circuit algorithm outperformed the con-
ventional CNN algorithm. The performance of both algorithms was further improved by using a fully adaptive SGD 
optimizer.
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Introduction
As medical data becomes more diverse and complex, 
medical experts require accurate and efficient diagno-
sis methods. The development of intelligent algorithms 
plays a crucial role in achieving both accuracy and speed 
in the diagnostic process [1–3]. These algorithms pro-
vide medical experts with the necessary tools to enhance 
their diagnoses [4, 5]. Currently, machine learning (ML) 
and predictive modelling techniques [6, 7] are utilized for 
such tasks. In this study, we aim to develop and investi-
gate a Hybrid Quantum Convolutional Neural Network 
(HQCNN) as an alternative to conventional CNN-based 
models. Additionally, we aim to enhance the performance 
of the HQCNN by incorporating a fully variable adap-
tive momentum-based optimizer, which will improve the 
convergence rate of the loss function.

Quantum mechanics provides a mathematical frame-
work and set of physical principles that researchers har-
ness to achieve faster computational processes through 
quantum computing [8, 9]. Quantum computing utilizes 
the unique properties of quantum mechanics to perform 
information processing [10, 11]. Quantum technology 
aims to develop quantum computers with increased com-
putational capabilities [12]. The ability of quantum models 
to leverage parallel computing has led to the emergence 
of Quantum Machine Learning (QML) approaches, with 
Parameterized Quantum Computing (PQC) being a 
popular technique. Researchers have demonstrated the 
enhanced performance of QML in various applications 
[13–16]. Notably, Peruzzo et  al. introduced the vari-
ational quantum eigensolver (VQE) [17], and subsequent 
work by McClean et al. improved its optimization scheme 
[18]. Schuld et  al. employed PQC to construct a quan-
tum classifier [19], while Zeng et al. developed a Hybrid 
Quantum Neural Network (HQNN) using a full meas-
urement strategy, achieving high accuracy in binary and 
multiclassification tasks [20]. Several QML algorithms 
based on PQC have been proposed [21–27], demonstrat-
ing superior performance and computational abilities 
compared to conventional algorithms [28–31]. Moreover, 
Cong et  al. proposed a Quantum Convolutional Neural 
Network (QCNN) for phase classification and quantum 
error correction code optimization [32]. Li et  al. intro-
duced a Quantum Deep Convolutional Neural Network 
(QDCNN) that demonstrated exponential computational 
acceleration [33]. Parthasarathy et  al. proposed a Quan-
tum Optical Convolutional Neural Network (QOCNN) 
that integrated quantum convolution and quantum optics 
[34]. These advancements highlight the potential of quan-
tum-inspired models in various domains. Medical images 
play a crucial role in diagnosing and treating a wide range 
of medical conditions. They provide a non-invasive way 
for healthcare providers to visualize internal structures 

and assess the extent of disease or injury. For example, 
X-rays, CT scans, MRIs, and ultrasound images can help 
diagnose broken bones, tumours, heart problems, and 
other conditions. They can also provide important infor-
mation about the size, shape, and location of a problem, 
which can be used to plan the most appropriate treat-
ment. Medical images are essential for making an accurate 
diagnosis and determining the best course of treatment. 
They are also crucial for monitoring a condition’s progres-
sion and evaluating treatment effectiveness.

Medical imaging plays a crucial role in accurate diagno-
sis, treatment planning, and monitoring the progression 
of medical conditions. However, classical Convolutional 
Neural Networks (CNNs) face speed challenges when it 
comes to classifying medical images, particularly with 
large and high-dimensional images. Training a classical 
CNN on a large dataset can be time-consuming, and the 
testing phase can also be slow, especially for large images 
that require extensive computations to produce classi-
fication results. Furthermore, the use of large and com-
plex models can result in slow inference times, which is 
a significant concern in real-time applications like medi-
cal imaging. These speed limitations hinder the efficient 
analysis and processing of medical images, potentially 
impacting the timely delivery of patient care and deci-
sion-making by medical professionals. As a result, there 
is a need for alternative approaches that can accelerate 
the classification process and improve the efficiency of 
medical image analysis.

This study aims to develop a hybrid quantum–classi-
cal model for medical image classification by combining 
Parameterized Quantum Computing (PQC) with classi-
cal neural networks (NN). The hybrid model harnesses 
the high-performance capabilities of PQC while preserv-
ing the fundamental characteristics of NN. The quantum 
convolutional layer, constructed using quantum convo-
lution kernels based on PQC, processes medical images 
transformed into quantum states. The Quantum pooling 
layer performs pooling operations by measuring qubits 
at specific locations to obtain quantum system evolution 
results, which are then fed into a fully connected layer for 
further processing. Two different medical image datasets 
are used to evaluate the proposed method. Additionally, 
the model performance is enhanced by incorporating 
a fully adaptive momentum algorithm (FA_HQCNN). 
The performance of the FA_HQCNN algorithm will be 
compared against the HQCNN and a conventional CNN 
algorithm.

Simulation results demonstrate that the hybrid quan-
tum circuit model surpasses the conventional CNN model 
by achieving optimal validation accuracy in approximately 
two-thirds of the number of epochs. The hybrid quantum 
algorithm exhibits strong learning ability and achieves 



Page 3 of 23Ajlouni et al. BMC Medical Imaging          (2023) 23:126  

high image classification accuracy. Furthermore, the 
utilization of the fully adaptive SGD optimizer further 
enhances the performance of the HQCNN.

The findings of this study support the effectiveness of 
the hybrid quantum–classical model for medical image 
classification. The combination of PQC and classical NN 
demonstrates improved convergence speed and classi-
fication accuracy, with the fully adaptive SGD optimizer 
enhancing the model’s performance even further.

This paper is structured as follows: Sect.  "Introduc-
tion". Introduction: Provides an overview of the motiva-
tion and background of the study. Sect.  "Convolutional 
Neural Network", Conventional CNN: Briefly introduces 
the conventional Convolutional Neural Network (CNN) 
model, highlighting its strengths and limitations in medi-
cal image classification. Sect.  "Parameterized Quantum 
Circuits", Parameterized Quantum Computing (PQC) 
Theory: Presents the theory behind Parameterized Quan-
tum Computing, explaining how it can be used to con-
struct quantum convolutional layers for image processing 
tasks. Sect.  "Variable Adaptive Optimizer", Fully Adap-
tive Optimizer, introduces the fully adaptive optimizer 
used in the fully connected layer of the proposed model. 
Explains the algorithm and its benefits for improving 
the convergence and performance of the hybrid quan-
tum CNN. Sect. "Proposed Method", Architecture of the 
Adaptive Hybrid Quantum CNN Algorithm: Describes 
the architecture and design of the proposed adaptive 
Hybrid Quantum CNN algorithm. Outlines the inte-
gration of PQC with classical neural networks and how 
the hybrid model is constructed. Sect.  "Simulation and 
Results", Simulation and Testing Results: Presents the 
results of simulations and testing conducted to evaluate 
the performance of the proposed algorithm. Provides 
quantitative metrics, such as accuracy and convergence 

speed, to assess the effectiveness of the hybrid quan-
tum CNN model. Section  7, Conclusion: Summarizes 
the main findings of the study and highlights the advan-
tages and contributions of the proposed adaptive Hybrid 
Quantum CNN algorithm for medical image classifica-
tion. Discusses potential future directions and areas for 
further improvement.

Convolutional neural network
The Convolutional Neural Network (CNN) is a widely 
utilized architecture for various processing tasks, includ-
ing image recognition and feature classification. It com-
prises three main layers: Convolution, pooling, and fully 
connected layers. The convolution and pooling layers play 
a crucial role in extracting features from input images, 
while the fully connected layer maps these extracted fea-
tures to the output, enabling classification based on the 
identified features. A typical CNN structure consists of 
multiple blocks, incorporating convolution, pooling, and 
fully connected layers.

The Convolution layer is a key component of CNNs, 
as it efficiently extracts features from images by scan-
ning each pixel and recognizing that relevant features 
can exist anywhere within the image. To optimize the 
CNN, a kernel is trained, and the discrepancy between 
the network’s output and the ground truth labels is mini-
mized using techniques such as Backpropagation and the 
selection of an appropriate optimizer. In certain cases, 
the CNN structure may include multiple convolution 
and pooling layers, followed by a fully connected layer. 
Figure 1 provides a representative illustration of a CNN 
configuration.

Overall, the CNN architecture, with its convolution, 
pooling, and fully connected layers, forms a powerful 
framework for feature extraction and classification in 

Fig. 1 Conventional CNN structure
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image processing tasks. It has proven to be highly effec-
tive in various domains, including computer vision and 
medical image analysis.

Within the convolution layer of a Convolutional Neural 
Network (CNN), the crucial process of feature extraction 
occurs. This layer applies a series of operations, both lin-
ear and nonlinear, to the input data.

Initially, the convolution operation takes place, where 
a set of learnable filters, also known as kernels or fea-
ture detectors, slide over the input data, extracting local 
patterns or features. Each filter performs a dot product 
between its weights and a small region of the input, pro-
ducing a feature map. This process captures various pat-
terns, such as edges, corners, and textures, at different 
spatial locations in the input.

Following the convolution operation, a nonlinear activa-
tion function is applied elementwise to the output feature 
map. This nonlinearity introduces flexibility and enhances 
the model’s ability to capture complex relationships 
between the input and learned features. Common activa-
tion functions used in CNNs include the sigmoid func-
tion, which squashes the output between 0 and 1, and the 
rectified linear unit (ReLU), which sets negative values to 
zero and leaves positive values unchanged.

The activation function’s role is to introduce nonlinear-
ity into the network, enabling it to learn and represent 
more complex patterns in the data. By applying these 
nonlinear transformations to the linear outputs of the 
convolution operation, the convolution layer becomes 
capable of capturing rich and abstract features from the 
input data. Overall, the convolution layer’s combination 
of linear and nonlinear operations, along with the acti-
vation function, allows CNNs to effectively extract and 
represent meaningful features from input images or data, 
enabling subsequent layers to learn higher-level repre-
sentations and perform accurate classification or regres-
sion tasks.

After the convolution layer, the pooling layer plays 
a crucial role in downsampling the extracted features 
and reducing their dimensionality. This downsampling 

process helps achieve translation invariance, making the 
network more robust to small shifts and distortions in 
the input data. The pooling layer divides the input feature 
maps into non-overlapping regions, often referred to as 
pooling windows or pooling kernels. Within each pool-
ing window, a pooling operation is applied to summarize 
the information. Two common types of pooling opera-
tions are max pooling and average pooling. In the case 
of max pooling, the maximum value within each pooling 
window is extracted as the representative value for that 
region. This means that only the most prominent feature 
in each region is retained, discarding less relevant infor-
mation. This process helps capture the most salient fea-
tures and reduce the impact of minor variations or noise 
in the input.

On the other hand, average pooling computes the aver-
age value within each pooling window, providing a sum-
mary of the overall intensity or activation levels in that 
region. This pooling method can be useful in certain sce-
narios where capturing the average information across a 
region is more relevant than focusing solely on the maxi-
mum value.

In this study, the implementation employs max pooling, 
which extracts the maximum value within each pooling 
window. By retaining only the most significant features, 
max pooling helps preserve the essential information 
while reducing the dimensionality of the feature maps. 
The downsampling achieved by the pooling layer leads 
to a more compact representation, reducing the number 
of parameters and computational complexity in the sub-
sequent layers. For a visual representation of the pooling 
process, you can refer to Fig. 2, which illustrates the pool-
ing layer’s operation in the overall CNN architecture.

Parameterized quantum circuits
Parameterized Quantum Circuits (PQCs) are quan-
tum circuits that incorporate adjustable parameters, 
enabling the optimization of quantum computations; 
the Schematic of PQC is shown in Fig.  3. PQCs find 
extensive applications in quantum machine learning 

Fig. 2 MAX pooling operation



Page 5 of 23Ajlouni et al. BMC Medical Imaging          (2023) 23:126  

and quantum optimization since they can be trained 
and optimized for specific tasks. Essentially, a param-
eterized quantum circuit (PQC) is a type of quantum 
circuit where certain parameters, such as rotation 
angles, can be modified to achieve various objectives 
or enhance circuit performance. These parameters 
are represented by real numbers, while the quantum 
gates are represented by unitary matrices. By com-
bining gates and parameters, the evolution of a quan-
tum state is defined, creating a quantum circuit that 
can be optimized using classical algorithms. The goal 
of optimization is to determine parameter values that 
minimize a cost function, which evaluates the qual-
ity of the circuit’s output. PQCs have found utility in 
several quantum computing tasks, including quantum 
machine learning, quantum optimization, and quan-
tum error correction. The flexibility to adjust param-
eters makes PQCs versatile and allows customization 
for specific tasks, making them invaluable in the field 
of quantum computing. In a PQC, the quantum gates 
are parameterized, implying that a set of parameters 
controls the unitary operations applied to quantum 
states. These parameters are then optimized to mini-
mize a cost function, which quantifies the disparity 
between the desired and actual outputs of the quantum 
circuit. Classical optimization algorithms like Gradi-
ent Descent (GD) or Adam are utilized for this opti-
mization process. For this study, the aim is to develop 
an adaptive optimizer based on Stochastic Gradient 
Descent (SGD), which can adjust its variables accord-
ing to specific requirements. The key advantage of 
PQCs is that they allow for the flexible and efficient 
control of quantum states, which is important for tasks 
such as quantum image classification, quantum state 
preparation, and quantum optimization. Addition-
ally, PQCs can be combined with classical machine 

learning algorithms, such as neural networks, to create 
hybrid quantum–classical systems that can leverage 
the strengths of both quantum and classical comput-
ing. The parametric gate includes a single qubit rota-
tion gate, represented by:

A quantum circuit U(w) is utilized to apply a unitary 
transformation to a quantum state |x� , resulting in the 
production of a quantum output state |y� . The transfor-
mation is represented as:

Here, w represents the set of parameters associated 
with the quantum circuit U . By adjusting the values of 
these parameters; the quantum circuit can be optimized 
to achieve specific computational goals or improve its 
performance. The resulting output state |y� is the result of 
the unitary transformation applied to the input state |x� 
using the specified parameter values w.

In the quantum computing process, an input quan-
tum state undergoes a unitary transformation within 
the quantum circuit. Subsequently, the resulting output 
quantum state is subjected to measurement. The meas-
urement outcomes are then fed into a classical computer, 
where they are utilized to calculate a loss value. This loss 
value serves as a metric to evaluate the performance or 
effectiveness of the quantum circuit.
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Fig. 3 Schematic of PQC
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An iterative process involving the classical computer 
takes place to optimize the quantum circuit param-
eters. The classical computer adjusts the parameters of 
the quantum circuit based on the measurement results 
and the calculated loss value. This adjustment aims to 
improve the circuit’s performance by iteratively refining 
the parameter values. The optimization process contin-
ues for multiple iterations until certain conditions are 
met. These conditions could include achieving a satis-
factory expectation value, which signifies the desired 
outcome, or reaching a maximum predefined number of 
iterations. In summary, the quantum computer applies a 
unitary transformation to the input quantum state using 
quantum circuits, followed by measurement of the out-
put quantum state. The classical computer then computes 
the loss value based on the measurement outcomes, and 
the quantum circuit parameters are optimized through 
iterative adjustments made by the classical computer 
until specific criteria are fulfilled or a maximum number 
of iterations is reached.

The quantum gate is represented by the Pauli-X matrix:

To observe the impact of a gate on a qubit state vec-
tor is multiplied by the corresponding gate. In the case of 
the X-gate, it switches the amplitudes of state |0� and |1� . 
Specifically, when the X-gate is applied, the states |0� and 
|1� interchange their amplitudes. Mathematically, this can 
be represented as X |0� = |1� and X |1� = |0� . Thus, the 
X-gate transforms the qubit state as X(|0�|0�) = |1�|0� 
and X(|1�|1�) = |0�|1� . In other words, the X-gate swaps 
the amplitudes between the basis states |0� and |1⟩ within 
the qubit state vector. This can be written as:

The Y  and Z Pauli matrices can indeed act as the Y  and 
Z gates in quantum circuits. The Y  gate corresponds to a 
rotation of π (180 degrees) around the y-axis of the Bloch 
sphere, while the Z gate corresponds to a rotation of π 
around the z-axis.

The Y  gate has the following effect on qubit states 
Y |0� = i|1� and Y |1� = −i|0� . This gate introduces com-
plex phases and interchanges the amplitudes of the 
qubit states |0⟩ and |1⟩. Similarly, the Z gate transforms 
the qubit states as Z|0� = |0� and Z|1� = −|1� . The Z 
gate does not alter the state |0� , but it flips the phase 
of the state |1� by multiplying it by -1. In summary, the 
Y  and Z Pauli matrices can act as the Y  and Z gates, 
respectively, in quantum circuits. The Y  gate performs a 
π rotation around the y-axis, interchanging amplitudes 
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and introducing complex phases. The Z gate performs 
a π rotation around the z-axis, leaving the |0� state 
unchanged and flipping the phase of the |1� state. This is 
achieved by Eq. 5.

The U gate, known as the arbitrary single-qubit rota-
tion gate, performs a rotation around the bloch-sphere 
using three Euler angles θ , �,  and ϕ . The U operation is 
given as:

The U gate, also known as the arbitrary single-qubit 
rotation gate, can replicate all other single-qubit gates. 
This property is often referred to as gate universal-
ity. By appropriately choosing the three Euler angles 
(θ ,ϕ, �) in the U gate, one can reproduce the effects of 
other single-qubit gates such as the Pauli gates ( X ,Y ,Z ), 
the Hadamard gate (H), and many other common gates 
used in quantum computing. Gate universality is a sig-
nificant property as it means that with a U gate and 
additional two-qubit gates, such as the CNOT gate, with 
this in mind, one can construct any quantum computa-
tion or operation. The ability of the U gate to replicate 
other gates allows for flexibility and versatility in design-
ing quantum algorithms and circuits. The rotation of  
θ ,ϕ, and � by π ,π , and π

2
 , achieves the replication for the 

X gate as:

Variable adaptive optimizer
The variable adaptive Gradient Descent optimizer pro-
posed in this study aims to enhance the traditional gradi-
ent descent optimization algorithm. Gradient descent is 
a widely used optimization technique employed in vari-
ous machine learning algorithms, including linear regres-
sion, classification, and Back Propagation (BP) neural 
networks. The conventional gradient descent algorithm 
relies on the first-order derivative of a loss function to 
iteratively update the weights of the model, aiming to 
reach a minimum. It calculates the weights based on the 
gradient of the loss function with respect to the weights. 
In the BP algorithm, the loss is propagated through the 
network, layer by layer, and the model’s parameters 
(weights) are adjusted based on minimizing the accumu-
lated losses. The original BP algorithm was introduced 
by reference [11]. In this case, the initial weight W0 and 
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the iterative increment formula are provided to update 
the weights during the optimization process. However, in 
the proposed study, a variable adaptive Gradient Descent 
optimizer is employed. This optimizer aims to improve 
upon the traditional gradient descent algorithm by incor-
porating adaptive techniques. It adapts the learning rate 
or step size dynamically during the optimization process 
to achieve faster convergence and better performance. In 
this case, the initial weight W0 , iterative increment for-
mula is given as

where η > 0 is the learning rate used to indicate distance 
along the gradient’s negative direction. This algorithm 
convergence speed is slow due to the inherent behaviour 
of the activation function in the network, which worsens 
for multi-hidden layer networks. The second problem 
with this method is the difficulty in choosing a proper 
learning rate η to achieve fast learning while maintain-
ing the learning procedure stable. To overcome these 
problems, it is proposed to replace the fixed learning rate 
value with a suitable adaptive function directly depend-
ent on loss change.

In the proposed approach, the fixed learning rate 
value ( η ) in the conventional gradient descent algo-
rithm is replaced with an adaptive function that directly 
depends on the change in the loss. This adaptive func-
tion aims to address the slow convergence speed and 
the challenge of choosing an appropriate learning rate. 
The inherent behavior of the activation function in the 
network can lead to slow convergence, especially in 
multi-hidden layer networks. By introducing an adap-
tive learning rate that takes into account the change 
in the loss function, the proposed method seeks to 
improve the convergence speed. The adaptive learn-
ing rate function dynamically adjusts the learning rate 
based on the observed changes in the loss function. This 
adaptive behavior allows for faster learning while main-
taining stability in the learning process. By adapting the 
learning rate based on the loss change, the method aims 
to strike a balance between learning speed and stability. 
The hidden layer is defined by,

where bin is a bias input layer, the hidden layer will pass 
through the activation function (f ) . In this study, the 
SoftMax function is used. The SoftMax activation func-
tion is represented as

(8)�w(n+ 1) = ηδ_oy(n)+ α�w(n) n = 0, 1, . . .

(9)Hj = bin +
∑N

i=1
xiwij

(10)P(y = j|x) =
exwj

∑K
i=1 e

xwj

After calculating the overall output by multiplying the 
output of the hidden layer neurons with the hidden layer 
weights wjk , the results then, pass through a sigmoid 
function (called threshold) as shown below.

where bn is the bias of the hidden layer and k output 
neurons.

The network error equation is given by E for each pat-
tern ( p ) it is calculated by subtracting the overall output 
o from the target t;

The weight update equation with both learning and 
momentum terms is given as:

where n is the iteration number, η is the learning rate, and 
α  is the momentum term. The bias update equation is 
given as follows:

In this study, the variable adaptive momentum equa-
tion is represented as:

Where � <
2−2β

max eigen value of Rxx
  and the β is the forget-

ting factor (0"β < 1),
Here, α(n) denotes the adaptive momentum term 

at iteration n , � represents a constant value, error(t) 
refers to the error or loss at the current iteration t, and 
error(t − 1) represents the error or loss at the previous 
iteration t − 1.

The equation calculates the value of the adaptive momen-
tum term based on the current and previous error values. 
By summing the error values and applying an exponential 
function, the equation incorporates information from past 
iterations to influence the momentum term. The learning 
rate parameter η usually controls the adaptive momentum 
term α . In this case, the learning rate η is indirectly affected 
by the adaptive momentum through the equation’s formula-
tion. The value of α(n) obtained from the equation impacts 
the momentum, which in turn influences the learning rate 
and the optimization process. The purpose of the variable 
adaptive momentum equation is to adjust the momentum 
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term dynamically based on the error values. By incorporat-
ing the past errors, the equation aims to adaptively update the 
momentum to improve convergence and achieve lower per-
formance error. The initial values of β in the variable adaptive 
momentum equation are set to be sufficiently large. Conse-
quently, the term � approaches unity, resulting in the initial 
value of α(n) being relatively large. With this information, 
Eqs. (12) and (13) can be rewritten as follows:

where n represents the number of iterations, and �w is 
defined as the updating weights.

In Eq.  16, α(n) represents the adaptive momentum 
term at iteration n , α(n− 1) is the previous value of 
the adaptive momentum term, β represents a constant, 
error(t) denotes the error or loss at the current iteration 
t , and error(t − 1) represents the error or loss at the pre-
vious iteration t − 1 . The equations show that the current 
value of the adaptive momentum α(n) is updated based 
on the previous value α(n− 1) , and the learning rate η(n) 
is updated based on the initial learning rate η. By consid-
ering the initial large values of β , the equation ensures 
that the initial α(n) and η(n) values are relatively large, 
facilitating exploration in the early stages of the optimi-
zation. As the optimization progresses and the error val-
ues decrease, the exponential term gradually diminishes, 
leading to a reduction in α(n) values and allowing for 
finer adjustments towards convergence.

In this study, a custom learning rate schedular with 
momentum based on the loss values during the training 
is designed. The custom learning rate schedular decays 
the learning rate at each epoch. The schedular is called 
during training; at each epoch, it evaluates the model’s 
loss on the test set and stores it in the `loss_list’, calculat-
ing the momentum for the current epoch based on the 
loss history using the `calculate_momentum` function. 
Update the learning rate using the custom learning rate 
scheduler defined by the `custom_lr_scheduler` func-
tion. Perform model training with the current learning 
rate and momentum using the SGD optimizer. In this 
study, this sequence is defined as a fully adaptive SGD 
optimizer. Table  1, shows the pseudo code for the fully 
adaptive SGD optimizer.

Proposed method
To overcome the big data processing speed challenges, 
many researchers are exploring techniques such as model 
compression, pruning, and hardware acceleration to 

(17)

�wji(n+ 1) = ηδyxi(n)+

(

�

1− (e−(E(t)+E(t−1)))

)

�wji(n)

(18)
�wji(n+ 1) = ηδyxi(n)+

(

�

1− (e−(E(t)+E(t−1)))

)

�wji(n), n = 0, 1, . . .

make Convolutional Neural Networks (CNN) faster and 
more efficient. Therefore, in this study, it is proposed 
to use Hybrid Quantum CNN (HQCNN) to classify 
medical images. The proposed HQCNN will have sev-
eral advantages over classical CNNs when dealing with 
large datasets containing high-dimensional images. The 

Table 1 Pseudo-code for a fully adaptive SGD optimizer

# Pseudo-code for Custom Learning Rate Scheduler with Momentum 
Calculation

# Step 1: Define the custom learning rate scheduler

def custom_lr_scheduler(epoch, initial_lr = 0.01):

 lr_decay = 0.1

 lr = initial_lr * lr_decay ** epoch

 return lr

# Step 2: Define a function to calculate momentum based on loss history

def calculate_momentum(loss_list, current_epoch):

 if current_epoch >  = 2:

  loss_t_minus_1 = loss_list[current_epoch—2]

  loss_t = loss_list[current_epoch—1]

  beta = 1.0

  momentum = beta / (1.0 – np.exp(—(loss_t + loss_t_minus_1))

# Optionally, you can set a maximum momentum value (e.g., 0.999) 
if necessary

# momentum = min(momentum, 0.999)

 else:

  # Set a default momentum value for the first two epochs

  momentum = 0.9

 return momentum

# Step 3: Initialize the list to store loss values

init_loss = 0.0

loss_list = [init_loss]

# Step 4: Create the model and other necessary variables (not shown 
in the provided code)

 # Step 5: Main training loop with epochs

 for epoch in range(epochs):

 # Step 5.1: Evaluate the model’s loss on the test set and store it 
in the loss_list

 loss = model.evaluate(x_test, y_test_cat)[0]

 loss_list.append(loss)

 # Step 5.2: Calculate the momentum for the current epoch based on loss 
history

 momentum = calculate_momentum(loss_list, epoch)

 # Step 5.3: Update the learning rate using the custom learning rate 
scheduler

 learning_rate = custom_lr_scheduler(epoch)

 # Step 5.5: Perform model training with the current learning rate 
and momentum

 optimizer = SGD(lr = learning_rate, momentum = momentum, nest-
erov = False)

 model.compile(optimizer = optimizer, loss = ’categorical_crossentropy’, 
metrics = [’accuracy’])

 model.fit(x_train, y_train_cat, epochs = 1, batch_size = batch_size)
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advantages include Speed: Quantum algorithms can per-
form some tasks exponentially faster than classical algo-
rithms, which can result in faster processing times for 
large and high-dimensional images. High-dimensional 
feature representation: Medical images often have high-
dimensional features, and quantum algorithms can pro-
vide a more compact representation of these features, 
reducing the complexity of the model and improving 
its accuracy. Improved accuracy: Quantum algorithms 
can be more effective at handling complex and nonlin-
ear relationships in data, leading to improved accuracy 
in medical image classification. Robustness to noise: 
Quantum algorithms are generally more robust to noise 
and errors. This is important for medical image analysis, 
where image quality can be degraded by factors such as 
patient movement. To create a quantum–classical neural 
network, it is intended to create a hidden neural network 
layer using a parameterized quantum circuit. By "param-
eterized quantum circuit", we mean a quantum circuit 
where the rotation angles for each gate are specified by 
the components of a classical input vector; the outputs 
from the neural network’s previous layer will be collected 
and used as the inputs for the parameterized circuit. The 
measurement statistics of the quantum circuit can then 
be collected and used as inputs for the following layer. A 
simple example is shown in Fig. 4:

In the proposed algorithm, if the input is an image, 
small local regions are sequentially processed with the 
same kernel. The results obtained for each region are 
usually associated with different channels of a single out-
put pixel. The union of all the output pixels produces a 
new image-like object, which can be further processed by 
additional layers, as shown in Fig. 5.

The schematic diagram shown in Fig. 5 is a representa-
tion of a small region of a medical image which is pro-
cessed by taking a small region of the input image; in our 
example, a 2× 2 square is embedded into a quantum 
circuit. In this case, this is achieved with parameterized 
rotations applied to the qubits initialized in the ground 
state. In this case.

Consider the image 2 × 2 square regions shown in Fig. 5 
as an input to a quantum circuit. To embed this region 
into a quantum circuit, you can represent each pixel 
value as a parameter for a quantum rotation gate applied 
to a corresponding qubit initialized in the ground state 
(|0⟩ state). Figure  6 shows that the pixel values in the 
regions are mapped to quantum rotation angles produc-
ing a corresponding qubit. This is followed by creating a 
quantum circuit with the four qubits, and for each qubit, 
a parameterized rotation gate using the corresponding 
rotation angle is applied, as in Figs. 7 and 8.

In this representation, each qubit is associated with one 
pixel in the 2 × 2 square region. The RZ gates with angles 

in degrees represent the parameterized rotations applied 
to the qubits. These rotations encode the pixel values 
from the input image into the quantum circuit.

A quantum computation associated with a unitary 
U gate is performed on the system. The unitary could 
be generated by a variational quantum circuit or, more 
simply, by a random circuit. To visualize the concept 
of a quantum computation associated with a unitary 
gate, consider a simple quantum system with two qubits 
(quantum bits), denoted as |q0⟩ and |q1⟩. In quantum 
computing, a quantum state can be represented as a vec-
tor in a complex vector space. For a two-qubit system, the 
quantum state can be represented as:

Here, α,β , γ , and δ are complex numbers representing 
the probability amplitudes of different basis states. For 
simplicity, let’s assume the quantum state is in the follow-
ing form:

Now, we want to perform a quantum computation 
associated with a unitary gate U on this quantum state. 
The unitary gate U is represented by a 2x2 unitary matrix, 
and it transforms the quantum state according to the fol-
lowing equation:

Let’s consider two scenarios: one where the unitary 
U  is generated by a variational quantum circuit and 
the other where it is generated by a random circuit. In 
this case, the unitary U  is generated by a parameterized 
quantum circuit. A variational quantum circuit is a cir-
cuit with adjustable parameters that can be optimized to 
achieve specific objectives. In the circuit shown in Fig. 9, 
"Rot(θ)" and "Rot(φ)" represent single-qubit rotations 
parameterized by angles θ and φ, respectively. These 
angles can be adjusted during the optimization process. 
The quantum system is finally measured, obtaining a list 
of classical expectation values. The measurement results 
directly use the raw expectation values. The measure-
ment process collapses the quantum state into one of its 
basis states with certain probabilities. The measurement 
outcomes are the classical results. The measurement 
results directly provide the classical outcomes, which 
can be used to calculate classical expectation values. 
For each measurement, we can compute the expecta-
tion value of a specific observable. These expectation 
values are the final results that can be used for various 
purposes, such as analyzing the behavior of a quantum 
algorithm or solving specific problems. Analogously to 
a classical convolution layer, each expectation value is 

(19)|ψ� = α|00� + β|01� + γ |10� + δ|11�

(20)|ψ� = α|00� + β|01�

(21)U |ψ� = U(α|00� + β|01�)
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Fig. 4 bock structure of HQCNN
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mapped to a different channel of a single output pixel. 
The same procedure is iterated over different regions to 
scan the full input image, producing an output object 
which will be structured as a multi-channel image. The 
quantum convolution layers are followed by an optimi-
zation layer.

Therefore, the main distinction from classical con-
volution is that a quantum circuit has the capability to 
generate highly complex kernels that may be computa-
tionally infeasible using classical methods. The process 
starts by preparing the quantum state. When working 

Fig. 5 Single quantum layer image processing scheme

Fig. 6 Embedding a 2 × 2 image region into a quantum circuit

Fig. 7 4 qubits with parameterized rotation gates
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with a limited number of qubits in a quantum system 
to address classical problems, it is often necessary to 
perform dimensionality reduction on the classical data. 
In this specific work, the image is downsampled to an 
m×m size, where the pixel values are scaled to the 
range [0, 1] . The downsampled image is then flattened 
into a 1×m2 vector denoted as x = [x_1, x_2, ..., x_m2)] . 
To convert this flattened vector x into angle informa-
tion α , the operation α = πx is performed. Here, α is 
represented as  α = [α_1,α_2, ...,α__m2] , where each 
α_i corresponds to an angle. The angle information α 
is used as the rotation angle for the rotation gate Ry . 
The rotation gate Ry is applied to the initial quan-
tum state,  |0�_1⊗ |0�_2⊗ ...⊗ |0�_m2) , for encoding 
in an m2 input quantum system. The resulting quan-
tum state is denoted as |ϕ_img� . Thus, a total of m×m 
qubits are required to encode the down-sampled 
image of size m×m , and the quantum state |ϕ_img� is 
obtained by encoding all the pixels of the downsampled 
image. Once the quantum state |ϕ_img� is obtained, 
the designed quantum convolution kernel  u(θ) , 
which is parameterized by four training parameters 
( θ = θ_1, θ_2, θ_3, θ_4 ), is used to perform a unitary 
transformation on |ϕ_img� . This unitary transformation 
applies the convolutional operation using the quantum 
convolution kernel.

In Fig.  5, the depicted circuit represents a convolu-
tional layer circuit with an image size of 2× 3 . The con-
volutional layer applies a unitary transformation using 
a convolution kernel on the qubits that correspond to 
the convolution window. It is important to note that the 

quantum convolution window aligns with the classical 
convolution window, but in this quantum context, it cor-
responds to four qubits. This means that the convolution 
operation is performed on a 2× 2 quantum window (four 
qubits) within the larger quantum circuit. The purpose of 
repeatedly applying the convolution window on the four 
qubits is to retain the essential characteristics of classi-
cal convolution and extract hidden information from the 
quantum state. By performing this quantum convolution 
operation, the circuit aims to capture and process features 
present in the quantum state that are relevant for subse-
quent computations or analysis.

The quantum pooling layer operates in a similar man-
ner to the convolution window in terms of its position 
within the circuit. After the pooling operation, the con-
volution result of each convolution window is mapped to 
a specific qubit. Consequently, only that particular qubit 
is measured to obtain the desired expectation value.

In classical convolutional neural networks (CNNs), 
nonlinearity is introduced through nonlinear activation 
functions. However, in a quantum system, nonlinearity is 
achieved through measurement. Once the quantum sys-
tem has evolved to the desired quantum state, denoted 
as |ϕ_out� , a Z-based measurement is performed on this 
state to obtain the expectation value. The expectation 
value E is calculated as follows:

Here, ( Z_1, ...,Z_N  ) represents a vector of Z operators 
acting on different qubits. V  is a parameter-free unitary 

(22)
E = �ϕimg |U

†(θ)V †(Z1, . . . . . . .,ZN )VU(θ)|ϕout�

Fig. 8 Sample from Kaggle brain dataset

Fig. 9 Samples from the REMBRANDT dataset
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gate used in the pooling layer. U(θ) represents the prod-
uct of convolution kernels u_i(θ) , where i ranges from 
1  to  l  . In a convolutional layer with an m×m image, 
l  equals(m− 1)2 , indicating the number of con-
volutions performed. Similarly, the pooling unit is 
also performed (m− 1)2 times in the pooling layer. 
Directly measuring the output of the quantum convo-
lutional layers yields a quantum output E with dimen-
sions 1×m2 . On the other hand, measuring the output 
of the quantum pooling layer produces a vector E with 
dimensions  1× (m− 1)2 . This vector E consists of Z 
expectation values from different qubits. As it is not 
directly associated with the image label, E should be 
passed as input to the classical fully connected layer 
for further processing and subsequent classification. 
In summary, the expectation values obtained through 
quantum measurements serve as the output of the 
quantum convolutional and pooling layers. These values 
are subsequently processed in the classical fully con-
nected layer to further analyze and classify the image.

The proposed HQCNN (Hybrid Quantum Classical 
Convolutional Neural Network) architecture comprises 
three main components: a quantum convolutional layer, 
a quantum pooling layer, and a classical fully connected 
layer.

Figure  4 illustrates the structure of the HQCNN. 
The quantum convolutional layer consists of multi-
ple convolution kernels designed for quantum con-
volution operations. These kernels perform quantum 
convolutions to extract relevant features from the 
input image, producing a feature map. The convolu-
tion operation in the quantum convolutional layer is 
executed using quantum circuits, taking advantage of 
the quantum properties to perform complex computa-
tions that may be challenging for classical approaches. 
The quantum pooling layer follows the quantum con-
volutional layer and aims to reduce the dimensionality 
of the convolution results. Similar to classical pooling 
layers, the quantum pooling layer performs pooling 
operations but in a quantum context. After the pool-
ing operation, specific qubits are measured, and the 
measurement results are obtained. The measurement 
results from the quantum pooling layer are passed as 
inputs to the classical fully connected layer. The clas-
sical fully connected layer is a standard component 
in classical neural networks, responsible for process-
ing the inputs and producing the final classification 
output. In this study, the Variable Adaptive Gradient 
Descent (VAGD) optimizer is utilized to optimize the 
parameters of the fully connected layer. The VAGD 
optimizer is a variation of the conventional Gradi-
ent Descent (GD) optimizer. It is designed to achieve 
faster convergence of the loss function, enabling 

quicker and more efficient training of the network 
compared to traditional optimizers.

Simulation and results
In the study, several tests were conducted to compare the 
advantages of using quantum circuits in the prediction 
and classification of brain cancer. To be able to obtain 
optimal results for both the proposed HQCNN and the 
classical CNN models, the model’s structure must be opti-
mal. Therefore in this study, an optimal structure for both 
models is obtained using Genetic Algorithms optimiza-
tion for optimizing both model structures with the use of 
a small portion of one of the datasets as described in the 
Experimental section later on in this study.

Experimental design
The experiments carried out in this work are designed to 
highlight the novelties introduced by the HQCNN algo-
rithm: the generalizability of HQCNN layers compared to 
a classical CNN architecture, the ability to use this hybrid 
quantum algorithm on practical datasets, and the poten-
tial use of features introduced by the quantum circuit 
transformations. The experiment in this work is based on 
integrating quantum feature detection into a more com-
plex neural network architecture, as the QNN frame-
work introduces models containing nonlinearities. In this 
section, we will define the testing and the performance 
comparison of the different algorithm structures CNN, 
HQCNN, and the fully adaptive CNN and HQCNN.

Optimal CNN structure
The determination of the optimal number of layers in 
the CNN was achieved through a systematic approach 
involving training the CNN model with varying num-
bers of layers and filters. Once the ideal number of lay-
ers was identified, it was utilized to train the final model 
for performance comparison against the Hybrid Quan-
tum CNN (HQCNN). This testing methodology was 
adopted due to the nonlinear relationship between the 
number of layers and accuracy in CNNs. While increas-
ing the depth (number of layers) can improve perfor-
mance in certain cases, it is not guaranteed, and various 
factors come into play. The complexity of the dataset 
and the problem being solved play significant roles in 
determining the optimal depth of the CNN. For intri-
cate datasets, deeper CNNs might capture more intri-
cate patterns, resulting in higher accuracy. However, for 
simpler datasets, a shallower CNN might already be suf-
ficient. It’s crucial to consider that adding more layers 
can also increase the risk of overfitting, especially with 
limited data. Additionally, deeper CNNs require more 
parameters, leading to increased memory and compu-
tational requirements. Training such models can be 
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time-consuming and resource intensive. The challenge 
of vanishing and exploding gradients is also prevalent in 
deep networks, making it difficult to train them effec-
tively. Although techniques like batch normalization 
and skip connections can mitigate this issue to some 
extent, it may still persist. In such cases, research-
ers often explore other avenues for improving accu-
racy without unconditionally increasing the depth of 
the CNN. Techniques such as transfer learning, model 
ensembling, and architectural innovations have been 
employed to enhance performance while managing 
computational complexity. The pseudo-code presented 
in Table 2 outlines an optimization process that utilizes 
a Genetic Algorithm (GA) to identify the most suitable 
hyperparameters for the CNN algorithm To identify the 
optimal CNN model structure. Each chromosome in the 
population `pop` represents a potential CNN structure, 
with the first element denoting the number of layers. 
The subsequent elements represent the number of filters 
and their sizes for each layer. By using the `CNN model` 
function with the specified parameters, the CNN archi-
tecture is constructed accordingly. The Genetic Algo-
rithm not only searches for the optimal number of 

filters and filter sizes but also optimizes the number of 
layers, thus enhancing the CNN’s performance for the 
specific task. In the proposed method, the testing pro-
cess is split into two sections. Initially, a portion of the 
dataset is utilized to evaluate and determine the opti-
mal CNN structure. Subsequently, the CNN model is 
trained using the entire dataset with the identified opti-
mal structure.

Table  3, illustrates the resulting optimal CNN 
structure.

The total number of parameters in the above CNN 
structure is 14,751,912. This structure is used to train and 
test the CNN model against both datasets.

Table 2 GA code snippet for defining Optimal CNN structure

def fitness(pop, X, y, epochs):

pop_accuracy = []

for i in range(len(pop)):

num_layers = pop[i][0]

n_filters = pop[i][1:1 + num_layers]

s_filters = pop[i][1 + num_layers:]

model = cnn_model(num_layers, n_filters, s_filters)

k = model.fit(X, y, batch_size = 32, epochs = epochs)

accuracy = k.history["accuracy"]

pop_accuracy.append(max(accuracy))

return pop_accuracy

Table 3 Optimal CNN structure

Layer Filter Filter size Stride Total Parameters

Convolution 32 2 × 2x32 1 2048

Max Pool 2 × 2 2 0

Convolution 64 2 × 2x64 1 16,384

Max Pool 2 × 2 2 0

Convolution 64 2 × 2x64 1 16,384

Max Pool 2 × 2 2 0

Flatten 28,800 1 × 1x512 1 0

Dense 512 1 × 1x512 1 14,745,600

Dense 4 1 × 1x4 1 2048

Table 4 Pseudo-code for defining the best HQCNN algorithm 
hyperparameters

# Pseudo-code for Hyperparameter Optimization using Genetic Algo-
rithm

# Step 1: Load DICOM medical images and labels

X, y = load_medical_images_and_labels()

# Step 2: Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ran-
dom_state = 42)

# Step 3: Define the evaluation function (fitness function)

def evaluate_model(individual):

 num_circuits, circuit_depth, learning_rate = individual

 model = create_model_with_hyperparameters(num_circuits, circuit_
depth, learning_rate)

 # Train the model on the training set

 model.fit(X_train, y_train, epochs = 5, batch_size = 32, verbose = 0)

 # Evaluate the model on the test set

 y_pred = model.predict_classes(X_test)

 accuracy = accuracy_score(y_test, y_pred)

 # Get the number of parameters in the model

 num_params = model.count_params()

 return accuracy, -num_params # Maximizing accuracy and minimizing 
number of parameters

# Step 4: Initialize the Genetic Algorithm

population = initialize_population()

# Step 5: Main evolutionary loop

for gen in range(NUM_GENERATIONS):

 offspring = create_offspring(population)

 fitness_values = evaluate_fitness(offspring)

 assign_fitness_values_to_individuals(offspring, fitness_values)

 population = select_next_generation(offspring)

# Step 6: Get the best individual from the final population

best_individual = select_best_individual(population)

# Step 7: Print the best hyperparameters and the corresponding accuracy

best_num_circuits, best_circuit_depth, best_learning_rate = best_indi-
vidual

best_accuracy, best_num_params = evaluate_model(best_individual)
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Defining optimal Hybrid Quantum CNN Structure
In this study, it is intended to design an optimal HQCNN 
algorithm for the classification of DICOM medical type 
images. For a HQCNN algorithm to be optimal it requires 
to have the best hyperparameters (number of circuits, 
circuit depth, and learning rate). To achieve the required 
goal, Genetic Algorithms (GA) is utilized to obtain the 
best hyperparameters. The pseudo-code presented in 
Table  4, outlines an optimization process that utilizes 
a Genetic Algorithm (GA) to identify the most suitable 
hyperparameters for the HQCNN algorithm. This process 
involves working through a population of hyperparameter 
combinations to achieve the best-performing model for a 
given dataset of DICOM medical images. First, a portion 
of the DICOM dataset is loaded to enhance efficiency. 
The data is then divided into two sets: one for training 
the model and another for evaluating its performance. To 
assess the performance of the HQCNN model with dif-
ferent hyperparameter combinations, a fitness function 
is defined. This function measures how well the model 
performs based on these specific configurations. The GA 
begins by creating a random initial population of individ-
uals, each representing a distinct set of hyperparameters 
for the HQCNN model. The GA evaluation loop is then 
executed, where the fitness of the current individuals in 
the population is assessed. Based on their fitness scores, 
certain individuals are selected to produce the next gen-
eration, which involves applying genetic operations like 
crossover and mutation. This evaluation loop is repeated 
for multiple generations, allowing the GA to continually 
refine the population and explore different hyperparam-
eter combinations. Finally, after the evolutionary loop, 
the best individuals are identified based on their fit-
ness scores. These individuals correspond to the optimal 
hyperparameter combinations that yield the highest per-
formance for the HQCNN algorithm.

The optimized parameters for the HQCNN found by 
the GA optimization are the number of Quantum circuits 
is four, the number of filters is three, and the number 
of qubits is four. The optimal architecture of the hybrid 
quantum convolutional neural network obtained by the 
GA is defined as one quantum convolutional layer, one 

pooling layer, one flattened layer, and three dense layers 
with sizes 128, 64, and 4. Therefore, the total number of 
trainable variables for the entire model is 8256. Table 5, 
illustrates the resulting optimal HQCNN structure.

So, the total number of trainable variables in the hybrid 
quantum convolutional neural network is 9160.

Normalization
The convolution kernel is usually applied to pixel intensity 
in the images, meaning that the convolution kernel output 
depends on the image intensity value. But the intensity 
of pixels is not the same in all images as it varies across 
images and objects. Also, the intensity of images depends 
on image acquisition environments. Therefore, the inten-
sity variations must be normalized. Normalization will 
also provide the same range for different inputs. In this 
work, normalization is achieved by utilizing a minimum–
maximum approach. The normalization is achieved using:

where yi is the normalized intensity value at the ithx posi-
tion ( i = 1,2,…,n). while the min(x) and max()(x) refer to 
minimum and maximum intensity value in the image.

Performance evaluation metrics
The performance of the classifier is evaluated for param-
eters used in the confusion matrix, including recall, accu-
racy, F1 score, and precision. The metrics are evaluated 
using:

In this study, The above equations are used to calculate 
the classification results.

yi =
xi −min(x)

max(x)−min(x)

accuracy =
TruePositive+TrueNegative

TruePositive+FalsePositive+FalseNegative+TrueNegative

Precision = TruePositive
TruePositive+FalsePositive

Recall
(

sensitivity
)

= TruePositive
TruePositive+FalseNegative

F1Score = 2 ∗ Precision∗Recall
Precision+Recall

Table 5 Optimal HQCNN structure

Layer Unary gate Number of qubits trainable variables

Quantum Convolutional Layer 1 4 4

Pooling Layer 0

Flatten Layer 0

First Dense Layer with 128 neurons 1 4 (4 * 128) + 128 = 640

Second Dense Layer with 64 neurons 1 4 (128 * 64) + 64 = 8256

Third Dense Layer with 4 neurons (64 * 4) + 4 = 260
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Dataset
The training and performance validation of all algorithms 
are carried out using two datasets: the Kaggle Brain 
Tumor MRI dataset and the REM- BRANDT dataset. The 
Kaggle Brain dataset consists of 7,023 images of human 
brain MRI scans in DICOM format. The images are clas-
sified into four different classes, namely glioma, menin-
gioma, no tumor, and pituitary. The testing set contains 
a total of 1,307 DICOM images; samples of the dataset 
images are shown in Figs. 7 and 8. The second dataset is 
the REM- BRANDT dataset, which contains 110,020 MRI 
images of tumors for 130 patients. The dataset is split 
into four classes: Astrocytoma, Glioblastoma, Oligoden-
droglioma, and unidentified tumor image types. Some 
preprocessing is carried out on the REM- BRANDT data-
set to remove outliers, leaving a total of 106,541 DICOM 
images in the four classes; samples of the dataset images 
are shown in Fig. 9. Both datasets are split into two sec-
tions: training and testing, with 80% used for training and 
20% for testing. It’s important to note that the distribu-
tion of images within each class is balanced. To ensure 
compatibility with the algorithms and models, the images 
in both datasets were kept in their original DICOM 
format.

Each image in the dataset represents a brain MRI scan 
and is labelled with one of the four classes, indicating 
the presence or absence of a specific type of tumor. This 
type of datasets are commonly used in the field of medi-
cal imaging analysis and provides a valuable resource for 
training and evaluating models for brain tumor classifica-
tion tasks.

By utilizing this dataset, the study aims to leverage con-
volutional neural networks and quantum circuits for fea-
ture extraction and classification of brain tumor images, 
comparing the performance of these approaches and 
evaluating the advantages of employing quantum circuits 
in this context.

Training platform
The training platform used for all the tests in this study 
is a DESKTOP-PSOHNS6 computer. It is equipped 
with an Intel(R) Core(TM) i7 CPU 870 running at a 
clock speed of 2.93  GHz. The computer has 32  GB of 
RAM and runs on the Windows 10 operating system.

Optimal quantum circuit model
The code provided in Table  6 defines a custom Keras 
model called `MyModel` for image classification using 
quantum circuits. The model includes quantum con-
volution layers, quantum max pooling, and classical 
dense layers. The `MyModel` function takes `num_cir-
cuit_layers` as a parameter, which represents the num-
ber of circuit layers in the model. It defines the input 

shape of the model as `(IMG_SIZE, IMG_SIZE, 4)`, 
where `IMG_SIZE` is the size of the input image and 
`4` represents the number of channels in the image 
(assuming RGB images). The next lines define the 
parameters for the quantum circuit layers, including the 
number of qubits (`num_qubits`), filters, kernel sizes, 
and strides. The values are set to the provided configu-
ration. The code then creates a list called `circuit_lay-
ers` to store the quantum circuit layers. Each layer 
consists of a quantum convolution (`Convolution2D`) 
followed by quantum max pooling (`MaxPooling2D`). 
After that, the code defines the classical layers, includ-
ing flattening the output, dense layers with relu activa-
tion, and a final dense layer with softmax activation for 

Table 6 Python code for HQCNN model

def MyModel(num_circuit_layers):

# input shape

input_shape = (IMG_SIZE, IMG_SIZE, 4)

# circuit parameters

num_qubits = 4

filters = [4] * num_circuit_layers # Same number of filters for each circuit 
layer

kernel_sizes = [3] * num_circuit_layers # Same kernel size for each circuit 
layer

strides = [1] * num_circuit_layers # Same stride for each circuit layer

# quantum circuit layers

circuit_layers = []

for f, k, s in zip(filters, kernel_sizes, strides):

circuit_layers.append(Convolution2D(filters = f, kernel_size = k, strides = s, 
padding = "same", activation = "tanh"))

circuit_layers.append(MaxPooling2D(pool_size = (2, 2), strides = (2, 2)))

# classical layers

dense_layers = [

keras.layers.Flatten(),

keras.layers.Dense(128, activation = "relu"),

keras.layers.Dense(64, activation = "relu"),

keras.layers.Dense(4, activation = "softmax")

]

# Combine circuit and dense layers

model = keras.models.Sequential([

keras.layers.Input(shape = input_shape),

*circuit_layers,

*dense_layers

])

opt = keras.optimizers.SGD(lr = 0.01)

model.compile(

optimizer = opt,

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"],

)

return model
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classification. The circuit layers and dense layers are 
combined into a Keras sequential model using `keras.
models.Sequential`. An optimizer (SGD with a learning 
rate of 0.01) is defined using `keras.optimizers.SGD`. 
The model is compiled with the optimizer, loss func-
tion (`sparse_categorical_crossentropy`), and metrics 
(`accuracy`). Finally, the model is returned. To use this 
model, the `MyModel` function is called, in the func-
tion the desired number of circuit layers are passed as 
an argument. This will create an instance of the model 
with three circuit layers. The model is used to train the 
model using your dataset, which enables us to evaluate 
its performance.

Optimal convolutional NN model
The code provided in Table  7 defines a classical 
CNN model using Keras for image classification. The 
`MyModel` function initializes and returns the classical 
CNN model. It defines the input shape of the model as 
`(IMG_SIZE, IMG_SIZE, 4)`, where `IMG_SIZE` is the 
size of the input image and `4` represents the number of 
channels in the image. The code then creates a list called 
`cnn_layers` to store the CNN layers. Each layer consists 
of a convolutional layer (`Conv2D`) followed by max 
pooling (`MaxPooling2D`). After that, the code defines 
the classical layers, including flattening the output, dense 
layers with ReLU activation, and a final dense layer with 
softmax activation for classification. The CNN layers 
and dense layers are combined into a Keras sequential 
model using `models. Sequential`. An optimizer (SGD 
with a learning rate of 0.01) is defined using `keras.opti-
mizers.SGD`. The model is compiled with the optimizer,  
loss function (`sparse_categorical_crossentropy`), and 
metrics (`accuracy`).

Results and discussion
In the study, several tests were conducted to compare 
the advantages of using quantum circuits in the predic-
tion and classification of brain cancer. The tests involved 
comparing the performance of a conventional CNN 
with quantum circuits for feature extraction, specifically 
focusing on the advantages offered by quantum circuits. 
The first set of tests aimed to measure the processing time 
per epoch for training both the CNN and the HQCNN 
models. The training was performed using both a CPU 
and a GPU to assess the convergence advantage of the 
HQCNN compared to the CNN. The time taken for 100 
epochs was recorded in each case. Next, the tests were 
repeated using an adaptive stochastic gradient descent 
(SGD) optimizer with the quantum circuit model. In this 
test, the learning rate was adjusted based on the loss per 
epoch using the adaptive SGD optimizer, as described 
by Eq. 16. The objective was to evaluate the advantage of 
incorporating the adaptive SGD optimizer in the quan-
tum circuit model. To further compare the performance, 
the tests were also repeated using a conventional Adam 
optimizer instead of the adaptive SGD optimizer. The 
results of these tests, including the loss values and vali-
dation accuracy, were recorded, and analyzed. The find-
ings are presented in Figs. 7, 8 and 9, which illustrate the 
results of the experiments. Additionally, Table 3 provides 
a summary of the loss and validation accuracy for all the 
tests conducted in the study.

Table  8 presents the results obtained from both the 
CNN and Quantum Circuit models after a certain num-
ber of epochs, providing valuable insights into their 

Table 7 Python code for classical CNN model

def MyModel():

# input shape

input_shape = (IMG_SIZE, IMG_SIZE, 4)

# CNN layers

cnn_layers = [

 layers.Conv2D(filters = 256, kernel_size = 3, strides = 1, padding = "same", 
activation = "tanh"),

 layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)),

 layers.Conv2D(filters = 128, kernel_size = 3, strides = 1, padding = "same", 
activation = "tanh"),

 layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)),

 layers.Conv2D(filters = 128, kernel_size = 3, strides = 1, padding = "same", 
activation = "tanh"),

 layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)),

]

# classical layers

dense_layers = [

 layers.Flatten(),

 layers.Dense(128, activation = "relu"),

 layers.Dense(64, activation = "relu"),

 layers.Dense(4, activation = "softmax")

]

# Combine CNN and dense layers

model = models.Sequential([

 layers.Input(shape = input_shape),

 *cnn_layers,

 *dense_layers

])

# Compile the model

opt = keras.optimizers.SGD(lr = 0.01)

model.compile(

 optimizer = opt,

 loss = "sparse_categorical_crossentropy",

 metrics = ["accuracy"],

)

return model
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performance. Accuracy Comparison: After 100 epochs, 
both the CNN and Quantum Circuit models achieved 
similar accuracy levels on the validation dataset. This 
indicates that both models are capable of reaching com-
parable performance in terms of accuracy. Convergence 
Speed: However, it is worth noting that the Quantum 
Circuit model exhibited faster convergence compared to 
the CNN model. Within 70 epochs, the Quantum Cir-
cuit model achieved the same level of accuracy as the 
CNN model, showcasing its efficiency in converging more 
quickly. The results further validate that the HQCNN 

model demonstrated notably faster convergence com-
pared to traditional CNN models. It reached the same 
accuracy level as the CNN model within 63 epochs, 
highlighting its superior convergence rate. The table also 
demonstrates that incorporating a fully adaptive SGD 
optimizer improved the performance of both the CNN 
and Quantum Circuit models. This optimization tech-
nique positively influenced the convergence behavior of 
both models. HQCNN Outperformance: Interestingly, 
even with the implementation of the fully adaptive SGD 
optimizer, the HQCNN model outperformed the CNN 

Table 8 Test results for CNN and HQCNN when paired with the standard SGD, Adam, and Adaptive SGD optimizers

Epochs Validation Accuracy % SGD Optimizer Validation Accuracy % Adaptive-SGD 
Optimizer

Validation Accuracy % Adam 
Optimizer

CNN HQCNN CNN HQCNN CNN HQCNN

1 34.54 36.37 34.87 52.64 33.13 35.23

10 51.82 58.26 52.57 79.95 50.18 51.26

20 62.90 70.64 62.99 91.15 54.89 55.37

30 70.05 82.77 71.30 93.77 57.47 58.73

40 80.81 91.87 81.09 94.61 59.83 62.21

50 88.20 93.27 88.52 95.01 61.56 63.36

60 92.09 96.48 92.35 96.69 63.01 65.29

70 94.35 97.94 94.76 98.07 64.50 67.68

80 95.58 97.99 96.05 98.15 65.22 67.94

90 97.88 97.69 97.90 98.20 66.40 68.01

100 97.97 98.01 98.07 98.27 67.34 68.21

Fig. 10 Convergence curve of tune process of HQCNN, CNN, and fully Adaptive HQCNN
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model by achieving higher convergence. It achieved the 
desired accuracy level in just 63 epochs, surpassing the 
performance of the CNN model. In summary, Table  8 
indicates that both the CNN and Quantum Circuit mod-
els attain similar accuracy after 100 epochs. However, 
the Quantum Circuit model exhibits faster convergence, 
reaching the same accuracy as the CNN model within 
70 epochs. The HQCNN model stands out by achieving 
even higher convergence within 63 epochs, outperform-
ing the CNN model. Furthermore, the incorporation 
of a fully adaptive SGD optimizer further enhances the 
performance of both models. These results highlight 

the potential advantages of utilizing quantum circuits in 
image classification tasks, particularly in terms of conver-
gence speed.

Figure 10 presents a plot comparing the performance of 
different models, providing key observations and insights. 
From the results, it is observed that the Training on CPU: 
The plot reveals that when training the models on a CPU, 
both the Quantum circuit model and the CNN model 
achieve similar results. This suggests that the choice 
of CPU for training does not have a significant impact 
on the final outcomes obtained from the models. GPU 
Acceleration.

Table 9 Confusion matrix parameters

Dataset True Positive True Negative False Positive False Negative

HQCNN CNN HQCNN CNN HQCNN CNN HQCNN CNN

Kaggle Brain 4911 4853 1865 1823 114 162 135 175

REMBRANDT 66,342 66,121 42,729 42,581 2,154 2,375 580 728

Table 10 Classification results of HQCNN and CNN models/

Dataset Precision Recall F1 score

HQCNN CNN HQCNN CNN HQCNN CNN

Kaggle Brain 97.74% 96.72% 97.33% 96.53 97.53% 96.62

REMBRANDT 96.86% 96.54 99.13% 98.91 97.98% 97.71

Fig. 11 Validation Accuracy of the classical CNN algorithm and the proposed HQCNN Algorithm
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The plot clearly demonstrates the benefits of utilizing 
a GPU for training. It shows that using a GPU signifi-
cantly reduces the time taken per epoch for both mod-
els. This highlights the effectiveness of GPU acceleration 
in enhancing the efficiency of the training process. The 
plot provides evidence that the Quantum circuit model 
exhibits faster convergence compared to the CNN model. 
This indicates that the Quantum circuit model is capable 
of reaching a satisfactory level of accuracy more quickly 
during the training process. Fully Adaptive Optimizer: 

Additionally, the plot reveals that combining the Quan-
tum circuit model with a fully adaptive optimizer yields 
even better convergence compared to the Quantum cir-
cuit model alone. This emphasizes the importance of the 
choice of the optimizer in improving the performance 
and convergence of the Quantum circuit model.

The confusion matrix parameters for HQCNN and 
CNN are given in Table 9.

The classification results of the HQCNN and the CNN 
algorithms are given in Table 9.

Fig. 12 Plot of the P-value of t-test on the performance accuracy of both the classical and HQCNN

Fig. 13 The effect size of the Cohens d for classical CNN and HQCNN
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The classification precision, recall and F1 score test 
results are given in Table 10.

Based on the t-test results between the classical CNN 
and the HQCNN at different epochs, we can observe 
the statistical significance of the difference in validation 
accuracy between the two models. The t-test provides 
a p-value, which indicates the probability of observing 
the observed difference in accuracy (or a more extreme 
difference) if the null hypothesis is true. The validation 
accuracy comparison between the classical CNN and 
the proposed HQCNN model is illustrated in Fig. 11.

From Fig. 11, it can be seen that the validation accuracy 
is higher for the HQCNN model than that of the CNN 
model. Figure 12 illustrates the results of the P-values of 
the t-test on the performance of both the HQCNN model 
and the conventional CNN model. The t-test results show 
that at epoch 1, the p-value is 0.654, which is higher than 
the significance threshold of 0.05 (assuming a 5% signifi-
cance level). This indicates that there is no statistically 
significant difference in validation accuracy between the 
CNN and HQCNN at this early stage.

Figure 13, illustrates the effect size of the Cohen’s d for 
the classical CNN model and HQCNN model. The effect 
size (Cohen’s d) is 0.184, which suggests a small differ-
ence between the two models. At Epoch 10, the p-value 
is 0.156, still higher than the significance threshold. This 
means that there is no statistically significant difference 
in accuracy between the models at this epoch. The effect 
size (Cohen’s d) is 0.978, indicating a moderate differ-
ence between the two models. At Epoch 20, the p-value 
is 0.000, which is significantly lower than the signifi-
cance threshold. This indicates a statistically significant 
difference in validation accuracy between the CNN and 
HQCNN models at this epoch. The effect size (Cohen’s 
d) is 2.385, indicating a large difference between the two 
models. At epochs 30 to epoch 100, as the epochs pro-
gress, the p-values remain close to zero, indicating a 
consistent statistical significance in accuracy differences 
between the models. The effect size (Cohen’s d) also 
remains relatively large, suggesting substantial differences 
in validation accuracy. Therefore, the t-test results show 
that the CNN and HQCNN models have comparable 
performance in the early epochs ( Epoch 1 up to Epoch 

10). However, as the training progresses, the HQCNN 
consistently outperforms the CNN with a statistically 
significant difference in validation accuracy from Epoch 
20 to Epoch 100. The effect size (Cohen’s d) indicates that 
the magnitude of this difference is meaningful, especially 
in the later epochs, where it becomes substantially larger.

The validation accuracy was used to calculate the con-
fidence accuracy percentages of both the Classical CNN 
and HQCNN models at specific epochs. Table 11 shows 
the confidence intervals (95%) for the validation accuracy 
percentages of both models. These confidence intervals 
indicate the range of values within which the true accu-
racy of each model is likely to lie.

The validation accuracy was used to calculate the con-
fidence accuracy percentages of both the Classical CNN 
and HQCNN models at specific epochs. Table 11 shows 
the confidence intervals (95%) for the validation accuracy 
percentages of both models. These confidence intervals 
indicate the range of values within which the true accu-
racy of each model is likely to lie.

From Table  11, we can observe that the confidence 
interval for the Classical CNN model ranges from approx-
imately 64.43% to 93.06%. This wide range suggests con-
siderable uncertainty in the accuracy estimate, which 
could be influenced by factors like model variance, data 
variability, or limited training epochs. On the other hand, 
the confidence interval for the HQCNN model ranges 
from about 70.01% to 97.50%. Although still relatively 
wide, the HQCNN’s confidence interval is notably nar-
rower than that of the Classical CNN, indicating greater 
stability and consistency in its accuracy estimates.

Both models achieve relatively high accuracy, with the 
HQCNN exhibiting a higher lower bound and upper 
bound than the Classical CNN. This suggests that the 
HQCNN tends to outperform the Classical CNN in 
terms of accuracy, as its lower bound is higher than the 
upper bound of the Classical CNN.

Considering the narrower confidence interval of the 
HQCNN, we can have more confidence in its accuracy 
estimate compared to the Classical CNN. The narrower 
range indicates that the HQCNN’s accuracy is more 
robust across different validation scenarios.

The paired t-test results in a t-statistic of -3.9537. This 
negative t-statistic implies that the mean validation accu-
racy of the HQCNN model is lower than that of the Clas-
sical CNN. However, the p-value is found to be 0.0027, 
significantly lower than the chosen significance level of 
0.05. This low p-value suggests strong evidence against 
the null hypothesis (no significant difference) and indi-
cates that the observed performance difference between 
the models is unlikely to be due to chance.

Therefore, we can reject the null hypothesis and con-
clude that there is a statistically significant difference in 

Table 11 Confidence accuracy percentages for the Classical 
CNN and HQCNN

Model confidence accuracy 
percentages

confidence 
accuracy 
percentages

Lower Bound Upper Bound

CNN 64.43% 93.06%

HQCNN 70.01% 97.50%
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performance between the Classical CNN and HQCNN 
models.

Figure 14 shows the time performance of the different 
model’s evaluation for both the CPU and the GPU. The 
results clearly indicate that the CNN model has signifi-
cantly longer processing times compared to the Hybrid 
quantum model. This finding confirms that the hybrid 
quantum model offers a distinct advantage, especially in 
scenarios where researchers do not have access to a GPU 
for data processing. However, it is important to note that 
when the CNN and Quantum circuit models are trained 
using a GPU, the processing time difference between the 
two models becomes comparable. This implies that lever-
aging a GPU for training purposes can largely mitigate the 
processing time disparity between the models.

Conclusion
The research introduces a pioneering approach, 
the hybrid quantum convolutional neural network 
(HQCNN), for brain tumor classification and diagnosis 
utilizing the Kaggle brain and RENBRANDT medical 
images datasets. The HQCNN model exhibits superior 
performance compared to a conventional CNN model 
on the same dataset, achieving an impressive accuracy 
of 98.07% within just 70 epochs, surpassing the conven-
tional CNN’s performance that required 100 epochs for 
nearly the same accuracy level. The validation accuracy 
results further substantiate this superiority.

The incorporation of custom adaptive quantum opti-
mizers plays a crucial role in the research, as they dynam-
ically adjust learning rates and updating strategies based 
on epoch loss variations, resulting in improved conver-
gence speed in both the HQCNN and CNN models. 
Furthermore, the processing time analysis reveals that 
the hybrid quantum model processes each epoch signifi-
cantly faster compared to the CNN model, which is a val-
uable advantage, especially when using regular CPUs for 
computational tasks.

The statistical analysis unequivocally demonstrates that 
the HQCNN model outperforms the Classical CNN in 
terms of validation accuracy. These findings underscore 
the significance of adopting the hybrid quantum CNN 
model for medical image classification. The statistical 
significance of the difference solidifies the HQCNN’s 
superiority and encourages its seamless integration into 
medical imaging research, instilling researchers with 
heightened confidence in its performance advantage over 
the Classical CNN.

Moreover, these findings emphasize the potential of the 
hybrid quantum model for efficient medical image clas-
sification and diagnosis. However, further investigation is 
warranted to assess its performance in classifying other 
types of data.

The research provides invaluable insights into the 
advantages of incorporating quantum circuitry into 
CNN models for medical image analysis, paving the 
way for quantum-enhanced machine learning in the 
field. Future research endeavors aim to investigate 
HQCNN’s robustness against adversarial attacks, 
employing adversarial defense techniques to ensure 
model security and reliability in safety–critical applica-
tions. This will further contribute to the growing body 
of knowledge in the domain of quantum computing and 
its potential applications in medical imaging research, 
ultimately fostering advancements in accurate diagno-
sis and improved patient care.
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