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Abstract
Background Incidental thymus region masses during thoracic examinations are not uncommon. The clinician’s 
decision-making for treatment largely depends on imaging findings. Due to the lack of specific indicators, it may be of 
great value to explore the role of radiomics in risk categorization of the thymic epithelial tumors (TETs).

Methods Four databases (PubMed, Web of Science, EMBASE and the Cochrane Library) were screened to identify 
eligible articles reporting radiomics models of diagnostic performance for risk categorization in TETs patients. The 
quality assessment of diagnostic accuracy studies 2 (QUADAS-2) and radiomics quality score (RQS) were used 
for methodological quality assessment. The pooled area under the receiver operating characteristic curve (AUC), 
sensitivity and specificity with their 95% confidence intervals were calculated.

Results A total of 2134 patients in 13 studies were included in this meta-analysis. The pooled AUC of 11 studies 
reporting high/low-risk histologic subtypes was 0.855 (95% CI, 0.817–0.893), while the pooled AUC of 4 studies 
differentiating stage classification was 0.826 (95% CI, 0.817–0.893). Meta-regression revealed no source of significant 
heterogeneity. Subgroup analysis demonstrated that the best diagnostic imaging was contrast enhanced computer 
tomography (CECT) with largest pooled AUC (0.873, 95% CI 0.832–0.914). Publication bias was found to be no 
significance by Deeks’ funnel plot.

Conclusions This present study shows promise for preoperative selection of high-risk TETs patients based on 
radiomics signatures with current available evidence. However, methodological quality in further studies still needs 
to be improved for feasibility confirmation and clinical application of radiomics-based models in predicting risk 
categorization of the thymic epithelial tumors.
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Introduction
Thymic epithelial tumors (TETs) are one of the most 
common primary tumors in the mediastinum, account-
ing for up to 50% of all anterior mediastinal neoplasms 
in adults [1, 2]. Incidental thymus tumors are almost 
always asymptomatic and appropriate serum markers are 
absent, so the clinician’s decision-making on treatment 
largely depends on imaging findings. Risk categorization 
of the thymic neoplasms is of great value in this situation.

According to the previous studies, the prognosis of thy-
mic tumors largely depends on four prognostic factors: 
WHO histologic type, pathological stage, surgical mar-
gin status and pattern of treatment [3, 4]. In a large mul-
tiple-center cohort (n = 907), Liu et Colleagues from the 
ChART (Chinese Alliance for Research in Thymomas) 
confirmed that the WHO classification and T stage were 
independent prognostigators for recurrence of thymic 
tumors [5]. Patients with high-risk thymic tumors need 
more attention for timely surgery and comprehensive 
periopeartive treatment modality [6].

Jeong et al [7] tried to correlate the CT findings of thy-
mic epithelial tumors with histologic classification as 
early as 2004, but found CT was of limited value in dis-
tinguish WHO histopathological subtypes. White and 
colleagues evaluated the efficacy of preoperative CT to 
predict the pathological stage of TETs. They concluded 
that the diagnostic accuracy rate of preoperative tho-
racic CT was two-thirds for TMN stage and less than 
50% for Masaoka system [8]. One possible reason for 
the poor prediction performance is that subjective CT 
findings were evaluated in these studies, and disagree-
ment was often seen when judging pericardial invasion, 
vascular invasion, lung invasion, pleural invasion and 
so on. Therefore, a more objective predictive model was 
urgently needed in this condition.

Radiomics refer to the use of computer technology to 
extract high-throughput quantitative features from medi-
cal images and transform the images into high-dimen-
sional data, so as to reflect the biological characteristics 
in a non-invasive and objective way. Researchers have 
used radiomics models in TETs patients with regard to 
differential diagnosis, grading, staging or survival analy-
sis [9]. As regard to differentiate risk subgroups of TETs, 
several studies demonstrated that radiomics model was a 
potential tool with acceptable diagnostic accuracy. How-
ever, there were limited relevant studies compared with 
other tumors, and the predictive power varied greatly, 
with AUC (area under curve) values of radiomics algo-
rithms ranged from 70–90% [10, 11]. So we conducted 
a systematic review and meta-analysis to investigate the 
predictive performance of radiomics to act as an imaging 
biomarker for risk categorization of thymic tumors based 
on the published available literature. The results might 
serve as a benchmark for future prospective radiomics 

trials for clinical translation. This study followed the 
Cochrane Handbook for Systematic Reviews of Interven-
tions and was conducted in accordance with the PRISMA 
(Preferred Reporting Items for Systematic Reviews and 
Meta-analysis) statement.

Methods
Search strategy
A systematic literature review of PubMed, Web of Sci-
ence, EMBASE and the Cochrane Library was manually 
conducted from their establishment date until Novem-
ber 2022 to identify relevant reports. The databases were 
searched using the terms[(thymic or anterior medias-
tinal or thymoma or thymus neoplasm) and (radiomics 
or machine learning or deep learning or artificial intelli-
gence or neural network)]. The search strategies incorpo-
rated the Medical Subject Headings terms and keywords. 
We omitted words, such as tumors, mass, lesions and so 
forth, in order to get more relevant articles to generate 
more power for analyzing this neglected issue. The search 
was limited to humans and performed with no language 
restrictions. References lists of the relevant articles were 
also screened.

Study selection
The main outcome of our study was assessment of risk 
categorizations of thymic tumors. Risk categorizations 
include histologic subtypes classification and clinical/
pathological stage classification. Histologic subtypes were 
classified into low risk (A,AB,B1) and high risk (B2,B3,C) 
groups according to WHO classification. While, stage 
classification was divided into early (I/II) and advanced 
(III/IV) stages according to TNM or Masaoka staging 
systems.

Criteria for inclusion in this study were as follow: (1) 
cohort or case-control studies; (2) patients with thy-
moma or thymic carcinoma proved by pathology; (3) all 
imaging-based (computer tomography, CT/magnetic 
resonance, MR/positron emission tomography-computer 
tomography, PET-CT) radiomics studies; (4) diagnos-
tic outcomes (sensitivity, specificity, accuracy, etc.) were 
reported or could be calculated.

We excluded (1) non-original studies such as case 
reports, review, letters and commentaries; (2) studies 
involving other types of mediastinal tumors; (3) Stud-
ies with a replicated population.; (4) the diagnostic effi-
cacy indicators were reported missing or could not be 
calculated.

Data extraction and quality assessment
Two investigators (XF Lu and TY Zhu) independently 
screened the titles and abstracts of all relevant studies. 
The following data from each study was extracted: author, 
country, year of publication, study design, imaging 
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modality, population for diagnostic accuracy, age, param-
eter extraction software and risk categorizations. And 
we made a quality evaluation to each study by qual-
ity assessment of diagnostic accuracy studies 2 (QUA-
DAS-2) tools and radiomic quality score (RQS) [12, 13]. 
The QUADAS-2 tool includes four evaluation criteria: (a) 
patient selection; (b) index test; (c) reference standard; 
and (d) flow and timing. The RQS assessment included 
16 aspects with 36 potential points. All disagreements 
between the two reviewers were resolved by discussion.

Statistical analysis
According to QUADAS-2 standards, the RevMan 5.4 
software was applied to fill in and draw the quality 
profiles included in this study. Meta-Disc 1.4 software 
was used to calculate threshold effects spearman cor-
relation coefficient to evaluate the heterogeneity of 
threshold effects between studies. If there was no sig-
nificant threshold effect heterogeneity between stud-
ies, Cochran’s Q test and I2 test were used to calculate 
the diagnostic odds ratio to evaluate the heterogeneity 
caused by non-threshold effects. I2 values were defined 
as no heterogeneity (0-25%), low heterogeneity (26-
50%), moderate heterogeneity (51-75%) and high het-
erogeneity (76-100%) [14]. If P > 0.1 and I2 < 50%, the 
heterogeneity between studies was small, and fixed 
effects model was used for analysis. While if I2 > 50% 
and P < 0.1 indicating high heterogeneity, the random 
effects model was used for pooled analysis. The com-
bined sensitivity, specificity, positive likelihood ratio, 
negative likelihood ratio, diagnostic odds ratio and 95% 
confidence interval (95%CI) were calculated. Summary 
receiver operating characteristic curve (SROC curve) 
was drawn and analyzed, and the area under the curve 
(AUC) was calculated. StataSE 16 software was used 
to draw Deeks’ funnel plot to determine whether there 
was publication bias between studies [15], and P > 0.05 
was considered as no bias.

Results
Study selection
According to the retrieval strategy, a total of 188 rel-
evant literatures were preliminarily obtained from the 
four databases, 103 duplicate literatures were elimi-
nated, 65 were further eliminated by reading the title 
and abstract, 7 did not meet our inclusion criteria by 
two reviewer reading the full text, and 13 studies were 
finally included [16–28]. See Fig.  1 for the literature 
screening process.

Study characteristics and quality assessment
A total of 2134 patients with thymic neoplasms were 
comprehensively analyzed in the included 13 litera-
tures, including 1603 patients for histologic subtypes 

classifications (11 studies) and 531 patients for stag-
ing classifications (4 studies). The characteristics of 
retained studies were demonstrated in Table 1.

The data of the included 13 studies were complete. 
According to QUADAS-2 standard, the quality evalua-
tion and mapping of all the included studies were con-
ducted by RevMan 5.3 software. The main risk of bias 
came from the process and timing with unclear situ-
ation in all 13 studies. The specific quality evaluation 
results were shown in Fig. 2. For the RQS scale, mean 
score of included studies was 9.2 (range from 1 to 17). 
The mean RQS percentage was 25.6%(Table 2).

Diagnostic accuracy for histologic subtypes classification
The heterogeneity test of the included 11 papers 
[16–24, 27, 28] showed that the spearman correlation 
coefficient of threshold effect was 0.273 (P = 0.417), 
indicating no heterogeneity caused by threshold 
effect. The heterogeneity of diagnostic odds ratio 
(DOR) was showed (Cochran’s Q = 22.69, P = 0.012, 
I2 = 55.9%) and the random effects model was used 
for meta-analysis. The results showed that the pooled 
sensitivity, specificity, positive likelihood ratio (PLR), 
negative likelihood ratio (NLR) and diagnostic odds 
ratio of radiomics model in the preoperative diagno-
sis of low/high risk thymic tumors were 0.794 (0.764–
0.821), 0.743 (0.711–0.773), 3.392 (2.678–4.296), 0.285 
(0.230–0.352) and 13.446 (8.995–20.099), respectively. 
The AUC value of summary receiver operating charac-
teristic curve (SROC) is 0.855 (95% CI, 0.817–0.893), 
as shown in Fig. 3.

We performed sensitivity analyses to test how robust 
were the pooled results from the following aspects. 
1)By calculating the pooled value using fixed effect 
model (Mantel-Haenszel), the value remain the same 
(AUC = 0.855); 2)By omitting one single study in each 
turn, and our results were stable consequently (AUC 
ranged from 0.843 to 0.864).

The discordance indexes (I2) of the above five pooled 
indicators were 67.0%, 75.8%, 65.4%, 49.4% and 55.9%, 
indicating mainly moderate heterogeneity of studies. 
Possible sources of heterogeneity were identified by 
meta-regression analysis model. The included indica-
tors contained the number of patients included in the 
study (n < 100/≥100), country (Asia/Occident country), 
study design (single-center/multiple-center), imaging 
modality (NECT/CECT/MR/PET-CT), and machine 
learning. The source of significant heterogeneity was 
not identified by calculation of relative DOR with 
meta-regression (Table 3). As there was a tendency for 
significant differences in imaging modality (P = 0.06), 
the subgroup analysis was used to calculated the 
diagnostic accuracy of each modality (Table  4). The 
results showed that all subgroups had high diagnostic 
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efficacy, but there were great differences among vari-
ous modalities. The best diagnostic imaging was con-
trast enhanced CT with largest pooled AUC (0.873, 
95% CI 0.832–0.914).

Diagnostic accuracy for stage classification
Four studies reported the diagnostic efficacy of 
radiomics for the staging of thymus tumors with 
NECT or CECT imaging [17, 22, 25, 26]. The spear-
man correlation coefficient assessment indicated no 
heterogeneity caused by threshold effect (P = 0.800). 
However the I2 statistic also showed moderate hetero-
geneity among the studies (I2 = 71.3%). Random effects 
model was used due to the heterogeneity test results 
of DOR. The combined sensitivity, specificity, PLR, 
NLR and DOR of radiomics model in the preoperative 
evaluation of early/advanced staging thymic tumors 

were 0.736 (0.691–0.778), 0.754 (0.665–0.830), 2.924 
(1.845–4.635), 0.332 (0.226–0.487) and 9.791 (4.285–
22.374), respectively. The AUC value of summary 
receiver operating characteristic curve was 0.826 (95% 
CI, 0.817–0.893), as shown in Fig. 4.

Publication bias
The Deeks’ funnel plot for subtypes classification was 
conducted and demonstrated in the Fig. 5. The figure 
did not show obvious asymmetry with P value > 0.05. 
This indicated that there was no significant publica-
tion bias in the included studies. Publication bias was 
not assessed for the staging classification, as the small 
number of studies included (n = 4) might lead to incon-
clusive funnel plot [29].

Fig. 1 Flowchart of literature process
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Discussion
In the present systematic review, based on current 
evidence including more than two thousand patients, 
we found that radiomics has excellent diagnostic per-
formance for risk categorization in thymic neoplasm 
patients. In addition, the highest predictive accuracy 
was based on contrast enhanced CT with a pooled 
AUC nearly 0.900 (0.873, 95% CI 0.832–0.914). More-
over, the researches of radiomics based on MR or PET-
CT are still in its infancy, and need to be investigated 
and confirmed by further studies.

To the best of our knowledge, this is the first sys-
tematic review and meta-analysis to overview the 
diagnostic accuracy of preoperative radiomics model 
to predict risk classifications in TETs patients. We 
investigated the risk categorization from two aspects: 
high-risk histopathological subtypes and high-risk 
pathological staging, which both predicting com-
plex treatments and worse outcomes [30]. We finally 
included a total of 13 predictive radiomics studies 
[16–28]. They were all published in the recent three 
years, with nearly half of them published in the last 

years (2022). Except for three studies from Switzer-
land, Japan and the United States [22, 25, 28], the other 
studies all came from different provinces of China 
[16–21, 23, 24, 26, 27]. This might be related to the 
low incidence of TETs and the difficulty of conducting 
multi-center radiomics studies. All the studies were 
retrospective nature, and only two [18, 19] included 
data from two medical centers. We used QUADAS-2 
and RQS scale to evaluate the quality of literature. 
Probably because these studies were relatively new and 
had a basic similar design protocol, the quality of the 
literature was relatively high according to the QUA-
DAS-2 tool. The main risk of bias came from flow and 
timing, as no studies have reported the time inter-
val between radiomics and postoperative pathology 
results.There were also a small proportion of studies 
(3/13,23.1%) reported unclear patient selection [19, 20, 
28] and index test [18, 19, 27], which might result in a 
small risk of deviation. A meta-regression was applied 
to investigate the radiomics-based prediction of low/
high-risk WHO histologic subtypes, however, there 
was no statistical difference in the results. The sources 

Table 1 Characteristics of included studies
Authors Year of 

publication
Location Study 

duration
Study design Sam-

ple 
size

Age(y) Image 
modality

Parameters 
extraction 
software

Total/
included 
features

Risk 
clas-
sifica-
tion

Sui (16) 2019 Changchun, China 2013.2–
2018.3

Retrospective 
single-center

298 52.6 NECT/CECT RadCloud 1029/12 A

Wang (17) 2019 Shenyang, China 2010.1–
2018.10

Retrospective 
single-center

199 30–80 NECT/CECT 3D slicer 
v4.10

841/10 A,B

Chen (18) 2020 Guangdong,China 2009.2– 
2019.3

Retrospective 
multiple-center

90 54 
(19–81)

CECT MATLAB 2016 10,394/8 A

Ren (19) 2020 Shanghai, China 2011.1–
2019.4

Retrospective 
multiple-center

120 54.6 
(24–77)

CECT LIFEX v5.1.0 NA./43 A

Hu (20) 2020 Fuzhou, China 2009.1– 
2018.12

Retrospective 
single-center

155 52.5 
(23–79)

NECT + CECT IBEX software 230/10 A

Xiao(21) 2020 Xi’an, China 2014.10–
2018.11

Retrospective 
single-center

128 50.9 
(22–75)

MRI ITK-SNAP 
v3.6.0

4548/14 A

Blüthgen 
(22)

2021 Zurich, Switzerland 2000–
2018

Retrospective 
single-center

62 57 CECT PyRadiomics 1316/12 A,B

Dong (23) 2022 Nanchang, China 2017.7– 
2022.3

Retrospective 
single-center

77 44.2 CECT DARWIN 
Platform

558/13 A

Yu (24) 2022 Taiyuan, China 2012–
2018

Retrospective 
single-center

130 54 
(24–78)

CECT RadCloud 1409/16 A

Araujo-
Filho (25)

2022 New York, USA 2008.3–
2019.7

Retrospective 
single-center

146 NA CECT METLAB 101/8 B

Tian (26) 2022 Tokyo, Japan 2001.1–
2022.1

Retrospective 
single-center

124 61 NECT 3D slicer 
v4.10.2

851/15 B

Feng (27) 2022 Xi’an, China 2009.1–
2018.5

Retrospective 
single-center

433 50 NECT ITK-SNAP 
v3.6.0

1218/9 A

Nakajo 
(28)

2022 Kagoshira, Japan 20 Retrospective 
single-center

79 NA PET PyRadiomics 
v2.2.0

1131/3 A

CECT: contrast enhanced computer tomography; NECT: non-contrast enhanced computer tomography; MR: magnetic resonance; PET: positron emission 
tomography; NA: not available;

Risk classification: A, Low risk vs. High risk histological subtype thymic tumor; B, early stage vs. Advanced stage thymic tumor
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Fig. 2 Methodological quality summary by QUADAS-2 for included studies
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of heterogeneity might be considered from the fol-
lowing aspects: (a) The scanning machines and scan-
ning protocol varied in different institutions, which 
might influence the image acquisition; (b) Regions of 
interest were manually delineated in most researches, 
so there was a subjective component here; (c) Image 
feature extraction methods and extraction softwares 
were different; (d) There were multiple approaches 
for machine learning modeling, such as RF (random 
forest), SVM (support vector machine), kNN (k-near-
est neighbor) and so on.We performed a subgroup 

analysis of the imaging modality, which showed a dif-
ferential tendency (P = 0.06), but found that all the 
methods have good predictive performance, and chest 
enhanced CT remained the best model.

Because CT is the most commonly used examina-
tion of the chest, most of the radiomics were based on 
CT images. Wang et al. [17] Compared performance 
of radiomics signatures based on NECT and CECT 
for predicting high risk thymoma. Both radiomics 
showed excellent ability for risk categorization with 
high AUC (CECT 0.827 vs. NECT 0.801, P = 0.365). 
When compared with radiologists, only CECT-based 
radiomics signature showed statistically significant 
difference. However, other researchers (16) found 
that the radiomics features of the NECT scan outper-
formed CECT in risk grading for anterior mediastinal 
mass (AUC, CECT 0.741 vs. NECT 0.842). In our pre-
vious study, we found that the pooled AUC was slightly 
higher in the CECT radiomics signature than that of 
NECT (0.873 vs. 0.809), indicating that CECT-based 

Table 3 Meta-regression of heterogeneity in included studies
Variables r P value RDOR 95% CI
Number of patients included 0.164 0.792 1.18 0.23–5.96

Country 1.352 0.158 3.87 0.44–33.65

Study design 1.439 0.116 4.22 0.57–30.96

Imaging modality −0.616 0.063 0.54 0.28–1.05

Machine learning −0.114 0.843 0.89 0.20–3.99
RDOR: relative diagnostic odds ratio; CI: confidence interval

Table 4 Subgroup analysis of low/high risk thymic tumors by different preoperative imagings
Modality No. of studies Sensitivity Specificity AUC
CECT 8 0.784(0.745–0.820) 0.799(0.760–0.834) 0.873(0.832–0.914)

NECT 3 0.769(0.724–0.814) 0.681(0.599–0.762) 0.809(0.760–0.858)

MR 1 0.878 0.704 0.861(0.795–0.916)

PET 1 0.712 0.741 0.744(0.633–0.835)
No.: numbers; AUC: area under the receiver operating characteristic curve; CECT: contrast enhanced computer tomography, NECT: non-contrast enhanced computer 
tomography; MR: magnetic resonance; PET: positron emission tomography

Fig. 3 Diagnostic Accuracy for histologic subtypes classification: pooled sensitivity (A), specificity (B), diagnostic odds ratio (C) and AUC (D) of radiomics 
model
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radiomics might provide better diagnostic accuracy 
model. The underlying mechanism might be attribute 
to that the enhanced CT could better reflect the inter-
nal heterogeneity of TETs than the unenhanced com-
puted tomography using texture analysis. Sui et al. 
[16] pointed out that some features, like tumor shape, 
shape-Spherical Disproportion, was selected from 
CECT, which probably because the enhancement scan 
highlighted the outline of the lesions.

In our present study, only one study [21] based on 
MRI radiomics and one based on PET-CT [28] were 
included. Researches on TETs based on these two 
types of radiomics were still in its infancy. Xiao et al. 
[31] Published a pilot study to explore the performance 
of MRI-based radiomics in risk stratification of TETs. 
The radiomics signatures demonstrated high AUC val-
ues of 0.880 and 0.948 for differentiating WHO high-
risk subtypes and advanced staging. The outcomes of 
MRI-based radiomics studies were promising, par-
ticularly suitable for those who were allergic to iodine 
contrast agent or those who were afraid of radiation. 
Radiomics based on PET-CT for risk categorization in 
TETs patients was proved by few studies, however, the 
expensive cost limited its routine use.

Several non-radiomics indicators were included 
in the clinical combined radiomics models, such as, 
gender, age, myasthenia gravis and regular imaging 
findings (tumor size, pleural effusion, pericardial effu-
sion, infiltration, etc.) [18, 19, 21, 23]. Although there 
was no statistical difference between the combined 

model and the radiomics model in the prediction effi-
ciency, the absolute values were all improved in the 
studies. Further preoperative radiomics prediction 
studies were recommended to combine with clinical 
indicators.

Although this study provides the first comprehensive 
investigation of diagnostic performance of radiomics 
algorithm for risk categorization in TETs patients, 
there are also some limitations. Firstly, the included 
studies might be subject to some designed drawbacks, 
for instance, all studies were retrospective nature and 
the majority of studies had a small population. Sec-
ondly, the overall quality of the included studies was 
not optimal (mean RQS 25.6%), which might have 
potential influence of the subsequent analysis. Thirdly, 
heterogeneity was obvious among these included stud-
ies, though no source of heterogenenity was found by 
meta-regression. Last but not least, publication bias 
may be another major setback, because unreported 
non-significant radiomics models might be unavail-
able for analysis. However, the Deeks’ funnel plot 
suggested no significant evidence of publication bias 
in our study. According to above reasons, the clini-
cal diagnostic TETs risk categorization tool based on 
radiomics should be rigorously conducted and evalu-
ated in the future by prospective, multiple-center and 
well-design radiomics studies.

Fig. 4 Diagnostic Accuracy for stage classification: pooled sensitivity (A), specificity (B), diagnostic odds ratio (C) and AUC (D) of radiomics model
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Conclusions
In summary, this systematic review and meta-analysis 
shows promise for preoperative selection of high-risk 
TETs patients based on radiomics signatures with 
current available evidence. However, methodological 
quality in further studies still needs to be improved 
for feasibility confirmation and clinical application of 
radiomics-based models in predicting risk categoriza-
tion of the thymic epithelial tumors.
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