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Abstract 

Continuous release of image databases with fully or partially identical inner categories dramatically deteriorates 
the production of autonomous Computer-Aided Diagnostics (CAD) systems for true comprehensive medical diag-
nostics. The first challenge is the frequent massive bulk release of medical image databases, which often suffer 
from two common drawbacks: image duplication and corruption. The many subsequent releases of the same data 
with the same classes or categories come with no clear evidence of success in the concatenation of those identical 
classes among image databases. This issue stands as a stumbling block in the path of hypothesis-based experiments 
for the production of a single learning model that can successfully classify all of them correctly. Removing redundant 
data, enhancing performance, and optimizing energy resources are among the most challenging aspects. In this 
article, we propose a global data aggregation scale model that incorporates six image databases selected from spe-
cific global resources. The proposed valid learner is based on training all the unique patterns within any given data 
release, thereby creating a unique dataset hypothetically. The Hash MD5 algorithm (MD5) generates a unique hash 
value for each image, making it suitable for duplication removal. The T-Distributed Stochastic Neighbor Embedding 
(t-SNE), with a tunable perplexity parameter, can represent data dimensions. Both the Hash MD5 and t-SNE algorithms 
are applied recursively, producing a balanced and uniform database containing equal samples per category: nor-
mal, pneumonia, and Coronavirus Disease of 2019 (COVID-19). We evaluated the performance of all proposed data 
and the new automated version using the Inception V3 pre-trained model with various evaluation metrics. The perfor-
mance outcome of the proposed scale model showed more respectable results than traditional data aggregation, 
achieving a high accuracy of 98.48%, along with high precision, recall, and F1-score. The results have been proved 
through a statistical t-test, yielding t-values and p-values. It’s important to emphasize that all t-values are undeniably 
significant, and the p-values provide irrefutable evidence against the null hypothesis. Furthermore, it’s noteworthy 
that the Final dataset outperformed all other datasets across all metric values when diagnosing various lung infec-
tions with the same factors.

†Ibrahim A. Abbas and Yasser AbdelSatar contributed equally to this work.

*Correspondence:
Muhammad Atta Othman Ahmed
mao.khfagy@fci.luxor.edu.eg
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-023-01078-3&domain=pdf


Page 2 of 15Ahmed et al. BMC Medical Imaging          (2023) 23:134 

Keywords COVID-19, X-ray, Coronavirus, MD5, t-SNE, Data aggregation, Transfer Learning, Inception V3, Model 
production

Introduction
COVID-19 began to be reported in late 2019 in response 
to an unusual increase in infected patients in Wuhan, 
China. The COVID-19 epidemic has already infected 
over 96 million people and claimed the lives of at least 
2 million individuals worldwide  [1], with very few par-
allels in history. The virus quickly spread around the 
world, initially through individual transmissions and then 
through community transmissions, becoming a major 
public health concern. Coronavirus strains possess a 
positive-sense single-stranded ribonucleic acid (RNA) 
type, and their ability to mutate rapidly makes the pre-
scription of a standard drug unfeasible. There’s a chance 
that this disease won’t affect everyone, and because of 
the virus’s unpredictable nature, it may be devastat-
ing for those with weakened immune systems. As a 
result of its rapid spread, an early and precise diagnosis 
is considered a medical emergency. Reverse Transcrip-
tion Polymerase Chain Reaction (RT-PCR) and radiog-
raphy images (x-rays and CT scans) are being employed 
to detect COVID-19  [2]. RT-PCR determines whether 
viral RNA is present in a patient’s sample. The main dis-
advantage of the RT-PCR method is that it only locates 
and identifies the presence of viral RNA, which means it 
might misclassify a patient who has recovered from the 
llness  [3]. The RT-PCR test takes 3 to 6 hours to com-
plete and must be performed numerous times to obtain 
an accurate diagnosis. Currently, most of the methods 
of healthcare institutions to identify COVID-19 patients 
are not fast enough to prevent the disease from spread-
ing to more people. The Delta variants of concern are 
the subject of significant worldwide interest right now, 
as they are causing a large number of COVID-19 cases 
around the world and are linked to vaccine failures  [4]. 
There are notable differences between patients infected 
with variants Alpha, Lambda, Mu, and Delta. As a result, 
there is a need to utilize a computer-assisted technique 
that can automatically recognize various forms of vari-
ants. With the present epidemic, which is progressively 
affecting the general population, time and effectiveness of 
service are critical, therefore, most health organizations 
employ cloud technologies to store, analyze, and visualize 
all patient records. Artificial Intelligence (AI) is the devel-
opment of computer systems with intelligence similar to 
humans, such as learning from knowledge, recognizing 
patterns, and making autonomous decisions  [5]. Con-
volutional Neural Networks have recently emerged as 
the most important driver of biomedical research [6, 7]. 

Deep learning algorithms have been extensively applied 
in medical image analysis applications such as skin can-
cer classification  [8], breast cancer detection  [9], EEG-
based diagnosis [10], and brain illnesses [11, 12]. Because 
COVID-19 includes the screening of chest X-rays, deep 
learning-based diagnosis of the lungs can help radiolo-
gists detect symptoms in a potential patient quickly and 
precisely. Researchers have been hard at work develop-
ing effective Computer-Aided Diagnosis (CAD) tools for 
diagnosing the COVID-19 virus from medical images 
such as X-rays and CT scans [13–15].

The main objective of this paper is to present a new 
proposed unsupervised multiple-image database fusion 
learning algorithm to diagnose lung infections on chest 
X-ray images. There are many challenges we face, such 
as irrelevant and redundant images in deep learning 
models, so we aim to create a benchmark dataset of 
COVID-19 chest radiograph images to test the clas-
sification performance of various CNN models. This 
article also aims to explore the use of transfer learning 
using the Inception V3 model and analyze the avail-
able datasets and their distribution. Also to perform 
data cleaning and normalization to improve the per-
formance of the deep learning model utilized in their 
fusion. Additionally, the paper aims to use t-SNE for 
dimensionality reduction and visualization of high-
dimensional data with tunable perplexity to produce 
an optimized version of the fusion. In general, the 
objective of the article is to provide a comprehensive 
framework for diagnosing lung infections using chest 
radiographs and to improve the accuracy, efficiency, 
and reliability of the deep learning model. The main 
contribution of this paper:

• Propose a new unsupervised multiple-image data-
base fusion learning algorithm for diagnosing lung 
infections in chest X-ray images.

• The algorithm utilizes cloud-based advanced data 
to obtain an initial set of COVID-19 imagery data-
bases and uses the MD5 image hash as a duplica-
tion removal criterion.

• The paper also discusses the Inception V3 model 
for transfer learning and explores data character-
istics and visualization techniques using the t-SNE 
algorithm.

• The proposed algorithm aims to address the issue 
of redundant and irrelevant images in machine 
learning models.
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• The suggested final version of the balanced dataset 
has been verified for a multi-class recognition issue, 
with a diagnostic accuracy of 98.48%.

• The final dataset of COVID-19 chest X-ray images 
can be used as a benchmark dataset to test the clas-
sification performance of various CNN models.

The rest of the paper is organized as follows: Related 
works section gives an overview of relevant research on 
COVID-19 detection in X-ray images. The selected data-
sets and study techniques are discussed in depth in Mul-
tiple image database fusion and production section. The 
Final Version of dataset setup and data generation is dis-
cussed in Exploratory data analysis section. The experi-
mental setup and results are presented in Experiments 
findings section.  Work conclusion and future directions 
section concludes with suggestions for future work.

Related works
Deep learning approaches were successfully applied to 
X-ray images for COVID-19 diagnosis, yielding intrigu-
ing findings in terms of accuracy, sensitivity, specificity, 
and the Area Under the Receiver Operating Characteris-
tic Curve (AUC). In  [16], For addressing the pandemic, 
the authors proposed a software detection technique 
based on chest X-ray images. The model was created 
using many pre-trained networks and their combina-
tions. The approach detects COVID-19 using charac-
teristics collected from pre-trained networks, a sparse 
autoencoder for dimensionality reduction, and a Feed-
Forward Neural Network for output production. The 
model was trained using 504 COVID-19 scans and 
542 non-COVID-19 scans from two publically avail-
able chest X-ray imaging datasets. Using the combina-
tion of InceptionResnetV2 and Xception, the approach 
was able to attain an accuracy of 0.95% and an AUC of 
0.98%. Analyses of results have shown that using a sparse 
autoencoder as a dimensionality reduction strategy 
enhances the model’s overall accuracy. A simultaneous 
deep learning CAD system based on the YOLO predic-
tor was presented in  [17], which can identify and diag-
nose COVID-19 while distinguishing it from eight other 
respiratory disorders. Using two independent datasets 
of chest X-ray images and COVID-19, the CAD system 
was evaluated using five-fold tests for the multi-class pre-
diction issue. An annotated training set of 50,490 chest 
X-ray images was used to train the CAD system. The 
suggested CAD predictor was used to identify and clas-
sify areas on whole X-ray images with lesions presumed 
to be attributable to COVID-19, reaching overall detec-
tion and classification accuracies of 96.31 % and 97.40 %, 
respectively. Most test images from COVID-19 and other 
respiratory disorder patients were properly predicted, 

with an average Intersection over Union (IoU) of more 
than 90%. Deep learning regularizers of data balance and 
augmentation improved COVID-19 diagnostic perfor-
mance by 6.64 % and 12.17 %, respectively, in terms of 
overall accuracy and F1-score. Authors in  [18] presented 
three distinct Big Transfer (BiT) models for the diag-
nosis of patients afflicted with coronavirus pneumonia 
using X-ray radiographs in the chest: DenseNet, Incep-
tion V3, and Inception-ResNet V4. They performed mod-
els using 5-fold cross-validation, which revealed that the 
pre-trained DenseNet model had the best classification 
effectiveness of the two models provided, at 92 % (83.47 
% accuracy for Inception V3 and 85.57 % accuracy for the 
Inception-ResNetV4 model). In  [19] the authors com-
pared the chest x-ray scans of patients with COVID-19 
with those of healthy participants. They examined the 
performance of deep learning-based CNN models after 
cleaning up the images and using data augmentation. 
They compared the accuracy of the Inception V3, Xcep-
tion, and ResNeXt models. 6432 chest x-ray scan sam-
ples were acquired from the Kaggle repository to assess 
the model performance, 5467 were used for training, and 
965 for validation. When identifying chest X-ray images, 
the Xception model has the highest accuracy of 97. 97 % 
compared to other models.

Multiple image database fusion and production
In order to perform a valid data aggregation using mul-
tiple imagery databases collected from various sources 
using different scanning devices, the hash technique 
(details in Hashed distributed stochastic neighbour 
embedding (HDSNE) section) is used first to perform the 
first phase via removing duplicated and empty images. 
This produces the first clean version of our fused data-
base, then t-SNE (see Hashed distributed stochastic 
neighbour embedding (HDSNE) section) can be applied 
to reach the compact, described as a perfectly balanced 
version of the fused database, which has an equal num-
ber of instances per class constrained to the number of 
instances in the smallest class.

Available data and materials
This study presents a system for classifying frontal chest 
X-ray images into COVID-19, phenomena, and, no lung 
pathology (normal) for the purposes of the experiments. 
We combined the use of several available datasets with 
the addition of a new one comprising negative COVID-
19 cases. In this research, X-rays were obtained from 
the sources shown in Table 1 with different resolutions. 
For each source, this table shows the distribution of the 
frontal view of chest radiography X-ray images across 
three classes: normal, patients infected with COVID-19 
positive cases, and patients infected with various types 
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of bacterial and viral pneumonia, such as MERS, ARDS, 
and SARS. In this paper, the proposed dataset is created 
by combining the following six publicly available frontal 
chest X-ray images (random samples from all datasets as 
shown in Fig. 1): 

1. Imagery Dataset is split into three categories, each 
of which comprises different image formats [20]. It is 
available on the Kaggle website1; it has a total of 313 
images containing viral pneumonia and normal chest 
X-rays divided into test and training folders of various 
dimensions. The University of Montreal has granted 
permission to use the images and data collected.

2. Radiography Database  [21] of positive chest X-ray 
images, COVID-19, as well as viral pneumonia and 
normal images. This data was collected from the 
COVID-19 Dataset of the Italian Society of Medical 
and Interventional Radiology (SIRM) [26], the Novel 
Corona Virus 2019 Dataset created by Cohen on 
GitHub  [27] and images from 43 different publica-
tions. A Radiography dataset has a file (PNG) format 
and has a dimension of 1024 × 1024 pixels.

3. Patient dataset in  [22] of chest X-ray images for 
COVID-19 positive cases from the available Kaggle 
website 2, along with normal and COVID-19 images, 
is used in our study. The dataset has two classes of 

Table 1 The collected COVID-19 X-ray images databases for final data aggregation (“-” meaning that this class does not exist)

Num Data Name Data Source Normal Pneumonia COVID-19 Resolution Total

1 Imagery DB1 [20] 90 90 137 Varied 317

2 Radiography DB2 [21] 1341 1345 209 1024× 1024 2905

3 Patient DB3 [22] 140 - 144 Varied 284

4 X-ray DB4 [23] 94 94 - Varied 188

5 Patients Lungs DB5 [24] 28 - 70 Varied 98

6 CoronaHack DB6 [25] 1574 4276 58 Varied 5908

Total 6 6 3267 5805 618 Varied 9690

Fig. 1 Random Samples of X-ray images of frontal chest cases from the  DB1 to  DB6 databases

1 https:// www. kaggle. com/ prana vraik okte/ COVID- 19- image- datas et. 2 https:// www. kaggle. com/ wahib 04/ COVID- 19- patie nt- xray- image- datas et.

https://www.kaggle.com/pranavraikokte/COVID-19-image-dataset
https://www.kaggle.com/wahib04/COVID-19-patient-xray-image-dataset
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COVID-19 positives, and no finding cases in this ver-
sion. This dataset has different file formats and differ-
ent resolution dimensions.

4. COVID-19 X-ray dataset  [23] of chest X-ray images 
for pneumonia patients, as well as normal cases data 
images, are on the Kaggle website 3. The dataset has 
two classes with different resolution sizes and file for-
mats: JPEG and PNG.

5. Patients lungs dataset [24] of chest X-ray images for 
COVID-19 cases as well as normal cases data images 
from the Kaggle website 4. In this current edition, the 
dataset has two classes with different resolution sizes 
and file formats: JPEG and PNG.

6. COVID-19 CoronaHack dataset  [25] has two classes 
of X-ray radiographs in the CoronaHack dataset: nor-
mal and pneumonia patients with various causes. The 
dataset contains an imbalanced data collection and vari-
ous resolution sizes in JPEG and PNG file formats. The 
Italian Society of Medical and Interventional Radiology 
(SIRM) prepared this image collection [26]. The authors 
gathered the radiological images from a variety of trust-
worthy sources, which are available online in [25]. The 
data comprises a collection of normal and infected 
patients for many categories, such as viral infection 
(cases with COVID-19), Severe Acute Respiratory Syn-
drome (SARS), bacterial infection (Streptococcus), and 
Acute Respiratory Distress Syndrome (ARDS).

Hashed distributed stochastic neighbour 
embedding (HDSNE)
Due to the high number of irrelevant and redundant 
images, optimal imagery data use through machine learn-
ing is a big issue [28]. Any machine learning model spends a 
large amount of time, complexity, and expense getting com-
plete training images from all the raw collected data, most 
of which are duplicates. Despite that, the duplicate data can 
affect the performance of the model if it uses similar features 
during training and doesn’t focus on essential features that 
differ from the model. To address this, the effective hashing 
algorithm MD5 [29, 30] is the ideal approach for removing 
image duplication. It generates a unique hash value for each 
image in the database, ensuring that we can properly delete 
images with the same hash value. The Algorithm 1 contains 
the pseudo-code for the algorithm utilized to provide our 
proposal. The querying method for a padding vector image 
M with multiples of i-bit width is as shown in Eq. 1:

(1)Hi+1 = f (Hi,Mi), 0 � i � t − 1.

Algorithm 1 HDSNE Stage 1: The proposed image duplicate detector

Where H0 = IV0 is the hash function’s initial value of 
the first image of data. The next equations from Eqs.  4 
to  7 represent the key mathematical concepts of the 
t-SNE algorithm applied to aggregated data. It is a useful 
algorithm for representing high-dimensional data into a 
2D or 3D point map where each high-dimensional data 
sample (image in our case) is located, which is a key for 
selecting a specific subset of images according to their 
projection distance from an estimated class center point. 
Given an initial image dataset INum composed of NUM 
images where INum = img1, img2, . . . , imgNUM  . Equa-
tion  3 represents the conditional similarity between 
two images, where Pij represents the similarity between 
image i and image j, and �ij (Eq. 2) represents the differ-
ence between the feature vectors of the two images. The 
similarity is calculated using a Gaussian distribution with 
a variance of σ2.

It recursively requires calculating � for two images plus 
the square determinant of 1+� , then iteratively starts 
with computing the image pair-wise affinity probability 
as in Eq. 4. It defines the similarity between two images 
in the opposite direction, where Qij represents the simi-
larity between image j and image i. It is calculated using 
the inverse of the difference between the feature vectors 
of the two images.

(2)�ij = imgi − imgj , i �= j

(3)�ij = 1+
∥

∥�ij

∥

∥

2
.

(4)Pij = pimgj |imgi =
exp(−��ij�

2/2σ 2)
∑

k �=i exp(−��ik�
2/2σ 2)

.3 https:// www. kaggle. com/ khoon gweih ao/ COVID- 19- xray- datas et- train- 
test- sets.
4 https:// www. kaggle. com/ nabee lsaji d917/ COVID- 19-x- ray- 10000- images.

https://www.kaggle.com/khoongweihao/COVID-19-xray-dataset-train-test-sets
https://www.kaggle.com/khoongweihao/COVID-19-xray-dataset-train-test-sets
https://www.kaggle.com/nabeelsajid917/COVID-19-x-ray-10000-images
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This measures how close a Gaussian distribution is cen-
tered on a certain variance σ 2 . This variance varies for 
each individual image, with images in dense areas receiv-
ing a lesser variance than those in sparse areas. In Eq. 5, 
the distance between two similarity maps is calculated 
using the inverse of the difference between the feature 
vectors of the two images. t-SNE derives its cost function 
( CF ) from the Kullback-Leibler (KL) divergence resulting 
from the paired affinities in the space ( Pij ) and the simi-
larities in the embedding ( Qij ). During the optimization 
procedure, the ( CF ) is reduced.

The gradient of the cost function with respect to image 
i is calculated by Eq. 6, where δC

δimgi
 defines the gradient, 

Pij and Qij represents the similarity between image i and 
image j, and �ij is the difference between the feature vec-
tors of the two images.

Finally Eq.  7 calculates the similarity between two 
images using the t-SNE algorithm, where a t-distribution 
with a degree of freedom of 1.

The pseudo-code of the t-SNE algorithm is explained in 
Algorithm 2.

Algorithm 2 HDSNE Stage 2: Flexible aggregation with a crispy 
constraint on the output of Algorithm 1

(5)Qij = qimgi|imgj =
(
−→

△ ij)
−1

∑

k �=j(
−→

△ ik)
−1

.

(6)
δC

δimgi
= 4

∑

j

(Pij −Qij)�ij .

(7)Q(�ij) = �ij(1+ (
−→

△ ij))
−1

.

Algorithm 3 HDSNE Final Production of Unique Image Database from 
Multiple Databases

The study describes a new unsupervised multiple-
image database fusion learning algorithm for diagnosing 
lung infections in chest X-ray images. The algorithm uti-
lizes cloud-based advanced data to obtain an initial set of 
COVID-19 imagery databases and uses the MD5 image 
hash as a duplication removal criterion. The recent avail-
ability of cloud-based advanced data has transformed 
the cyber into a data mine. The cloud is the source from 
which we obtained our initial set of COVID-19 imagery 
databases. Due to the necessity of data inter-integrity 
for mobile model production, which hopefully will per-
form well in reality, an MD5 image hash is used as image 
duplication removal criteria (see Hashed distributed 
stochastic neighbour embedding (HDSNE) section and 
Algorithm 1) bypassing only images with a unique hash 
value from the initial image population obtained from the 
cloud. Algorithm  2 presents a flexible collection with a 
crispy constraint, which is applied recursively to produce 
a perfectly balanced image database with the number of 
images per class equal to the number of images in the 
minor class and to get the final production of a unique 
image database from many databases (see Algorithm 3).
According to Algorithm  3, the update of NUMs(iter) is 
done by computing the gradient of the CF with respect 
to the image i, and then updating the selected subset 
Is(iter) using Eq. 6. The algorithm iterates over the num-
ber of subsets NUMs and returns the images in Is(NUMs) . 
The proposed data framework is represented by the other 
meaning of a graphical pipeline, as in Fig. 2.

Inception V3 deep learner
By their nature, deep learning models need a lot of data. 
Furthermore, since the COVID-19 data set is relatively 
small compared to normal deep learning datasets, the 
notion of transferring learning can be employed to help 
decision-making. Transfer learning is based on the idea 
of transferring information from one domain to another 
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using previously taught weights. During other domain 
training, weighing arrays of many layers are tradition-
ally frozen from the start, and only the remaining layers 
are modified. When both diseases have an overlap area 
in the case of different lung infections with low-level 
characteristics such as their structure, number, place-
ment, and distribution, the transfer learning model is 
able to classify them effectively [31]. The trained weights 
from the ImageNet dataset were utilized to establish 
our model weights, but none of them were frozen since 
the ImageNet and COVID-19 datasets correspond to 
nonoverlapping domains. As a consequence, all classes 
are still started with weights that are more essential 
than random initialization and are sensitive to learning 
throughout the training phase. We focused on the Incep-
tion V3 model, which is commonly used for transfer 
learning and is publicly accessible in packaged form via 
trusted public libraries such as Keras, to find the best-
suited model for our research. These models are conven-
iently included in the Keras API, and each one enables 
transfer learning [32] through pre-implementation func-
tionality for ImageNet weights [33]. Inception V3 [34] is 
a pre-trained model architecture designed to maximize 
the use of computational resources inside the network 
by expanding the network’s depth and breadth while 
maintaining the same computation procedures. The 
term “Inception modules” was invented by the network’s 
designers to represent an efficient network structure 
with skipped connections that can be used as a construc-
tion component. To decrease dimensionality and com-
plexity, each Inception module is replicated spatially by 
stacking with occasional max-pooling layers. The Incep-
tion V3 model is used to extract features. It is Google’s 
pre-trained model, which has been trained on over 1.4 
million images and over 1,000 classes. The Inception V3 
model is widely used in image detection models that use 
convolutional neural networks to extract image features.

Exploratory data analysis
In the deep learning process, pre-processing is a cru-
cial stage. Data collection techniques are frequently 
approximated, with out-of-range estimation, difficult 
information mixtures, and missing characteristics. 
Exploratory information processing is set up for pri-
mary preparation or further examination. Data pre-
processing is the process of preparing raw data so 
that it can be used by an AI model. It is the first and 
most important step in making an AI model more 
robust. Data cleaning and normalization techniques 
are used to remove abnormalities and normalize the 
data. It requires the creation of a structure that can 
be easily utilized to create a model. Duplicate images 
in the dataset pose challenges for two purposes: they 
introduce a bias in the dataset, giving the deep neu-
ral network more opportunities to learn specific pat-
terns of duplicate copies. Although data points in the 
dataset are frequently believed to be independent 
and equally distributed, this affects the model’s abil-
ity to generalize to new images outside of what it was 
trained on. Researchers commonly aim to eliminate 
these data duplicates before training a convolutional 
neural network. Second, manually detecting duplicate 
images in a dataset requires time, is error-prone, and 
doesn’t perform well with large image datasets. As a 
result, we require a way to detect and eliminate dupli-
cate images from our data automatically. For that, 
we will detect and remove duplicate images in a pro-
posed COVID-19 dataset presented in Table  1. The 
image hashing algorithm is the proposed image dupli-
cate detector, as presented in Hashed distributed sto-
chastic neighbour embedding (HDSNE) section as 
follows: First, the model performs duplicate image 
detection in the six datasets, detecting 634 dupli-
cate images from  DB6, 21 duplicates from  DB2, and 4 
duplicates from  DB1 and  DB4 as shown in Fig. 3.

Data analysis includes Data cleaning, transform-
ing, and modeling to identify useful information 
for effective decisions is defined as data analysis. It 
considered a variety of data distributions between 
the data classes for all data in Fig.  4. The model’s 
effectiveness is impacted by the amount of variation 
in the three classes. The duplicate detector is then 
run a second time to remove the real duplicates from 
the given dataset. Table  2 presents all the cleaned 
data from the COVID-19 X-ray image after deleting 
all duplicates using an MD5 hash algorithm. Then, 
cleaning up unnecessary data by eliminating 114 
out-of-scope CT images that degrade model per-
formance. Finally, we’ll review the outcomes of our 
work in Table 3.

Fig. 2 Collecting data aggregation and analytic methodology
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Statistical data characteristics exploration
Data is the fuel for modern computing. Whether it is the 
medical field or the retail market, data is the most pre-
cious thing in every field. Recent AI techniques are mostly 
followed by data-driven approaches. Deep learning-based 
algorithms almost fully depend on the dataset. As shown 
in Table 1 and in Fig. 5 there is a variety of DB1 data dis-
tribution between the dataset classes in the training and 
testing set. However, it can be observed that the COVID-
19 class has about 45% of the data. The variety of DB2 data 
distribution between the dataset classes is quite large. 

However, it can be observed that the COVID-19 class 
has about 7% of data, and the COVID-19 class in DB6 
has about 1% of data, as shown in Fig. 6. As presented in 
Figs.  5 and 6, a convergence of DB3 , DB4 , and DB5 data 
distribution ratios between dataset classes is founded. The 
amount of variance in the three data classes represents a 
major challenge in model performance. Table 1 and Fig. 5 
demonstrate that the DB1 data distribution differs across 
dataset classes in both the training and testing sets. Nota-
bly, the COVID-19 class contains approximately 45% of 
the data. The variety of DB2 data distribution between the 
dataset classes is quite large. However, we can observe 
that the COVID-19 class has about 7% of data, and the 
COVID-19 class in DB6 has about 1% of data, as shown 
in Fig. 6. In both Figs. 5 and 6, we can observe the con-
vergence of data distribution ratios for DB3 , DB4 , and DB5 
across different dataset classes. Model performance is 
significantly challenged by the variance in the three data 
classes.

Data representation and visualization
Due to the database’s high dimensions, it could have 
minimized the high-dimensional feature space to a lower 
dimension, ignoring the highly linked characteristics. 
This phase is essential for class decomposition since 
it results in more homogenous classes, lower memory 
needs, and improved model efficiency. t-SNE is a dimen-
sionality reduction algorithm that is highly suitable for 
visualizing high-dimensional datasets, such as those 

Fig. 3 A sample of the detection process of duplicates using the MD5 hash algorithm

Fig. 4 Distribution data for all merged X-ray images
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shown in Fig.  7. t-SNE reduces the divergence between 
two distributions: a pair-wise similarity distribution for 
the input objects and a pair-wise similarity distribution 
for the corresponding low-dimensional points in the 
embedding. Essentially, it looks at the proposed data-
bases (Available data and materials section) that are fed 
into the algorithm and determines the optimal way to 
represent them with fewer dimensions by matching both 

distributions. The t-SNE dimension reduction approach 
was used, and the scikit-learn Python package was used 
to implement it  [35]. The default scikit-learn hyperpa-
rameters (perplexity = 30, iterations = 1000, learning 
rate = 200) were used to tune the t-SNE hyperparam-
eters. As a result of the proposed HDSNE algorithm in 
Algorithm  3, a new final version dataset is created for 
the final production of the data from the hash and t-SNE 
algorithms.

Experiments findings
In this section, we first provide all the information about 
the experimental setup used and then evaluate six state-
of-the-art COVID X-ray datasets, integrating all data 
and balancing the final dataset using the pre-trained 
Inception V3 model. The images were then normalized, 
scaled, and resized to 224 × 224 pixels at 72 dpi [36, 37] 
to decrease the computational complexity. The prepared 
dataset is summarized in Table 3. The categorical cross-
entropy loss we utilized is one of the most commonly 
used loss functions for deep neural network model train-
ing, especially in (multi-class) classification applica-
tions [38]. This loss function correlates to a probabilistic 
log-likelihood when applied to categorical data, result-
ing in advantageous estimation characteristics. During 
every trial, used 80% of the six datasets stated in Tables 2 
and used the All DBs and the Final dataset presented in 
Table 3 for the training phase. Fully connected and Soft-
max layers are used for further detection. The data is 
then sampled for training and testing using a data gen-
erator. The remaining 20% of all experiments were then 
given to the prediction phase, and finally, the accuracy 
and loss were measured to evaluate the model training’s 
performance. A rectified linear unit is employed as the 

Table 2 A Cleaning data of COVID-19 X-ray image after deleting 
duplicates using an MD5 hash algorithm (“-” meaning this 
category does not exist)

Num Dataset Name Normal Pneumonia COVID-19 Total

1 DB1 [20] 88 89 136 313

2 DB2 [21] 1340 1340 204 2884

3 DB3 [22] 140 - 144 284

4 DB4 [23] 94 94 - 188

5 DB5 [24] 28 - 70 94

6 DB6 [25] 1356 3859 45 5260

Total 3046 5382 599 9027

Table 3 Integrate clean data after removing out-of-scope 
anomalies and duplicates of images and presents the proposed 
final dataset

Dataset Normal Pneumonia COVID-19 Sum

All data 3046 5382 599 9027

Duplicates 221 423 19 663

All DBs 2825 4959 580 8364

Final dataset 441 441 441 1323

Fig. 5 The data analysis of COVID-19 X-ray datasets (P = Pneumonia, C = COVID-19, N = Normal)
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activation function (Relu). It is linear for all positive val-
ues and for all negative values to zero values. Because it 
is simple to calculate, the model takes less time to train. 
This function is employed because it avoids the vanish-
ing gradient issue that other activation functions, such 
as sigmoid and tanh. It can be stated mathematically as 
described in the equation:

Here, Q(.) is the function, 0 is the starting value, and χ 
is the input. The starting value is set to 0 since the Relu 
function returns 0 for all negative values. In the training 
phase, we used 30 epochs, a batch size of 16, and a learn-
ing rate of 0.0001 to make sure that all hyper-parameters 

(8)Q(χ) = max(0,χ)

Fig. 6 COVID-19  DB1 to  DB6 classes distribution

Fig. 7 COVID-19 data visualisation using t-SNE with points from  DB1 to  DB6
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were the same. The results of the COVID-19 X-ray 
image classification using the Inception V3 model, as 
presented in Table  4, provide valuable insights into the 
model’s performance across various datasets. The sta-
tistical analysis reveals important performance metrics 
such as accuracy, precision, recall, and F1-score, which 
help evaluate the effectiveness of the model in differen-
tiating between classes within the datasets. Starting with 
the binary-class datasets, we observe varying degrees of 
performance. DB1 achieved a high accuracy of 94% with 
balanced precision, recall, and F1-score values. Similarly, 
DB2 showed an accuracy of 94% and balanced metrics. 
These results indicate that the model performed con-
sistently well in accurately classifying positive and nega-
tive cases within these datasets. Moving on to DB3 , we 
observe a lower accuracy of 71% along with balanced 
precision, recall, and F1-score values. This suggests that 
the model achieved a moderate level of performance in 
accurately classifying the images in this dataset. Analyz-
ing DB4 , we see an accuracy of 72.22% along with pre-
cision, recall, and F1-score values of around 72%. These 
results indicate that the inception V3 model achieved a 
relatively similar level of performance across these met-
rics. However, the overall performance in DB4 is slightly 
lower compared to the previous datasets. The balanced 
precision, recall, and F1 score suggest that the inception 
V3 model achieved consistent classification performance, 
but with a slightly higher misclassification rate and a high 
outlier of data. Moving to DB5 predictions, we observe 
an accuracy of 89.47% along with relatively high preci-
sion, recall, and F1-score values. However, the F1-score 
is slightly lower compared to the accuracy, showing that 
the inception V3 model may struggle with classifying 
certain instances within this dataset. Overall, the model 
achieved good overall classification performance for DB5 , 
although there may be some imbalance in terms of preci-
sion and recall. For the multi-class datasets, DB6 achieved 
an accuracy of 79.35% along with balanced precision, 

recall, and F1-score values of around 79%. These results 
indicate that the inception V3 model achieved moder-
ate performance in accurately classifying the images in 
DB6. Balanced precision, recall, and F1-Score suggest 
relatively consistent performance in terms of positive 
and negative predictions. Considering the combined 
dataset (DB All), the accuracy drops to 69.3%. However, 
precision, recall, and F1 score show a relative value of 
around 70%. This indicates that the model encountered 
challenges in accurately classifying the images within 
the combined dataset, potentially due to the complexity 
of having multiple classes with varying characteristics. 
The low relative precision, recall, and F1-score suggest a 
relatively consistent performance in terms of both posi-
tive and negative predictions, with a lower accuracy rate. 
Finally, the proposed Final dataset achieved the highest 
accuracy of 98.48% along with high precision, recall, and 
F1-score values. These results indicate excellent overall 
classification performance for the Final dataset, demon-
strating the model’s ability to classify COVID-19 X-ray 
images within this balanced dataset accurately. When it 
comes to classifying COVID-19 X-ray images from dif-
ferent datasets, it’s crucial to analyze the performance 
using statistics. The Inception V3 model can be used to 
assess the performance of the model across all datasets or 
evaluate specific datasets. While the binary-class datasets 
demonstrate higher accuracies and balanced metrics, the 
multi-class datasets pose additional challenges. However, 
the Final dataset benefits from a balanced distribution of 
samples and stands out with exceptional performance. 
The benefits of our balanced dataset, including mitigat-
ing class imbalance, improving feature learning, and ena-
bling fair evaluation, contribute to the model’s success in 
accurately classifying COVID-19 X-ray images. The crea-
tion of the Final dataset using hash for deduplication and 
t-SNE for data representation offers significant benefits 
over the combined dataset. The elimination of duplicate 
entries through the hash function ensures data integrity 
and reduces biases that may arise from redundant infor-
mation. The use of t-SNE enables better data visualiza-
tion, aiding in the identification of clusters, outliers, and 
underlying patterns within the dataset. These benefits 
contribute to a more accurate and insightful representa-
tion of the Final dataset, enhancing subsequent modeling 
and classification tasks.

In this study, we effectively measured the significance 
of differences in model performance between the “Final 
dataset” and the union of six datasets using hypothesis 
testing. In this case, we used a paired t-test  [39, 40], a 
well-established method to compare two related groups, 
to determine whether observed variations in effective-
ness metrics are statistically significant. The “Final data-
set” was our target dataset, while the union of six datasets 

Table 4 The overall performance classification results of COVID-19 
datasets using the Inception V3 model

Dataset Classification 
Type

Accuracy Recall Precision F1-score

DB1 Multi-class 94 94 94 93

DB2 Multi-class 94 94 94 94

DB3 Binary-class 71 71 71 71

DB4 Binary-class 72.22 72.5 72.22 72.14

DB5 Binary-class 89.47 90.79 89.47 88.51

DB6 Multi-class 79.35 78.7 79.35 78.6

All DBs Multi-class 69.3 83.61 69.3 70.08

Final dataset Multi-class 98.48 98.5 98.48 98.48
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provided paired observations for direct comparison. By 
calculating t-values and corresponding p-values for each 
measurement, we quantified the strength of evidence 
against the null hypothesis and determined whether the 
observed differences in model performance are statis-
tically meaningful or due to chance fluctuations  [41]. 
The hypothesis testing framework utilized in this study 
ensures the robustness and dependability of evaluating 
the performance of our proposed model, contributing 
to the validity of our conclusions. In our evaluation, we 
utilized a paired t-test to compare the effectiveness met-
rics of the union of six datasets with those of the Final 
dataset. The paired t-test is a robust statistical method 
for determining whether there is a significant difference 
between two related groups, making it a suitable option 
for our scenario. The “Final dataset” represents a spe-
cific dataset of interest, whereas the six union datasets 
serve as paired observations, allowing us to analyze the 
performance variations between the two related groups 
for each measurement. The formula for the t-value in the 
paired t-test is given as in Eq. 9:

where the Standard Error (SE) is calculated as presented 
in Eq. 10 the standard deviation of the dataset divided by 
the square root of its sample size (n = 6, in our case) for 
each measurement:

In hypothesis testing, the p-value is a crucial statistical 
measure used to evaluate the evidence against the null 
hypothesis, as calculated by Eq. 11. It quantifies the likeli-
hood of observing the observed test statistic (t-value) or 
an even more extreme value under the null hypothesis.

where T is the t-distributed random variable with the 
appropriate degrees of freedom, t is the observed t-value, 

(9)t =
mean of paired differences

standard deviation of paired differences
√

sample size

(10)SE =

Standard Deviation
√

n

(11)p = 2× P(T > |t|)

and P(T > |t|) is the cumulative probability of the t-dis-
tribution with degrees of freedom, which represents the 
probability of observing a t-value as extreme or more 
extreme than the observed |t| under the null hypothesis.

In Table  5, we have provided the computed values 
for the t-test results, which include the mean and SE 
for each measurement in all six data sets as well as the 
proposed Final dataset. T-values were calculated based 
on the paired t-test formula for related samples. The 
“Statistical Significance” column indicates whether the 
t-value for each measurement is statistically significant 
at the alpha = 0.05 level for all measurements. All t-val-
ues are greater than the critical t-value (approximately 
2.571 for a two-tailed test), indicating statistical signifi-
cance. Therefore, the results suggest that the Final data-
set exhibits statistically significantly higher performance 
in terms of Accuracy, Recall, Precision, and F1-score 
compared to all six datasets. According to the results as 
presented in Table 5, the p-values we calculated for each 
measurement indicate the likelihood of achieving the 
observed differences in means between the two sets of 
data. A small p-value indicates strong evidence against 
the null hypothesis. We discovered that all performance 
metrics have statistically significant differences between 
“Final Dataset” and “All Data.” The results indicate that 
our “Final Dataset” outperformed “All Data” across 
these metrics.

Finally, in Table  6 we present a comprehensive com-
parison of the accuracy and various performance metrics 
achieved by our proposed model against those of existing 
techniques using the same dataset. It is important to note 
that the other models as listed in Table  6 were trained 
using different quantities of images from various data 
sources, which were then combined with any of the pro-
posed data for three multi-class classifications. On the 
other hand, our proposed model was exclusively trained 
using the final dataset, comprising images from all the 
data sources. Remarkably, our proposed model exhibited 
outstanding performance across all evaluated metrics, 
showcasing its effectiveness and superiority in the clas-
sification task. The results further emphasize the signifi-
cance of utilizing the complete and unified dataset, which 

Table 5 Comparison of performance metrics between “final dataset” and “all data” using a paired t-test

This table presents a comparison of performance metrics between the “Final Dataset” and the “All Data” using a paired t-test. Mean values and Standard Errors (SE) are 
provided for both datasets. The t-value and p-value are calculated to determine the statistical significance of the differences. The results indicate that all differences are 
statistically significant at the chosen significance level ( α = 0.05)

Measurement Mean (All Data) Final Dataset SE (All Data) t-value p-value

Accuracy 83.057 98.48 3.928 3.92 0.0202

Recall 82.997 98.5 3.957 3.91 0.0210

Precision 82.997 98.48 3.957 3.91 0.0210

F1-score 85.377 98.48 3.131 4.19 0.0138
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allowed our model to capitalize on the diverse informa-
tion available from all data sources, leading to remarkable 
predictive capabilities.

Work conclusion and future directions
It is critical to identify COVID-19 individuals early in 
order to prevent the illness from spreading to others. 
In this work, we used chest X-ray images from normal, 
COVID-19, and pneumonia patients to propose a deep 
transfer learning-based technique based on the Inception 
V3 net to predict COVID-19 patients automatically. We 
presented a novel technique HDSNE based on the MD5 
Hashing Algorithm to clear data duplicates and the t-SNE 
unsupervised learning algorithm to better depict the data 
distribution due to the difficulties of capturing continu-
ous changes in COVID-19 X-ray data variants. The sug-
gested final version of the balanced dataset has been 
verified for a multi-class recognition issue, with a diag-
nostic accuracy of 98.48%. The statistical t-test has con-
firmed the results, with significant t-values and p-values. 
It’s essential to highlight that all t-values are unquestion-
ably significant, and the p-values offer indisputable proof 
against the null hypothesis. Additionally, it’s worth not-
ing that the Final dataset outperformed all other datasets 
in diagnosing various lung infections with the same fac-
tors, across all metric values.

Our results suggest that, because of the obviously 
improved performance, radiologists will be better able 
to make clinical decisions. This research reveals how 
deep transfer learning algorithms can be utilized to dis-
cover COVID-19 at an early stage in order to detect it. 
The final dataset of COVID-19 chest X-ray images can 
be used as a benchmark dataset to test the classifica-
tion performance of the various CNN models in future 

research. Future studies might include combining addi-
tional datasets and other kinds of COVID-19 images, 
such as ultrasound and CT scan data, as well as develop-
ing updated pre-trained models and convolutional neu-
ral networks.
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