
Ajlouni et al. BMC Medical Imaging (2023) 23:126
https://doi.org/10.1186/s12880-023-01084-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Imaging

Medical image diagnosis based on adaptive
Hybrid Quantum CNN
Naim Ajlouni1,2,3,4*, Adem Özyavaş1, Mustafa Takaoğlu5, Faruk Takaoğlu5 and Firas Ajlouni6

Abstract

Hybrid quantum systems have shown promise in image classification by combining the strengths of both classical
and quantum algorithms. These systems leverage the parallel processing power of quantum computers to perform
complex computations while utilizing classical algorithms to handle the vast amounts of data involved in imaging.
The hybrid approach is intended to improve accuracy and speed compared to traditional classical methods. Further
research and development in this area can revolutionize the way medical images are classified and help improve
patient diagnosis and treatment. The use of Conventional Neural Networks (CNN) for the classification and diag-
nosis of medical images using big datasets requires, in most cases, the use of special high-performance comput-
ing machines, which are very expensive and hard to access by most researchers. A new form of Machine Learning
(ML), Quantum machine learning (QML), is being introduced as an emerging strategy to overcome this problem.
A hybrid quantum–classical CNN uses both quantum and classical convolution layers designed to use a parameter-
ized quantum circuit. This means that the computing model utilizes a quantum circuits approach to construct QML
algorithms, which are then used to transform the quantum state to extract image hidden features. This computational
acceleration is expected to achieve better algorithm performance than classical CNNs. This study intends to evaluate
the performance of a Hybrid Quantum CNN (HQCNN) against a conventional CNN. This is followed by some optimizer
modifications for both proposed and classical CNN methods to investigate the possible further improvement of their
performance. The optimizer modification is based on forcing the optimizer to be directly adaptive to model accuracy.
The optimizer adaptiveness is based on the development of an optimizer with a loss base adaptive momentum.
Several algorithms are developed to achieve the above-mentioned goals, including CNN, QCNN, CNN with the adap-
tive optimizer, and QCNN with the Adaptive optimizer. The four algorithms are tested against a Kaggle brain dataset
containing over 7000 samples. The test results show the hybrid quantum circuit algorithm outperformed the con-
ventional CNN algorithm. The performance of both algorithms was further improved by using a fully adaptive SGD
optimizer.

Keywords Neural networks, CNN, Parameterized Quantum Circuits ‘PQC’, Hybrid QCNN, Adaptive momentum,
Medical diagnosis

*Correspondence:
Naim Ajlouni
naim.ajlouni@atlas.edu.tr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-023-01084-5&domain=pdf

Page 2 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

Introduction
As medical data becomes more diverse and complex,
medical experts require accurate and efficient diagno-
sis methods. The development of intelligent algorithms
plays a crucial role in achieving both accuracy and speed
in the diagnostic process [1–3]. These algorithms pro-
vide medical experts with the necessary tools to enhance
their diagnoses [4, 5]. Currently, machine learning (ML)
and predictive modelling techniques [6, 7] are utilized for
such tasks. In this study, we aim to develop and investi-
gate a Hybrid Quantum Convolutional Neural Network
(HQCNN) as an alternative to conventional CNN-based
models. Additionally, we aim to enhance the performance
of the HQCNN by incorporating a fully variable adap-
tive momentum-based optimizer, which will improve the
convergence rate of the loss function.

Quantum mechanics provides a mathematical frame-
work and set of physical principles that researchers har-
ness to achieve faster computational processes through
quantum computing [8, 9]. Quantum computing utilizes
the unique properties of quantum mechanics to perform
information processing [10, 11]. Quantum technology
aims to develop quantum computers with increased com-
putational capabilities [12]. The ability of quantum models
to leverage parallel computing has led to the emergence
of Quantum Machine Learning (QML) approaches, with
Parameterized Quantum Computing (PQC) being a
popular technique. Researchers have demonstrated the
enhanced performance of QML in various applications
[13–16]. Notably, Peruzzo et al. introduced the vari-
ational quantum eigensolver (VQE) [17], and subsequent
work by McClean et al. improved its optimization scheme
[18]. Schuld et al. employed PQC to construct a quan-
tum classifier [19], while Zeng et al. developed a Hybrid
Quantum Neural Network (HQNN) using a full meas-
urement strategy, achieving high accuracy in binary and
multiclassification tasks [20]. Several QML algorithms
based on PQC have been proposed [21–27], demonstrat-
ing superior performance and computational abilities
compared to conventional algorithms [28–31]. Moreover,
Cong et al. proposed a Quantum Convolutional Neural
Network (QCNN) for phase classification and quantum
error correction code optimization [32]. Li et al. intro-
duced a Quantum Deep Convolutional Neural Network
(QDCNN) that demonstrated exponential computational
acceleration [33]. Parthasarathy et al. proposed a Quan-
tum Optical Convolutional Neural Network (QOCNN)
that integrated quantum convolution and quantum optics
[34]. These advancements highlight the potential of quan-
tum-inspired models in various domains. Medical images
play a crucial role in diagnosing and treating a wide range
of medical conditions. They provide a non-invasive way
for healthcare providers to visualize internal structures

and assess the extent of disease or injury. For example,
X-rays, CT scans, MRIs, and ultrasound images can help
diagnose broken bones, tumours, heart problems, and
other conditions. They can also provide important infor-
mation about the size, shape, and location of a problem,
which can be used to plan the most appropriate treat-
ment. Medical images are essential for making an accurate
diagnosis and determining the best course of treatment.
They are also crucial for monitoring a condition’s progres-
sion and evaluating treatment effectiveness.

Medical imaging plays a crucial role in accurate diagno-
sis, treatment planning, and monitoring the progression
of medical conditions. However, classical Convolutional
Neural Networks (CNNs) face speed challenges when it
comes to classifying medical images, particularly with
large and high-dimensional images. Training a classical
CNN on a large dataset can be time-consuming, and the
testing phase can also be slow, especially for large images
that require extensive computations to produce classi-
fication results. Furthermore, the use of large and com-
plex models can result in slow inference times, which is
a significant concern in real-time applications like medi-
cal imaging. These speed limitations hinder the efficient
analysis and processing of medical images, potentially
impacting the timely delivery of patient care and deci-
sion-making by medical professionals. As a result, there
is a need for alternative approaches that can accelerate
the classification process and improve the efficiency of
medical image analysis.

This study aims to develop a hybrid quantum–classi-
cal model for medical image classification by combining
Parameterized Quantum Computing (PQC) with classi-
cal neural networks (NN). The hybrid model harnesses
the high-performance capabilities of PQC while preserv-
ing the fundamental characteristics of NN. The quantum
convolutional layer, constructed using quantum convo-
lution kernels based on PQC, processes medical images
transformed into quantum states. The Quantum pooling
layer performs pooling operations by measuring qubits
at specific locations to obtain quantum system evolution
results, which are then fed into a fully connected layer for
further processing. Two different medical image datasets
are used to evaluate the proposed method. Additionally,
the model performance is enhanced by incorporating
a fully adaptive momentum algorithm (FA_HQCNN).
The performance of the FA_HQCNN algorithm will be
compared against the HQCNN and a conventional CNN
algorithm.

Simulation results demonstrate that the hybrid quan-
tum circuit model surpasses the conventional CNN model
by achieving optimal validation accuracy in approximately
two-thirds of the number of epochs. The hybrid quantum
algorithm exhibits strong learning ability and achieves

Page 3 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

high image classification accuracy. Furthermore, the
utilization of the fully adaptive SGD optimizer further
enhances the performance of the HQCNN.

The findings of this study support the effectiveness of
the hybrid quantum–classical model for medical image
classification. The combination of PQC and classical NN
demonstrates improved convergence speed and classi-
fication accuracy, with the fully adaptive SGD optimizer
enhancing the model’s performance even further.

This paper is structured as follows: Sect. "Introduc-
tion". Introduction: Provides an overview of the motiva-
tion and background of the study. Sect. "Convolutional
Neural Network", Conventional CNN: Briefly introduces
the conventional Convolutional Neural Network (CNN)
model, highlighting its strengths and limitations in medi-
cal image classification. Sect. "Parameterized Quantum
Circuits", Parameterized Quantum Computing (PQC)
Theory: Presents the theory behind Parameterized Quan-
tum Computing, explaining how it can be used to con-
struct quantum convolutional layers for image processing
tasks. Sect. "Variable Adaptive Optimizer", Fully Adap-
tive Optimizer, introduces the fully adaptive optimizer
used in the fully connected layer of the proposed model.
Explains the algorithm and its benefits for improving
the convergence and performance of the hybrid quan-
tum CNN. Sect. "Proposed Method", Architecture of the
Adaptive Hybrid Quantum CNN Algorithm: Describes
the architecture and design of the proposed adaptive
Hybrid Quantum CNN algorithm. Outlines the inte-
gration of PQC with classical neural networks and how
the hybrid model is constructed. Sect. "Simulation and
Results", Simulation and Testing Results: Presents the
results of simulations and testing conducted to evaluate
the performance of the proposed algorithm. Provides
quantitative metrics, such as accuracy and convergence

speed, to assess the effectiveness of the hybrid quan-
tum CNN model. Section 7, Conclusion: Summarizes
the main findings of the study and highlights the advan-
tages and contributions of the proposed adaptive Hybrid
Quantum CNN algorithm for medical image classifica-
tion. Discusses potential future directions and areas for
further improvement.

Convolutional neural network
The Convolutional Neural Network (CNN) is a widely
utilized architecture for various processing tasks, includ-
ing image recognition and feature classification. It com-
prises three main layers: Convolution, pooling, and fully
connected layers. The convolution and pooling layers play
a crucial role in extracting features from input images,
while the fully connected layer maps these extracted fea-
tures to the output, enabling classification based on the
identified features. A typical CNN structure consists of
multiple blocks, incorporating convolution, pooling, and
fully connected layers.

The Convolution layer is a key component of CNNs,
as it efficiently extracts features from images by scan-
ning each pixel and recognizing that relevant features
can exist anywhere within the image. To optimize the
CNN, a kernel is trained, and the discrepancy between
the network’s output and the ground truth labels is mini-
mized using techniques such as Backpropagation and the
selection of an appropriate optimizer. In certain cases,
the CNN structure may include multiple convolution
and pooling layers, followed by a fully connected layer.
Figure 1 provides a representative illustration of a CNN
configuration.

Overall, the CNN architecture, with its convolution,
pooling, and fully connected layers, forms a powerful
framework for feature extraction and classification in

Fig. 1 Conventional CNN structure

Page 4 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

image processing tasks. It has proven to be highly effec-
tive in various domains, including computer vision and
medical image analysis.

Within the convolution layer of a Convolutional Neural
Network (CNN), the crucial process of feature extraction
occurs. This layer applies a series of operations, both lin-
ear and nonlinear, to the input data.

Initially, the convolution operation takes place, where
a set of learnable filters, also known as kernels or fea-
ture detectors, slide over the input data, extracting local
patterns or features. Each filter performs a dot product
between its weights and a small region of the input, pro-
ducing a feature map. This process captures various pat-
terns, such as edges, corners, and textures, at different
spatial locations in the input.

Following the convolution operation, a nonlinear activa-
tion function is applied elementwise to the output feature
map. This nonlinearity introduces flexibility and enhances
the model’s ability to capture complex relationships
between the input and learned features. Common activa-
tion functions used in CNNs include the sigmoid func-
tion, which squashes the output between 0 and 1, and the
rectified linear unit (ReLU), which sets negative values to
zero and leaves positive values unchanged.

The activation function’s role is to introduce nonlinear-
ity into the network, enabling it to learn and represent
more complex patterns in the data. By applying these
nonlinear transformations to the linear outputs of the
convolution operation, the convolution layer becomes
capable of capturing rich and abstract features from the
input data. Overall, the convolution layer’s combination
of linear and nonlinear operations, along with the acti-
vation function, allows CNNs to effectively extract and
represent meaningful features from input images or data,
enabling subsequent layers to learn higher-level repre-
sentations and perform accurate classification or regres-
sion tasks.

After the convolution layer, the pooling layer plays
a crucial role in downsampling the extracted features
and reducing their dimensionality. This downsampling

process helps achieve translation invariance, making the
network more robust to small shifts and distortions in
the input data. The pooling layer divides the input feature
maps into non-overlapping regions, often referred to as
pooling windows or pooling kernels. Within each pool-
ing window, a pooling operation is applied to summarize
the information. Two common types of pooling opera-
tions are max pooling and average pooling. In the case
of max pooling, the maximum value within each pooling
window is extracted as the representative value for that
region. This means that only the most prominent feature
in each region is retained, discarding less relevant infor-
mation. This process helps capture the most salient fea-
tures and reduce the impact of minor variations or noise
in the input.

On the other hand, average pooling computes the aver-
age value within each pooling window, providing a sum-
mary of the overall intensity or activation levels in that
region. This pooling method can be useful in certain sce-
narios where capturing the average information across a
region is more relevant than focusing solely on the maxi-
mum value.

In this study, the implementation employs max pooling,
which extracts the maximum value within each pooling
window. By retaining only the most significant features,
max pooling helps preserve the essential information
while reducing the dimensionality of the feature maps.
The downsampling achieved by the pooling layer leads
to a more compact representation, reducing the number
of parameters and computational complexity in the sub-
sequent layers. For a visual representation of the pooling
process, you can refer to Fig. 2, which illustrates the pool-
ing layer’s operation in the overall CNN architecture.

Parameterized quantum circuits
Parameterized Quantum Circuits (PQCs) are quan-
tum circuits that incorporate adjustable parameters,
enabling the optimization of quantum computations;
the Schematic of PQC is shown in Fig. 3. PQCs find
extensive applications in quantum machine learning

Fig. 2 MAX pooling operation

Page 5 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

and quantum optimization since they can be trained
and optimized for specific tasks. Essentially, a param-
eterized quantum circuit (PQC) is a type of quantum
circuit where certain parameters, such as rotation
angles, can be modified to achieve various objectives
or enhance circuit performance. These parameters
are represented by real numbers, while the quantum
gates are represented by unitary matrices. By com-
bining gates and parameters, the evolution of a quan-
tum state is defined, creating a quantum circuit that
can be optimized using classical algorithms. The goal
of optimization is to determine parameter values that
minimize a cost function, which evaluates the qual-
ity of the circuit’s output. PQCs have found utility in
several quantum computing tasks, including quantum
machine learning, quantum optimization, and quan-
tum error correction. The flexibility to adjust param-
eters makes PQCs versatile and allows customization
for specific tasks, making them invaluable in the field
of quantum computing. In a PQC, the quantum gates
are parameterized, implying that a set of parameters
controls the unitary operations applied to quantum
states. These parameters are then optimized to mini-
mize a cost function, which quantifies the disparity
between the desired and actual outputs of the quantum
circuit. Classical optimization algorithms like Gradi-
ent Descent (GD) or Adam are utilized for this opti-
mization process. For this study, the aim is to develop
an adaptive optimizer based on Stochastic Gradient
Descent (SGD), which can adjust its variables accord-
ing to specific requirements. The key advantage of
PQCs is that they allow for the flexible and efficient
control of quantum states, which is important for tasks
such as quantum image classification, quantum state
preparation, and quantum optimization. Addition-
ally, PQCs can be combined with classical machine

learning algorithms, such as neural networks, to create
hybrid quantum–classical systems that can leverage
the strengths of both quantum and classical comput-
ing. The parametric gate includes a single qubit rota-
tion gate, represented by:

A quantum circuit U(w) is utilized to apply a unitary
transformation to a quantum state |x� , resulting in the
production of a quantum output state |y� . The transfor-
mation is represented as:

Here, w represents the set of parameters associated
with the quantum circuit U . By adjusting the values of
these parameters; the quantum circuit can be optimized
to achieve specific computational goals or improve its
performance. The resulting output state |y� is the result of
the unitary transformation applied to the input state |x�
using the specified parameter values w.

In the quantum computing process, an input quan-
tum state undergoes a unitary transformation within
the quantum circuit. Subsequently, the resulting output
quantum state is subjected to measurement. The meas-
urement outcomes are then fed into a classical computer,
where they are utilized to calculate a loss value. This loss
value serves as a metric to evaluate the performance or
effectiveness of the quantum circuit.

(1)

Rx(θ) =
cos

θ
2

−i sin
θ
2

−i sin
θ
2

cos
θ
2

,

Ry(θ) =
cos

θ
2

− sin
θ
2

sin
θ
2

cos
θ
2

,

Rz(θ) =
e
−i θ

2 0

0 e
i θ

2

,

(2)|y� = U(w)|x�

Fig. 3 Schematic of PQC

Page 6 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

An iterative process involving the classical computer
takes place to optimize the quantum circuit param-
eters. The classical computer adjusts the parameters of
the quantum circuit based on the measurement results
and the calculated loss value. This adjustment aims to
improve the circuit’s performance by iteratively refining
the parameter values. The optimization process contin-
ues for multiple iterations until certain conditions are
met. These conditions could include achieving a satis-
factory expectation value, which signifies the desired
outcome, or reaching a maximum predefined number of
iterations. In summary, the quantum computer applies a
unitary transformation to the input quantum state using
quantum circuits, followed by measurement of the out-
put quantum state. The classical computer then computes
the loss value based on the measurement outcomes, and
the quantum circuit parameters are optimized through
iterative adjustments made by the classical computer
until specific criteria are fulfilled or a maximum number
of iterations is reached.

The quantum gate is represented by the Pauli-X matrix:

To observe the impact of a gate on a qubit state vec-
tor is multiplied by the corresponding gate. In the case of
the X-gate, it switches the amplitudes of state |0� and |1� .
Specifically, when the X-gate is applied, the states |0� and
|1� interchange their amplitudes. Mathematically, this can
be represented as X |0� = |1� and X |1� = |0� . Thus, the
X-gate transforms the qubit state as X(|0�|0�) = |1�|0�
and X(|1�|1�) = |0�|1� . In other words, the X-gate swaps
the amplitudes between the basis states |0� and |1⟩ within
the qubit state vector. This can be written as:

The Y and Z Pauli matrices can indeed act as the Y and
Z gates in quantum circuits. The Y gate corresponds to a
rotation of π (180 degrees) around the y-axis of the Bloch
sphere, while the Z gate corresponds to a rotation of π
around the z-axis.

The Y gate has the following effect on qubit states
Y |0� = i|1� and Y |1� = −i|0� . This gate introduces com-
plex phases and interchanges the amplitudes of the
qubit states |0⟩ and |1⟩. Similarly, the Z gate transforms
the qubit states as Z|0� = |0� and Z|1� = −|1� . The Z
gate does not alter the state |0� , but it flips the phase
of the state |1� by multiplying it by -1. In summary, the
Y and Z Pauli matrices can act as the Y and Z gates,
respectively, in quantum circuits. The Y gate performs a
π rotation around the y-axis, interchanging amplitudes

(3)X =

[

0 1

1 0

]

= |0��1| + |1��0|

(4)X|0 � =

[

0 1

1 0

] [

0

1

]

=

[

0

1

]

= |1�

and introducing complex phases. The Z gate performs
a π rotation around the z-axis, leaving the |0� state
unchanged and flipping the phase of the |1� state. This is
achieved by Eq. 5.

The U gate, known as the arbitrary single-qubit rota-
tion gate, performs a rotation around the bloch-sphere
using three Euler angles θ , �, and ϕ . The U operation is
given as:

The U gate, also known as the arbitrary single-qubit
rotation gate, can replicate all other single-qubit gates.
This property is often referred to as gate universal-
ity. By appropriately choosing the three Euler angles
(θ ,ϕ, �) in the U gate, one can reproduce the effects of
other single-qubit gates such as the Pauli gates (X ,Y ,Z),
the Hadamard gate (H), and many other common gates
used in quantum computing. Gate universality is a sig-
nificant property as it means that with a U gate and
additional two-qubit gates, such as the CNOT gate, with
this in mind, one can construct any quantum computa-
tion or operation. The ability of the U gate to replicate
other gates allows for flexibility and versatility in design-
ing quantum algorithms and circuits. The rotation of
θ ,ϕ, and � by π ,π , and π

2
 , achieves the replication for the

X gate as:

Variable adaptive optimizer
The variable adaptive Gradient Descent optimizer pro-
posed in this study aims to enhance the traditional gradi-
ent descent optimization algorithm. Gradient descent is
a widely used optimization technique employed in vari-
ous machine learning algorithms, including linear regres-
sion, classification, and Back Propagation (BP) neural
networks. The conventional gradient descent algorithm
relies on the first-order derivative of a loss function to
iteratively update the weights of the model, aiming to
reach a minimum. It calculates the weights based on the
gradient of the loss function with respect to the weights.
In the BP algorithm, the loss is propagated through the
network, layer by layer, and the model’s parameters
(weights) are adjusted based on minimizing the accumu-
lated losses. The original BP algorithm was introduced
by reference [11]. In this case, the initial weight W0 and

(5)
Y =

[

0 −i

i 0

]

Z =

[

1 0

0 −1

]

Y = −i|0��1| + i|1��0|Z = |0��0| − |1��1|

(6)U =

[

cos
(

θ
2

)

−ei� sin
(

θ
2

)

eiφ sin
(

θ
2

)

ei(φ+�)cos
(

θ
2

)

]

(7)X = U(π ,π ,π/2) = U(θ ,ϕ, �)

Page 7 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

the iterative increment formula are provided to update
the weights during the optimization process. However, in
the proposed study, a variable adaptive Gradient Descent
optimizer is employed. This optimizer aims to improve
upon the traditional gradient descent algorithm by incor-
porating adaptive techniques. It adapts the learning rate
or step size dynamically during the optimization process
to achieve faster convergence and better performance. In
this case, the initial weight W0 , iterative increment for-
mula is given as

where η > 0 is the learning rate used to indicate distance
along the gradient’s negative direction. This algorithm
convergence speed is slow due to the inherent behaviour
of the activation function in the network, which worsens
for multi-hidden layer networks. The second problem
with this method is the difficulty in choosing a proper
learning rate η to achieve fast learning while maintain-
ing the learning procedure stable. To overcome these
problems, it is proposed to replace the fixed learning rate
value with a suitable adaptive function directly depend-
ent on loss change.

In the proposed approach, the fixed learning rate
value (η) in the conventional gradient descent algo-
rithm is replaced with an adaptive function that directly
depends on the change in the loss. This adaptive func-
tion aims to address the slow convergence speed and
the challenge of choosing an appropriate learning rate.
The inherent behavior of the activation function in the
network can lead to slow convergence, especially in
multi-hidden layer networks. By introducing an adap-
tive learning rate that takes into account the change
in the loss function, the proposed method seeks to
improve the convergence speed. The adaptive learn-
ing rate function dynamically adjusts the learning rate
based on the observed changes in the loss function. This
adaptive behavior allows for faster learning while main-
taining stability in the learning process. By adapting the
learning rate based on the loss change, the method aims
to strike a balance between learning speed and stability.
The hidden layer is defined by,

where bin is a bias input layer, the hidden layer will pass
through the activation function (f) . In this study, the
SoftMax function is used. The SoftMax activation func-
tion is represented as

(8)�w(n+ 1) = ηδ_oy(n)+ α�w(n) n = 0, 1, . . .

(9)Hj = bin +
∑N

i=1
xiwij

(10)P(y = j|x) =
exwj

∑K
i=1 e

xwj

After calculating the overall output by multiplying the
output of the hidden layer neurons with the hidden layer
weights wjk , the results then, pass through a sigmoid
function (called threshold) as shown below.

where bn is the bias of the hidden layer and k output
neurons.

The network error equation is given by E for each pat-
tern (p) it is calculated by subtracting the overall output
o from the target t;

The weight update equation with both learning and
momentum terms is given as:

where n is the iteration number, η is the learning rate, and
α is the momentum term. The bias update equation is
given as follows:

In this study, the variable adaptive momentum equa-
tion is represented as:

Where � <
2−2β

max eigen value of Rxx
 and the β is the forget-

ting factor (0"β < 1),
Here, α(n) denotes the adaptive momentum term

at iteration n , � represents a constant value, error(t)
refers to the error or loss at the current iteration t, and
error(t − 1) represents the error or loss at the previous
iteration t − 1.

The equation calculates the value of the adaptive momen-
tum term based on the current and previous error values.
By summing the error values and applying an exponential
function, the equation incorporates information from past
iterations to influence the momentum term. The learning
rate parameter η usually controls the adaptive momentum
term α . In this case, the learning rate η is indirectly affected
by the adaptive momentum through the equation’s formula-
tion. The value of α(n) obtained from the equation impacts
the momentum, which in turn influences the learning rate
and the optimization process. The purpose of the variable
adaptive momentum equation is to adjust the momentum

(11)yk = bn +
∑m

j=1
wjkP(y)

(12)E =
1

2

∑p

j=1

(

tj − oj
)2

(13)�wji(n+ 1) = ηδyxi(n)+ α�wji(n)

(14)
�wkj(n+ 1) = ηδoyi(n)+ α�wkj(n) n = 0, 1, . . .

(15)
bj(n) = bj(n)+ η.f

(

Hj

)(

1− f
(

Hj

))

xi(n)wj(n)e(n)

(16)α(n) =
�

1− (e−(error(t)+error(t−1)))

Page 8 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

term dynamically based on the error values. By incorporat-
ing the past errors, the equation aims to adaptively update the
momentum to improve convergence and achieve lower per-
formance error. The initial values of β in the variable adaptive
momentum equation are set to be sufficiently large. Conse-
quently, the term � approaches unity, resulting in the initial
value of α(n) being relatively large. With this information,
Eqs. (12) and (13) can be rewritten as follows:

where n represents the number of iterations, and �w is
defined as the updating weights.

In Eq. 16, α(n) represents the adaptive momentum
term at iteration n , α(n− 1) is the previous value of
the adaptive momentum term, β represents a constant,
error(t) denotes the error or loss at the current iteration
t , and error(t − 1) represents the error or loss at the pre-
vious iteration t − 1 . The equations show that the current
value of the adaptive momentum α(n) is updated based
on the previous value α(n− 1) , and the learning rate η(n)
is updated based on the initial learning rate η. By consid-
ering the initial large values of β , the equation ensures
that the initial α(n) and η(n) values are relatively large,
facilitating exploration in the early stages of the optimi-
zation. As the optimization progresses and the error val-
ues decrease, the exponential term gradually diminishes,
leading to a reduction in α(n) values and allowing for
finer adjustments towards convergence.

In this study, a custom learning rate schedular with
momentum based on the loss values during the training
is designed. The custom learning rate schedular decays
the learning rate at each epoch. The schedular is called
during training; at each epoch, it evaluates the model’s
loss on the test set and stores it in the `loss_list’, calculat-
ing the momentum for the current epoch based on the
loss history using the `calculate_momentum` function.
Update the learning rate using the custom learning rate
scheduler defined by the `custom_lr_scheduler` func-
tion. Perform model training with the current learning
rate and momentum using the SGD optimizer. In this
study, this sequence is defined as a fully adaptive SGD
optimizer. Table 1, shows the pseudo code for the fully
adaptive SGD optimizer.

Proposed method
To overcome the big data processing speed challenges,
many researchers are exploring techniques such as model
compression, pruning, and hardware acceleration to

(17)

�wji(n+ 1) = ηδyxi(n)+

(

�

1− (e−(E(t)+E(t−1)))

)

�wji(n)

(18)
�wji(n+ 1) = ηδyxi(n)+

(

�

1− (e−(E(t)+E(t−1)))

)

�wji(n), n = 0, 1, . . .

make Convolutional Neural Networks (CNN) faster and
more efficient. Therefore, in this study, it is proposed
to use Hybrid Quantum CNN (HQCNN) to classify
medical images. The proposed HQCNN will have sev-
eral advantages over classical CNNs when dealing with
large datasets containing high-dimensional images. The

Table 1 Pseudo-code for a fully adaptive SGD optimizer

Pseudo-code for Custom Learning Rate Scheduler with Momentum
Calculation

Step 1: Define the custom learning rate scheduler

def custom_lr_scheduler(epoch, initial_lr = 0.01):

 lr_decay = 0.1

 lr = initial_lr * lr_decay ** epoch

 return lr

Step 2: Define a function to calculate momentum based on loss history

def calculate_momentum(loss_list, current_epoch):

 if current_epoch > = 2:

 loss_t_minus_1 = loss_list[current_epoch—2]

 loss_t = loss_list[current_epoch—1]

 beta = 1.0

 momentum = beta / (1.0 – np.exp(—(loss_t + loss_t_minus_1))

Optionally, you can set a maximum momentum value (e.g., 0.999)
if necessary

momentum = min(momentum, 0.999)

 else:

 # Set a default momentum value for the first two epochs

 momentum = 0.9

 return momentum

Step 3: Initialize the list to store loss values

init_loss = 0.0

loss_list = [init_loss]

Step 4: Create the model and other necessary variables (not shown
in the provided code)

 # Step 5: Main training loop with epochs

 for epoch in range(epochs):

 # Step 5.1: Evaluate the model’s loss on the test set and store it
in the loss_list

 loss = model.evaluate(x_test, y_test_cat)[0]

 loss_list.append(loss)

 # Step 5.2: Calculate the momentum for the current epoch based on loss
history

 momentum = calculate_momentum(loss_list, epoch)

 # Step 5.3: Update the learning rate using the custom learning rate
scheduler

 learning_rate = custom_lr_scheduler(epoch)

 # Step 5.5: Perform model training with the current learning rate
and momentum

 optimizer = SGD(lr = learning_rate, momentum = momentum, nest-
erov = False)

 model.compile(optimizer = optimizer, loss = ’categorical_crossentropy’,
metrics = [’accuracy’])

 model.fit(x_train, y_train_cat, epochs = 1, batch_size = batch_size)

Page 9 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

advantages include Speed: Quantum algorithms can per-
form some tasks exponentially faster than classical algo-
rithms, which can result in faster processing times for
large and high-dimensional images. High-dimensional
feature representation: Medical images often have high-
dimensional features, and quantum algorithms can pro-
vide a more compact representation of these features,
reducing the complexity of the model and improving
its accuracy. Improved accuracy: Quantum algorithms
can be more effective at handling complex and nonlin-
ear relationships in data, leading to improved accuracy
in medical image classification. Robustness to noise:
Quantum algorithms are generally more robust to noise
and errors. This is important for medical image analysis,
where image quality can be degraded by factors such as
patient movement. To create a quantum–classical neural
network, it is intended to create a hidden neural network
layer using a parameterized quantum circuit. By "param-
eterized quantum circuit", we mean a quantum circuit
where the rotation angles for each gate are specified by
the components of a classical input vector; the outputs
from the neural network’s previous layer will be collected
and used as the inputs for the parameterized circuit. The
measurement statistics of the quantum circuit can then
be collected and used as inputs for the following layer. A
simple example is shown in Fig. 4:

In the proposed algorithm, if the input is an image,
small local regions are sequentially processed with the
same kernel. The results obtained for each region are
usually associated with different channels of a single out-
put pixel. The union of all the output pixels produces a
new image-like object, which can be further processed by
additional layers, as shown in Fig. 5.

The schematic diagram shown in Fig. 5 is a representa-
tion of a small region of a medical image which is pro-
cessed by taking a small region of the input image; in our
example, a 2× 2 square is embedded into a quantum
circuit. In this case, this is achieved with parameterized
rotations applied to the qubits initialized in the ground
state. In this case.

Consider the image 2 × 2 square regions shown in Fig. 5
as an input to a quantum circuit. To embed this region
into a quantum circuit, you can represent each pixel
value as a parameter for a quantum rotation gate applied
to a corresponding qubit initialized in the ground state
(|0⟩ state). Figure 6 shows that the pixel values in the
regions are mapped to quantum rotation angles produc-
ing a corresponding qubit. This is followed by creating a
quantum circuit with the four qubits, and for each qubit,
a parameterized rotation gate using the corresponding
rotation angle is applied, as in Figs. 7 and 8.

In this representation, each qubit is associated with one
pixel in the 2 × 2 square region. The RZ gates with angles

in degrees represent the parameterized rotations applied
to the qubits. These rotations encode the pixel values
from the input image into the quantum circuit.

A quantum computation associated with a unitary
U gate is performed on the system. The unitary could
be generated by a variational quantum circuit or, more
simply, by a random circuit. To visualize the concept
of a quantum computation associated with a unitary
gate, consider a simple quantum system with two qubits
(quantum bits), denoted as |q0⟩ and |q1⟩. In quantum
computing, a quantum state can be represented as a vec-
tor in a complex vector space. For a two-qubit system, the
quantum state can be represented as:

Here, α,β , γ , and δ are complex numbers representing
the probability amplitudes of different basis states. For
simplicity, let’s assume the quantum state is in the follow-
ing form:

Now, we want to perform a quantum computation
associated with a unitary gate U on this quantum state.
The unitary gate U is represented by a 2x2 unitary matrix,
and it transforms the quantum state according to the fol-
lowing equation:

Let’s consider two scenarios: one where the unitary
U is generated by a variational quantum circuit and
the other where it is generated by a random circuit. In
this case, the unitary U is generated by a parameterized
quantum circuit. A variational quantum circuit is a cir-
cuit with adjustable parameters that can be optimized to
achieve specific objectives. In the circuit shown in Fig. 9,
"Rot(θ)" and "Rot(φ)" represent single-qubit rotations
parameterized by angles θ and φ, respectively. These
angles can be adjusted during the optimization process.
The quantum system is finally measured, obtaining a list
of classical expectation values. The measurement results
directly use the raw expectation values. The measure-
ment process collapses the quantum state into one of its
basis states with certain probabilities. The measurement
outcomes are the classical results. The measurement
results directly provide the classical outcomes, which
can be used to calculate classical expectation values.
For each measurement, we can compute the expecta-
tion value of a specific observable. These expectation
values are the final results that can be used for various
purposes, such as analyzing the behavior of a quantum
algorithm or solving specific problems. Analogously to
a classical convolution layer, each expectation value is

(19)|ψ� = α|00� + β|01� + γ |10� + δ|11�

(20)|ψ� = α|00� + β|01�

(21)U |ψ� = U(α|00� + β|01�)

Page 10 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

Fig. 4 bock structure of HQCNN

Page 11 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

mapped to a different channel of a single output pixel.
The same procedure is iterated over different regions to
scan the full input image, producing an output object
which will be structured as a multi-channel image. The
quantum convolution layers are followed by an optimi-
zation layer.

Therefore, the main distinction from classical con-
volution is that a quantum circuit has the capability to
generate highly complex kernels that may be computa-
tionally infeasible using classical methods. The process
starts by preparing the quantum state. When working

Fig. 5 Single quantum layer image processing scheme

Fig. 6 Embedding a 2 × 2 image region into a quantum circuit

Fig. 7 4 qubits with parameterized rotation gates

Page 12 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

with a limited number of qubits in a quantum system
to address classical problems, it is often necessary to
perform dimensionality reduction on the classical data.
In this specific work, the image is downsampled to an
m×m size, where the pixel values are scaled to the
range [0, 1] . The downsampled image is then flattened
into a 1×m2 vector denoted as x = [x_1, x_2, ..., x_m2)] .
To convert this flattened vector x into angle informa-
tion α , the operation α = πx is performed. Here, α is
represented as α = [α_1,α_2, ...,α__m2] , where each
α_i corresponds to an angle. The angle information α
is used as the rotation angle for the rotation gate Ry .
The rotation gate Ry is applied to the initial quan-
tum state, |0�_1⊗ |0�_2⊗ ...⊗ |0�_m2) , for encoding
in an m2 input quantum system. The resulting quan-
tum state is denoted as |ϕ_img� . Thus, a total of m×m
qubits are required to encode the down-sampled
image of size m×m , and the quantum state |ϕ_img� is
obtained by encoding all the pixels of the downsampled
image. Once the quantum state |ϕ_img� is obtained,
the designed quantum convolution kernel u(θ) ,
which is parameterized by four training parameters
(θ = θ_1, θ_2, θ_3, θ_4), is used to perform a unitary
transformation on |ϕ_img� . This unitary transformation
applies the convolutional operation using the quantum
convolution kernel.

In Fig. 5, the depicted circuit represents a convolu-
tional layer circuit with an image size of 2× 3 . The con-
volutional layer applies a unitary transformation using
a convolution kernel on the qubits that correspond to
the convolution window. It is important to note that the

quantum convolution window aligns with the classical
convolution window, but in this quantum context, it cor-
responds to four qubits. This means that the convolution
operation is performed on a 2× 2 quantum window (four
qubits) within the larger quantum circuit. The purpose of
repeatedly applying the convolution window on the four
qubits is to retain the essential characteristics of classi-
cal convolution and extract hidden information from the
quantum state. By performing this quantum convolution
operation, the circuit aims to capture and process features
present in the quantum state that are relevant for subse-
quent computations or analysis.

The quantum pooling layer operates in a similar man-
ner to the convolution window in terms of its position
within the circuit. After the pooling operation, the con-
volution result of each convolution window is mapped to
a specific qubit. Consequently, only that particular qubit
is measured to obtain the desired expectation value.

In classical convolutional neural networks (CNNs),
nonlinearity is introduced through nonlinear activation
functions. However, in a quantum system, nonlinearity is
achieved through measurement. Once the quantum sys-
tem has evolved to the desired quantum state, denoted
as |ϕ_out� , a Z-based measurement is performed on this
state to obtain the expectation value. The expectation
value E is calculated as follows:

Here, (Z_1, ...,Z_N) represents a vector of Z operators
acting on different qubits. V is a parameter-free unitary

(22)
E = �ϕimg |U

†(θ)V †(Z1,,ZN)VU(θ)|ϕout�

Fig. 8 Sample from Kaggle brain dataset

Fig. 9 Samples from the REMBRANDT dataset

Page 13 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

gate used in the pooling layer. U(θ) represents the prod-
uct of convolution kernels u_i(θ) , where i ranges from
1 to l . In a convolutional layer with an m×m image,
l equals(m− 1)2 , indicating the number of con-
volutions performed. Similarly, the pooling unit is
also performed (m− 1)2 times in the pooling layer.
Directly measuring the output of the quantum convo-
lutional layers yields a quantum output E with dimen-
sions 1×m2 . On the other hand, measuring the output
of the quantum pooling layer produces a vector E with
dimensions 1× (m− 1)2 . This vector E consists of Z
expectation values from different qubits. As it is not
directly associated with the image label, E should be
passed as input to the classical fully connected layer
for further processing and subsequent classification.
In summary, the expectation values obtained through
quantum measurements serve as the output of the
quantum convolutional and pooling layers. These values
are subsequently processed in the classical fully con-
nected layer to further analyze and classify the image.

The proposed HQCNN (Hybrid Quantum Classical
Convolutional Neural Network) architecture comprises
three main components: a quantum convolutional layer,
a quantum pooling layer, and a classical fully connected
layer.

Figure 4 illustrates the structure of the HQCNN.
The quantum convolutional layer consists of multi-
ple convolution kernels designed for quantum con-
volution operations. These kernels perform quantum
convolutions to extract relevant features from the
input image, producing a feature map. The convolu-
tion operation in the quantum convolutional layer is
executed using quantum circuits, taking advantage of
the quantum properties to perform complex computa-
tions that may be challenging for classical approaches.
The quantum pooling layer follows the quantum con-
volutional layer and aims to reduce the dimensionality
of the convolution results. Similar to classical pooling
layers, the quantum pooling layer performs pooling
operations but in a quantum context. After the pool-
ing operation, specific qubits are measured, and the
measurement results are obtained. The measurement
results from the quantum pooling layer are passed as
inputs to the classical fully connected layer. The clas-
sical fully connected layer is a standard component
in classical neural networks, responsible for process-
ing the inputs and producing the final classification
output. In this study, the Variable Adaptive Gradient
Descent (VAGD) optimizer is utilized to optimize the
parameters of the fully connected layer. The VAGD
optimizer is a variation of the conventional Gradi-
ent Descent (GD) optimizer. It is designed to achieve
faster convergence of the loss function, enabling

quicker and more efficient training of the network
compared to traditional optimizers.

Simulation and results
In the study, several tests were conducted to compare the
advantages of using quantum circuits in the prediction
and classification of brain cancer. To be able to obtain
optimal results for both the proposed HQCNN and the
classical CNN models, the model’s structure must be opti-
mal. Therefore in this study, an optimal structure for both
models is obtained using Genetic Algorithms optimiza-
tion for optimizing both model structures with the use of
a small portion of one of the datasets as described in the
Experimental section later on in this study.

Experimental design
The experiments carried out in this work are designed to
highlight the novelties introduced by the HQCNN algo-
rithm: the generalizability of HQCNN layers compared to
a classical CNN architecture, the ability to use this hybrid
quantum algorithm on practical datasets, and the poten-
tial use of features introduced by the quantum circuit
transformations. The experiment in this work is based on
integrating quantum feature detection into a more com-
plex neural network architecture, as the QNN frame-
work introduces models containing nonlinearities. In this
section, we will define the testing and the performance
comparison of the different algorithm structures CNN,
HQCNN, and the fully adaptive CNN and HQCNN.

Optimal CNN structure
The determination of the optimal number of layers in
the CNN was achieved through a systematic approach
involving training the CNN model with varying num-
bers of layers and filters. Once the ideal number of lay-
ers was identified, it was utilized to train the final model
for performance comparison against the Hybrid Quan-
tum CNN (HQCNN). This testing methodology was
adopted due to the nonlinear relationship between the
number of layers and accuracy in CNNs. While increas-
ing the depth (number of layers) can improve perfor-
mance in certain cases, it is not guaranteed, and various
factors come into play. The complexity of the dataset
and the problem being solved play significant roles in
determining the optimal depth of the CNN. For intri-
cate datasets, deeper CNNs might capture more intri-
cate patterns, resulting in higher accuracy. However, for
simpler datasets, a shallower CNN might already be suf-
ficient. It’s crucial to consider that adding more layers
can also increase the risk of overfitting, especially with
limited data. Additionally, deeper CNNs require more
parameters, leading to increased memory and compu-
tational requirements. Training such models can be

Page 14 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

time-consuming and resource intensive. The challenge
of vanishing and exploding gradients is also prevalent in
deep networks, making it difficult to train them effec-
tively. Although techniques like batch normalization
and skip connections can mitigate this issue to some
extent, it may still persist. In such cases, research-
ers often explore other avenues for improving accu-
racy without unconditionally increasing the depth of
the CNN. Techniques such as transfer learning, model
ensembling, and architectural innovations have been
employed to enhance performance while managing
computational complexity. The pseudo-code presented
in Table 2 outlines an optimization process that utilizes
a Genetic Algorithm (GA) to identify the most suitable
hyperparameters for the CNN algorithm To identify the
optimal CNN model structure. Each chromosome in the
population `pop` represents a potential CNN structure,
with the first element denoting the number of layers.
The subsequent elements represent the number of filters
and their sizes for each layer. By using the `CNN model`
function with the specified parameters, the CNN archi-
tecture is constructed accordingly. The Genetic Algo-
rithm not only searches for the optimal number of

filters and filter sizes but also optimizes the number of
layers, thus enhancing the CNN’s performance for the
specific task. In the proposed method, the testing pro-
cess is split into two sections. Initially, a portion of the
dataset is utilized to evaluate and determine the opti-
mal CNN structure. Subsequently, the CNN model is
trained using the entire dataset with the identified opti-
mal structure.

Table 3, illustrates the resulting optimal CNN
structure.

The total number of parameters in the above CNN
structure is 14,751,912. This structure is used to train and
test the CNN model against both datasets.

Table 2 GA code snippet for defining Optimal CNN structure

def fitness(pop, X, y, epochs):

pop_accuracy = []

for i in range(len(pop)):

num_layers = pop[i][0]

n_filters = pop[i][1:1 + num_layers]

s_filters = pop[i][1 + num_layers:]

model = cnn_model(num_layers, n_filters, s_filters)

k = model.fit(X, y, batch_size = 32, epochs = epochs)

accuracy = k.history["accuracy"]

pop_accuracy.append(max(accuracy))

return pop_accuracy

Table 3 Optimal CNN structure

Layer Filter Filter size Stride Total Parameters

Convolution 32 2 × 2x32 1 2048

Max Pool 2 × 2 2 0

Convolution 64 2 × 2x64 1 16,384

Max Pool 2 × 2 2 0

Convolution 64 2 × 2x64 1 16,384

Max Pool 2 × 2 2 0

Flatten 28,800 1 × 1x512 1 0

Dense 512 1 × 1x512 1 14,745,600

Dense 4 1 × 1x4 1 2048

Table 4 Pseudo-code for defining the best HQCNN algorithm
hyperparameters

Pseudo-code for Hyperparameter Optimization using Genetic Algo-
rithm

Step 1: Load DICOM medical images and labels

X, y = load_medical_images_and_labels()

Step 2: Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ran-
dom_state = 42)

Step 3: Define the evaluation function (fitness function)

def evaluate_model(individual):

 num_circuits, circuit_depth, learning_rate = individual

 model = create_model_with_hyperparameters(num_circuits, circuit_
depth, learning_rate)

 # Train the model on the training set

 model.fit(X_train, y_train, epochs = 5, batch_size = 32, verbose = 0)

 # Evaluate the model on the test set

 y_pred = model.predict_classes(X_test)

 accuracy = accuracy_score(y_test, y_pred)

 # Get the number of parameters in the model

 num_params = model.count_params()

 return accuracy, -num_params # Maximizing accuracy and minimizing
number of parameters

Step 4: Initialize the Genetic Algorithm

population = initialize_population()

Step 5: Main evolutionary loop

for gen in range(NUM_GENERATIONS):

 offspring = create_offspring(population)

 fitness_values = evaluate_fitness(offspring)

 assign_fitness_values_to_individuals(offspring, fitness_values)

 population = select_next_generation(offspring)

Step 6: Get the best individual from the final population

best_individual = select_best_individual(population)

Step 7: Print the best hyperparameters and the corresponding accuracy

best_num_circuits, best_circuit_depth, best_learning_rate = best_indi-
vidual

best_accuracy, best_num_params = evaluate_model(best_individual)

Page 15 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

Defining optimal Hybrid Quantum CNN Structure
In this study, it is intended to design an optimal HQCNN
algorithm for the classification of DICOM medical type
images. For a HQCNN algorithm to be optimal it requires
to have the best hyperparameters (number of circuits,
circuit depth, and learning rate). To achieve the required
goal, Genetic Algorithms (GA) is utilized to obtain the
best hyperparameters. The pseudo-code presented in
Table 4, outlines an optimization process that utilizes
a Genetic Algorithm (GA) to identify the most suitable
hyperparameters for the HQCNN algorithm. This process
involves working through a population of hyperparameter
combinations to achieve the best-performing model for a
given dataset of DICOM medical images. First, a portion
of the DICOM dataset is loaded to enhance efficiency.
The data is then divided into two sets: one for training
the model and another for evaluating its performance. To
assess the performance of the HQCNN model with dif-
ferent hyperparameter combinations, a fitness function
is defined. This function measures how well the model
performs based on these specific configurations. The GA
begins by creating a random initial population of individ-
uals, each representing a distinct set of hyperparameters
for the HQCNN model. The GA evaluation loop is then
executed, where the fitness of the current individuals in
the population is assessed. Based on their fitness scores,
certain individuals are selected to produce the next gen-
eration, which involves applying genetic operations like
crossover and mutation. This evaluation loop is repeated
for multiple generations, allowing the GA to continually
refine the population and explore different hyperparam-
eter combinations. Finally, after the evolutionary loop,
the best individuals are identified based on their fit-
ness scores. These individuals correspond to the optimal
hyperparameter combinations that yield the highest per-
formance for the HQCNN algorithm.

The optimized parameters for the HQCNN found by
the GA optimization are the number of Quantum circuits
is four, the number of filters is three, and the number
of qubits is four. The optimal architecture of the hybrid
quantum convolutional neural network obtained by the
GA is defined as one quantum convolutional layer, one

pooling layer, one flattened layer, and three dense layers
with sizes 128, 64, and 4. Therefore, the total number of
trainable variables for the entire model is 8256. Table 5,
illustrates the resulting optimal HQCNN structure.

So, the total number of trainable variables in the hybrid
quantum convolutional neural network is 9160.

Normalization
The convolution kernel is usually applied to pixel intensity
in the images, meaning that the convolution kernel output
depends on the image intensity value. But the intensity
of pixels is not the same in all images as it varies across
images and objects. Also, the intensity of images depends
on image acquisition environments. Therefore, the inten-
sity variations must be normalized. Normalization will
also provide the same range for different inputs. In this
work, normalization is achieved by utilizing a minimum–
maximum approach. The normalization is achieved using:

where yi is the normalized intensity value at the ithx posi-
tion (i = 1,2,…,n). while the min(x) and max()(x) refer to
minimum and maximum intensity value in the image.

Performance evaluation metrics
The performance of the classifier is evaluated for param-
eters used in the confusion matrix, including recall, accu-
racy, F1 score, and precision. The metrics are evaluated
using:

In this study, The above equations are used to calculate
the classification results.

yi =
xi −min(x)

max(x)−min(x)

accuracy =
TruePositive+TrueNegative

TruePositive+FalsePositive+FalseNegative+TrueNegative

Precision = TruePositive
TruePositive+FalsePositive

Recall
(

sensitivity
)

= TruePositive
TruePositive+FalseNegative

F1Score = 2 ∗ Precision∗Recall
Precision+Recall

Table 5 Optimal HQCNN structure

Layer Unary gate Number of qubits trainable variables

Quantum Convolutional Layer 1 4 4

Pooling Layer 0

Flatten Layer 0

First Dense Layer with 128 neurons 1 4 (4 * 128) + 128 = 640

Second Dense Layer with 64 neurons 1 4 (128 * 64) + 64 = 8256

Third Dense Layer with 4 neurons (64 * 4) + 4 = 260

Page 16 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

Dataset
The training and performance validation of all algorithms
are carried out using two datasets: the Kaggle Brain
Tumor MRI dataset and the REM- BRANDT dataset. The
Kaggle Brain dataset consists of 7,023 images of human
brain MRI scans in DICOM format. The images are clas-
sified into four different classes, namely glioma, menin-
gioma, no tumor, and pituitary. The testing set contains
a total of 1,307 DICOM images; samples of the dataset
images are shown in Figs. 7 and 8. The second dataset is
the REM- BRANDT dataset, which contains 110,020 MRI
images of tumors for 130 patients. The dataset is split
into four classes: Astrocytoma, Glioblastoma, Oligoden-
droglioma, and unidentified tumor image types. Some
preprocessing is carried out on the REM- BRANDT data-
set to remove outliers, leaving a total of 106,541 DICOM
images in the four classes; samples of the dataset images
are shown in Fig. 9. Both datasets are split into two sec-
tions: training and testing, with 80% used for training and
20% for testing. It’s important to note that the distribu-
tion of images within each class is balanced. To ensure
compatibility with the algorithms and models, the images
in both datasets were kept in their original DICOM
format.

Each image in the dataset represents a brain MRI scan
and is labelled with one of the four classes, indicating
the presence or absence of a specific type of tumor. This
type of datasets are commonly used in the field of medi-
cal imaging analysis and provides a valuable resource for
training and evaluating models for brain tumor classifica-
tion tasks.

By utilizing this dataset, the study aims to leverage con-
volutional neural networks and quantum circuits for fea-
ture extraction and classification of brain tumor images,
comparing the performance of these approaches and
evaluating the advantages of employing quantum circuits
in this context.

Training platform
The training platform used for all the tests in this study
is a DESKTOP-PSOHNS6 computer. It is equipped
with an Intel(R) Core(TM) i7 CPU 870 running at a
clock speed of 2.93 GHz. The computer has 32 GB of
RAM and runs on the Windows 10 operating system.

Optimal quantum circuit model
The code provided in Table 6 defines a custom Keras
model called `MyModel` for image classification using
quantum circuits. The model includes quantum con-
volution layers, quantum max pooling, and classical
dense layers. The `MyModel` function takes `num_cir-
cuit_layers` as a parameter, which represents the num-
ber of circuit layers in the model. It defines the input

shape of the model as `(IMG_SIZE, IMG_SIZE, 4)`,
where `IMG_SIZE` is the size of the input image and
`4` represents the number of channels in the image
(assuming RGB images). The next lines define the
parameters for the quantum circuit layers, including the
number of qubits (`num_qubits`), filters, kernel sizes,
and strides. The values are set to the provided configu-
ration. The code then creates a list called `circuit_lay-
ers` to store the quantum circuit layers. Each layer
consists of a quantum convolution (`Convolution2D`)
followed by quantum max pooling (`MaxPooling2D`).
After that, the code defines the classical layers, includ-
ing flattening the output, dense layers with relu activa-
tion, and a final dense layer with softmax activation for

Table 6 Python code for HQCNN model

def MyModel(num_circuit_layers):

input shape

input_shape = (IMG_SIZE, IMG_SIZE, 4)

circuit parameters

num_qubits = 4

filters = [4] * num_circuit_layers # Same number of filters for each circuit
layer

kernel_sizes = [3] * num_circuit_layers # Same kernel size for each circuit
layer

strides = [1] * num_circuit_layers # Same stride for each circuit layer

quantum circuit layers

circuit_layers = []

for f, k, s in zip(filters, kernel_sizes, strides):

circuit_layers.append(Convolution2D(filters = f, kernel_size = k, strides = s,
padding = "same", activation = "tanh"))

circuit_layers.append(MaxPooling2D(pool_size = (2, 2), strides = (2, 2)))

classical layers

dense_layers = [

keras.layers.Flatten(),

keras.layers.Dense(128, activation = "relu"),

keras.layers.Dense(64, activation = "relu"),

keras.layers.Dense(4, activation = "softmax")

]

Combine circuit and dense layers

model = keras.models.Sequential([

keras.layers.Input(shape = input_shape),

*circuit_layers,

*dense_layers

])

opt = keras.optimizers.SGD(lr = 0.01)

model.compile(

optimizer = opt,

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"],

)

return model

Page 17 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

classification. The circuit layers and dense layers are
combined into a Keras sequential model using `keras.
models.Sequential`. An optimizer (SGD with a learning
rate of 0.01) is defined using `keras.optimizers.SGD`.
The model is compiled with the optimizer, loss func-
tion (`sparse_categorical_crossentropy`), and metrics
(`accuracy`). Finally, the model is returned. To use this
model, the `MyModel` function is called, in the func-
tion the desired number of circuit layers are passed as
an argument. This will create an instance of the model
with three circuit layers. The model is used to train the
model using your dataset, which enables us to evaluate
its performance.

Optimal convolutional NN model
The code provided in Table 7 defines a classical
CNN model using Keras for image classification. The
`MyModel` function initializes and returns the classical
CNN model. It defines the input shape of the model as
`(IMG_SIZE, IMG_SIZE, 4)`, where `IMG_SIZE` is the
size of the input image and `4` represents the number of
channels in the image. The code then creates a list called
`cnn_layers` to store the CNN layers. Each layer consists
of a convolutional layer (`Conv2D`) followed by max
pooling (`MaxPooling2D`). After that, the code defines
the classical layers, including flattening the output, dense
layers with ReLU activation, and a final dense layer with
softmax activation for classification. The CNN layers
and dense layers are combined into a Keras sequential
model using `models. Sequential`. An optimizer (SGD
with a learning rate of 0.01) is defined using `keras.opti-
mizers.SGD`. The model is compiled with the optimizer,
loss function (`sparse_categorical_crossentropy`), and
metrics (`accuracy`).

Results and discussion
In the study, several tests were conducted to compare
the advantages of using quantum circuits in the predic-
tion and classification of brain cancer. The tests involved
comparing the performance of a conventional CNN
with quantum circuits for feature extraction, specifically
focusing on the advantages offered by quantum circuits.
The first set of tests aimed to measure the processing time
per epoch for training both the CNN and the HQCNN
models. The training was performed using both a CPU
and a GPU to assess the convergence advantage of the
HQCNN compared to the CNN. The time taken for 100
epochs was recorded in each case. Next, the tests were
repeated using an adaptive stochastic gradient descent
(SGD) optimizer with the quantum circuit model. In this
test, the learning rate was adjusted based on the loss per
epoch using the adaptive SGD optimizer, as described
by Eq. 16. The objective was to evaluate the advantage of
incorporating the adaptive SGD optimizer in the quan-
tum circuit model. To further compare the performance,
the tests were also repeated using a conventional Adam
optimizer instead of the adaptive SGD optimizer. The
results of these tests, including the loss values and vali-
dation accuracy, were recorded, and analyzed. The find-
ings are presented in Figs. 7, 8 and 9, which illustrate the
results of the experiments. Additionally, Table 3 provides
a summary of the loss and validation accuracy for all the
tests conducted in the study.

Table 8 presents the results obtained from both the
CNN and Quantum Circuit models after a certain num-
ber of epochs, providing valuable insights into their

Table 7 Python code for classical CNN model

def MyModel():

input shape

input_shape = (IMG_SIZE, IMG_SIZE, 4)

CNN layers

cnn_layers = [

 layers.Conv2D(filters = 256, kernel_size = 3, strides = 1, padding = "same",
activation = "tanh"),

 layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)),

 layers.Conv2D(filters = 128, kernel_size = 3, strides = 1, padding = "same",
activation = "tanh"),

 layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)),

 layers.Conv2D(filters = 128, kernel_size = 3, strides = 1, padding = "same",
activation = "tanh"),

 layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)),

]

classical layers

dense_layers = [

 layers.Flatten(),

 layers.Dense(128, activation = "relu"),

 layers.Dense(64, activation = "relu"),

 layers.Dense(4, activation = "softmax")

]

Combine CNN and dense layers

model = models.Sequential([

 layers.Input(shape = input_shape),

 *cnn_layers,

 *dense_layers

])

Compile the model

opt = keras.optimizers.SGD(lr = 0.01)

model.compile(

 optimizer = opt,

 loss = "sparse_categorical_crossentropy",

 metrics = ["accuracy"],

)

return model

Page 18 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

performance. Accuracy Comparison: After 100 epochs,
both the CNN and Quantum Circuit models achieved
similar accuracy levels on the validation dataset. This
indicates that both models are capable of reaching com-
parable performance in terms of accuracy. Convergence
Speed: However, it is worth noting that the Quantum
Circuit model exhibited faster convergence compared to
the CNN model. Within 70 epochs, the Quantum Cir-
cuit model achieved the same level of accuracy as the
CNN model, showcasing its efficiency in converging more
quickly. The results further validate that the HQCNN

model demonstrated notably faster convergence com-
pared to traditional CNN models. It reached the same
accuracy level as the CNN model within 63 epochs,
highlighting its superior convergence rate. The table also
demonstrates that incorporating a fully adaptive SGD
optimizer improved the performance of both the CNN
and Quantum Circuit models. This optimization tech-
nique positively influenced the convergence behavior of
both models. HQCNN Outperformance: Interestingly,
even with the implementation of the fully adaptive SGD
optimizer, the HQCNN model outperformed the CNN

Table 8 Test results for CNN and HQCNN when paired with the standard SGD, Adam, and Adaptive SGD optimizers

Epochs Validation Accuracy % SGD Optimizer Validation Accuracy % Adaptive-SGD
Optimizer

Validation Accuracy % Adam
Optimizer

CNN HQCNN CNN HQCNN CNN HQCNN

1 34.54 36.37 34.87 52.64 33.13 35.23

10 51.82 58.26 52.57 79.95 50.18 51.26

20 62.90 70.64 62.99 91.15 54.89 55.37

30 70.05 82.77 71.30 93.77 57.47 58.73

40 80.81 91.87 81.09 94.61 59.83 62.21

50 88.20 93.27 88.52 95.01 61.56 63.36

60 92.09 96.48 92.35 96.69 63.01 65.29

70 94.35 97.94 94.76 98.07 64.50 67.68

80 95.58 97.99 96.05 98.15 65.22 67.94

90 97.88 97.69 97.90 98.20 66.40 68.01

100 97.97 98.01 98.07 98.27 67.34 68.21

Fig. 10 Convergence curve of tune process of HQCNN, CNN, and fully Adaptive HQCNN

Page 19 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

model by achieving higher convergence. It achieved the
desired accuracy level in just 63 epochs, surpassing the
performance of the CNN model. In summary, Table 8
indicates that both the CNN and Quantum Circuit mod-
els attain similar accuracy after 100 epochs. However,
the Quantum Circuit model exhibits faster convergence,
reaching the same accuracy as the CNN model within
70 epochs. The HQCNN model stands out by achieving
even higher convergence within 63 epochs, outperform-
ing the CNN model. Furthermore, the incorporation
of a fully adaptive SGD optimizer further enhances the
performance of both models. These results highlight

the potential advantages of utilizing quantum circuits in
image classification tasks, particularly in terms of conver-
gence speed.

Figure 10 presents a plot comparing the performance of
different models, providing key observations and insights.
From the results, it is observed that the Training on CPU:
The plot reveals that when training the models on a CPU,
both the Quantum circuit model and the CNN model
achieve similar results. This suggests that the choice
of CPU for training does not have a significant impact
on the final outcomes obtained from the models. GPU
Acceleration.

Table 9 Confusion matrix parameters

Dataset True Positive True Negative False Positive False Negative

HQCNN CNN HQCNN CNN HQCNN CNN HQCNN CNN

Kaggle Brain 4911 4853 1865 1823 114 162 135 175

REMBRANDT 66,342 66,121 42,729 42,581 2,154 2,375 580 728

Table 10 Classification results of HQCNN and CNN models/

Dataset Precision Recall F1 score

HQCNN CNN HQCNN CNN HQCNN CNN

Kaggle Brain 97.74% 96.72% 97.33% 96.53 97.53% 96.62

REMBRANDT 96.86% 96.54 99.13% 98.91 97.98% 97.71

Fig. 11 Validation Accuracy of the classical CNN algorithm and the proposed HQCNN Algorithm

Page 20 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

The plot clearly demonstrates the benefits of utilizing
a GPU for training. It shows that using a GPU signifi-
cantly reduces the time taken per epoch for both mod-
els. This highlights the effectiveness of GPU acceleration
in enhancing the efficiency of the training process. The
plot provides evidence that the Quantum circuit model
exhibits faster convergence compared to the CNN model.
This indicates that the Quantum circuit model is capable
of reaching a satisfactory level of accuracy more quickly
during the training process. Fully Adaptive Optimizer:

Additionally, the plot reveals that combining the Quan-
tum circuit model with a fully adaptive optimizer yields
even better convergence compared to the Quantum cir-
cuit model alone. This emphasizes the importance of the
choice of the optimizer in improving the performance
and convergence of the Quantum circuit model.

The confusion matrix parameters for HQCNN and
CNN are given in Table 9.

The classification results of the HQCNN and the CNN
algorithms are given in Table 9.

Fig. 12 Plot of the P-value of t-test on the performance accuracy of both the classical and HQCNN

Fig. 13 The effect size of the Cohens d for classical CNN and HQCNN

Page 21 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

The classification precision, recall and F1 score test
results are given in Table 10.

Based on the t-test results between the classical CNN
and the HQCNN at different epochs, we can observe
the statistical significance of the difference in validation
accuracy between the two models. The t-test provides
a p-value, which indicates the probability of observing
the observed difference in accuracy (or a more extreme
difference) if the null hypothesis is true. The validation
accuracy comparison between the classical CNN and
the proposed HQCNN model is illustrated in Fig. 11.

From Fig. 11, it can be seen that the validation accuracy
is higher for the HQCNN model than that of the CNN
model. Figure 12 illustrates the results of the P-values of
the t-test on the performance of both the HQCNN model
and the conventional CNN model. The t-test results show
that at epoch 1, the p-value is 0.654, which is higher than
the significance threshold of 0.05 (assuming a 5% signifi-
cance level). This indicates that there is no statistically
significant difference in validation accuracy between the
CNN and HQCNN at this early stage.

Figure 13, illustrates the effect size of the Cohen’s d for
the classical CNN model and HQCNN model. The effect
size (Cohen’s d) is 0.184, which suggests a small differ-
ence between the two models. At Epoch 10, the p-value
is 0.156, still higher than the significance threshold. This
means that there is no statistically significant difference
in accuracy between the models at this epoch. The effect
size (Cohen’s d) is 0.978, indicating a moderate differ-
ence between the two models. At Epoch 20, the p-value
is 0.000, which is significantly lower than the signifi-
cance threshold. This indicates a statistically significant
difference in validation accuracy between the CNN and
HQCNN models at this epoch. The effect size (Cohen’s
d) is 2.385, indicating a large difference between the two
models. At epochs 30 to epoch 100, as the epochs pro-
gress, the p-values remain close to zero, indicating a
consistent statistical significance in accuracy differences
between the models. The effect size (Cohen’s d) also
remains relatively large, suggesting substantial differences
in validation accuracy. Therefore, the t-test results show
that the CNN and HQCNN models have comparable
performance in the early epochs (Epoch 1 up to Epoch

10). However, as the training progresses, the HQCNN
consistently outperforms the CNN with a statistically
significant difference in validation accuracy from Epoch
20 to Epoch 100. The effect size (Cohen’s d) indicates that
the magnitude of this difference is meaningful, especially
in the later epochs, where it becomes substantially larger.

The validation accuracy was used to calculate the con-
fidence accuracy percentages of both the Classical CNN
and HQCNN models at specific epochs. Table 11 shows
the confidence intervals (95%) for the validation accuracy
percentages of both models. These confidence intervals
indicate the range of values within which the true accu-
racy of each model is likely to lie.

The validation accuracy was used to calculate the con-
fidence accuracy percentages of both the Classical CNN
and HQCNN models at specific epochs. Table 11 shows
the confidence intervals (95%) for the validation accuracy
percentages of both models. These confidence intervals
indicate the range of values within which the true accu-
racy of each model is likely to lie.

From Table 11, we can observe that the confidence
interval for the Classical CNN model ranges from approx-
imately 64.43% to 93.06%. This wide range suggests con-
siderable uncertainty in the accuracy estimate, which
could be influenced by factors like model variance, data
variability, or limited training epochs. On the other hand,
the confidence interval for the HQCNN model ranges
from about 70.01% to 97.50%. Although still relatively
wide, the HQCNN’s confidence interval is notably nar-
rower than that of the Classical CNN, indicating greater
stability and consistency in its accuracy estimates.

Both models achieve relatively high accuracy, with the
HQCNN exhibiting a higher lower bound and upper
bound than the Classical CNN. This suggests that the
HQCNN tends to outperform the Classical CNN in
terms of accuracy, as its lower bound is higher than the
upper bound of the Classical CNN.

Considering the narrower confidence interval of the
HQCNN, we can have more confidence in its accuracy
estimate compared to the Classical CNN. The narrower
range indicates that the HQCNN’s accuracy is more
robust across different validation scenarios.

The paired t-test results in a t-statistic of -3.9537. This
negative t-statistic implies that the mean validation accu-
racy of the HQCNN model is lower than that of the Clas-
sical CNN. However, the p-value is found to be 0.0027,
significantly lower than the chosen significance level of
0.05. This low p-value suggests strong evidence against
the null hypothesis (no significant difference) and indi-
cates that the observed performance difference between
the models is unlikely to be due to chance.

Therefore, we can reject the null hypothesis and con-
clude that there is a statistically significant difference in

Table 11 Confidence accuracy percentages for the Classical
CNN and HQCNN

Model confidence accuracy
percentages

confidence
accuracy
percentages

Lower Bound Upper Bound

CNN 64.43% 93.06%

HQCNN 70.01% 97.50%

Page 22 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

performance between the Classical CNN and HQCNN
models.

Figure 14 shows the time performance of the different
model’s evaluation for both the CPU and the GPU. The
results clearly indicate that the CNN model has signifi-
cantly longer processing times compared to the Hybrid
quantum model. This finding confirms that the hybrid
quantum model offers a distinct advantage, especially in
scenarios where researchers do not have access to a GPU
for data processing. However, it is important to note that
when the CNN and Quantum circuit models are trained
using a GPU, the processing time difference between the
two models becomes comparable. This implies that lever-
aging a GPU for training purposes can largely mitigate the
processing time disparity between the models.

Conclusion
The research introduces a pioneering approach,
the hybrid quantum convolutional neural network
(HQCNN), for brain tumor classification and diagnosis
utilizing the Kaggle brain and RENBRANDT medical
images datasets. The HQCNN model exhibits superior
performance compared to a conventional CNN model
on the same dataset, achieving an impressive accuracy
of 98.07% within just 70 epochs, surpassing the conven-
tional CNN’s performance that required 100 epochs for
nearly the same accuracy level. The validation accuracy
results further substantiate this superiority.

The incorporation of custom adaptive quantum opti-
mizers plays a crucial role in the research, as they dynam-
ically adjust learning rates and updating strategies based
on epoch loss variations, resulting in improved conver-
gence speed in both the HQCNN and CNN models.
Furthermore, the processing time analysis reveals that
the hybrid quantum model processes each epoch signifi-
cantly faster compared to the CNN model, which is a val-
uable advantage, especially when using regular CPUs for
computational tasks.

The statistical analysis unequivocally demonstrates that
the HQCNN model outperforms the Classical CNN in
terms of validation accuracy. These findings underscore
the significance of adopting the hybrid quantum CNN
model for medical image classification. The statistical
significance of the difference solidifies the HQCNN’s
superiority and encourages its seamless integration into
medical imaging research, instilling researchers with
heightened confidence in its performance advantage over
the Classical CNN.

Moreover, these findings emphasize the potential of the
hybrid quantum model for efficient medical image clas-
sification and diagnosis. However, further investigation is
warranted to assess its performance in classifying other
types of data.

The research provides invaluable insights into the
advantages of incorporating quantum circuitry into
CNN models for medical image analysis, paving the
way for quantum-enhanced machine learning in the
field. Future research endeavors aim to investigate
HQCNN’s robustness against adversarial attacks,
employing adversarial defense techniques to ensure
model security and reliability in safety–critical applica-
tions. This will further contribute to the growing body
of knowledge in the domain of quantum computing and
its potential applications in medical imaging research,
ultimately fostering advancements in accurate diagno-
sis and improved patient care.

Acknowledgements
Not applicable.

Authors’ contributions
The following represents the substantial contributions of individual authors:
Conceptualization, NA, AO, FA; methodology, NA, AO. FT, FA; performing the
experiments, NA, MT, FT; analyzing the data, NA, AO; writing the manuscript,
NA, FA, MT; providing scientific supervision of manuscript, NA, FA. All authors
have read and agreed to the published version of the manuscript.

Funding
Not applicable.

Fig. 14 training speed per Epochs using CPU and GPU for CNN and HQCNN models

Page 23 of 23Ajlouni et al. BMC Medical Imaging (2023) 23:126

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Availability of data and materials
The datasets analyzed in this paper are publicly available. All the datasets used
in this paper are referenced directly via a listing in the references. The dataset
is Kaggle Brain Tumor MRI dataset. It is available at https:// www. kaggle. com/
datas ets/ masou dnick parvar/ brain- tumor- mri- datas et.

Declarations

Ethics approval and consent to participate
We confirm that all methods were carried out in accordance with relevant
guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Faculty of Engineering, Istanbul Atlas University, 34295 Istanbul, Türkiye. 2 Fac-
ulty of Engineering, Istanbul Atlas University, Hamidiye, Anadolu Cd. No:40,
34408, 34403, Kağıthane, Istanbul, Turkey. 3 Tübitak Bilgem, Barış, 1802. Sk.
No:1, 41400, Gebze, Kocaeli, Turkey. 4 Lancashire College of Further Education,
Appleby Street, Lancashire BB1 3BL, Blackburn, UK. 5 The Scientific and Tech-
nological Research Council of Türkiye (TÜBİTAK), BİLGEM, Kocaeli, Türkiye.
6 Department of Computer Science, Lancashire College of Further Education,
Accrington BB5 OHJ, UK.

Received: 8 June 2023 Accepted: 21 August 2023

References
 1. Xu J, Wu P, Chen Y, Meng Q, Dawood H, Khan MM. A novel deep flexible

neural forest model for classification of cancer subtypes based on gene
expression data. IEEE Access. 2019;7:22086–95.

 2. Aldryan D. P, Annisa A. Cancer Detection Based on Microarray Data
Classification with Ant Colony Optimization and Modified Back-
propagation Conjugate Gradient Polak-Ribiére. In: 2018 International
Conference on Computer, Control, Informatics and its Applications
(IC3INA). 2018. p. 13–6.

 3. Reis S, Gazinska P, Hipwell JH, Mertzanidou T, Naidoo K, Williams N, Pinder
S, Hawkes DJ. Automated classification of breast cancer stroma maturity
from histological images. IEEE Trans Biomed Eng. 2017;64(10):2344–52.

 4. Ting F. F, Sim K. S. Self-regulated multilayer perceptron neural network for
breast cancer classification. In: 2017 International Conference on Robot-
ics, Automation and Sciences (ICORAS). 2017. p. 1–5.

 5. Yukinawa N, Oba S, Kato K, Ishii S. Optimal aggregation of binary classi-
fiers for multiclass cancer diagnosis using gene expression profiles. IEEE/
ACM Trans Comput Biol Bioinf. 2008;6(2):333–43.

 6. Jafari-Marandi R, Davarzani S, Gharibdousti MS, Smith BK. An optimum
ANN-based breast cancer diagnosis: bridging gaps between ANN learn-
ing and decision-making goals. Appl Soft Comput. 2018;72:108–20.

 7. Zhanga F, Li Z, Du ZhangB, H, Wang B, Zhang X. Multimodal Deep Learn-
ing Model for Auxiliary Diagnosis of Alzheimer’s Disease. Neurocomput-
ing. 2019;361:185–95.

 8. Li SS, Long GL, Bai FS, Feng SL, Zheng HZ. Quantum computing. Proc Natl
Acad Sci. 2001;98(21):11847–8.

 9. Knill E. Quantum computing. Nature. 2010;463(7280):441–3.
 10. Xu P, He Z, Qiu T, Ma H. Quantum image processing algorithm using edge

extraction based on Kirsch operator. Opt Express. 2020;28(9):12508.
 11. Ma Y, Li N, Zhang W, Wang S, Ma H. Image encryption scheme based on

alternate quantum walks and discrete cosine transform. Opt Express.
2021;29(18):28338.

 12. Zhong HS, Wang H, Deng YH, et al. Quantum computational advantage
using photons. Science. 2020;370(6523):1460–3.

 13 Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for
big data classification. Phys Rev Lett. 2014;113(13):130503.

 14. Lu S, Braunstein SL. Quantum decision tree classifier. Quantum Inf Pro-
cess. 2014;13(3):757–70.

 15. Zhou NR, Liu XX, Chen YL, Du NS. Quantum K-Nearest-Neighbor image
classification algorithm based on K-L transform. Int J Theor Phys.
2021;60(3):1209–24.

 16. Xin T, Che L, Xi C, et al. Experimental quantum principal component analysis
via parameterized quantum circuits. Phys Rev Lett. 2021;126(11):11 110502.

 17. Peruzzo A, McClean J, Shadbolt P, et al. A variational eigenvalue solver on
a photonic quantum processor. Nat Commun. 2014;5(1):4213.

 18 McClean JR, Romero J, Babbush R, Aspuru-Guzik A. e theory of variational
hybrid quantum-classical algorithms. New J Phys. 2016;18(2):023023.

 19 Schuld M, Bocharov A, Svore KM, Wiebe N. Circuitcentric quantum classi-
fiers. Phys Rev A. 2020;101(3):032308.

 20. Zeng Y, Wang H, He J, Huang Q, Chang S. A multiclassification hybrid
quantum neural network using an allqbit multi-observable measurement
strategy. Entropy. 2022;24(3):394.

 21 Wecker D, Hastings MB, Troyer M. Progress towards practical quantum
variational algorithms. Phys Rev A. 2015;92(4):042303.

 22. Jones T, Endo S, McArdle S, Yuan X, Benjamin SC. Variational quantum algo-
rithms for discovering Hamiltonian spectra. Phys Rev A. 2019;99(6):062304.

 23 Xiao J, Wen J, Wei S, Long G. Reconstructing unknown quantum states
using variational layerwise method. Front Phys. 2022;17(5):51501.

 24. Guerreschi GG, Matsuura AY. QAOA for Max-Cut requires hundreds of
qbits for quantum speed-up. Sci Rep. 2019;9(1):6903.

 25 Zhou L, Wang ST, Choi S, Pichler H, Lukin MD. Quantum approximate
optimization algorithm: performance, mechanism, and implementation
on near-term devices. Phys Rev X. 2020;10(2):021067.

 26 Rasmussen SE, Loft NJS, Bækkegaard T, Kues M, Zinner NT. Reducing the
amount of single-qbit rotations in VQE and related algorithms. Advanced
Quantum Technol. 2020;3(12):2000063.

 27. Uvarov AV, Kardashin AS, Biamonte JD. Machine learning phase transi-
tions with a quantum processor. Phys Rev A. 2020;102(1):012415.

 28 Liu J, Lim KH, Wood KL, Huang W, Guo C, Huang HL. Hybrid quantum-
classical convolutional neural networks. Sci China Phys Mechanics
Astronomy. 2021;64(9):290311.

 29 Schuld M, Killoran N. Quantum machine learning in feature hilbert
spaces. Phys Rev Lett. 2019;122(9):290311.

 30. Wei S, Chen Y, Zhou Z, Long G. A quantum convolutional neural network
on NISQ devices. AAPPS Bull. 2022;32(1):2.

 31. Henderson M, Shakya S, Pradhan S, et al. Quanvolutional neural networks:
powering image recognition with quantum circuits. Quantum Mach
Intell. 2020;2:2–9. https:// doi. org/ 10. 1007/ s42484- 020- 00012-y.

 32. Cong I, Choi S, Lukin MD. Quantum convolutional neural networks. Nat
Phys. 2019;15(12):1273–8.

 33 Li Y, Zhou RG, Xu R, Luo J, Hu W. A quantum deep convolutional neural
network for image recognition. Quantum Sci Technol. 2020;5(4):Article ID
044003.

 34. Parthasarathy R, Bhowmik RT. Quantum optical convolutional neural
network: a novel image recognition framework for quantum computing.
IEEE Access. 2021;9:103337–46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://doi.org/10.1007/s42484-020-00012-y

	Medical image diagnosis based on adaptive Hybrid Quantum CNN
	Abstract
	Introduction
	Convolutional neural network
	Parameterized quantum circuits
	Variable adaptive optimizer
	Proposed method
	Simulation and results
	Experimental design
	Optimal CNN structure
	Defining optimal Hybrid Quantum CNN Structure
	Normalization
	Performance evaluation metrics
	Dataset
	Training platform

	Optimal quantum circuit model
	Optimal convolutional NN model
	Results and discussion

	Conclusion
	Acknowledgements
	References

