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Abstract 

Problem Artificial intelligence has been widely investigated for diagnosis and treatment strategy design, with some 
models proposed for detecting oral pharyngeal, nasopharyngeal, or laryngeal carcinoma. However, no comprehen-
sive model has been established for these regions.

Aim Our hypothesis was that a common pattern in the cancerous appearance of these regions could be recognized 
and integrated into a single model, thus improving the efficacy of deep learning models.

Methods We utilized a point-wise spatial attention network model to perform semantic segmentation in these 
regions.

Results Our study demonstrated an excellent outcome, with an average mIoU of 86.3%, and an average pixel accu-
racy of 96.3%.

Conclusion The research confirmed that the mucosa of oral pharyngeal, nasopharyngeal, and laryngeal regions may 
share a common appearance, including the appearance of tumors, which can be recognized by a single artificial intel-
ligence model. Therefore, a deep learning model could be constructed to effectively recognize these tumors.
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Introduction
In recent years, artificial intelligence (AI) technology has 
made significant strides in various fields of medicine, 
including the diagnosis of oral cancer [1, 2], dermatol-
ogy disease [3], ocular fundus disease [4], lung cancer 
[5], pathological slices diagnosis [6] even the prediction 
of gene editing results [7]. AI is playing an increasingly 
important role in medicine, surpassing what was previ-
ously possible [8]. It may soon replace tedious or danger-
ous work with machines equipped with AI systems. Early 
detection of cancer has always been associated with a 
good prognosis. Therefore, detecting cancer in its early 
stages is crucial [1], regardless of whether it is done in the 
hospital or through self-diagnosis.
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Head and Neck Squamous Cell Carcinoma (HNSC) 
is a common cancer worldwide [9]. Most HNSC cases 
occur in the mucosa of the nasopharynx, oral pharynx, 
hypopharynx, or larynx, which we defined as regional 
upper digestive and respiratory tract (rUDRT) here. 
Cancer in these regions can have a profound impact on 
patients’ quality of life, causing dyspnea, dysphagia, and 
even voice loss. Early diagnosis and intervention can sig-
nificantly improve patients’ prognosis. Therefore, early 
and accurate detection of cancer in the rUDRT mucosa 
is crucial [10].

Several excellent AI diagnostic models have been 
developed to detect oral cancer [1, 2, 11–14]. How-
ever, few models have been used to diagnose cancer in 
rUDRT mucosa using a single model. Mohammed et al. 
reviewed the literature, and summarized the diagnosis 
of nasopharyngeal carcinoma; finding that most studies 
focus on predicting the prognosis of NPC using machine 
learning techniques [15]. They also constructed a deep 
learning model to detect NPC in microscopic image 
[16]. Endoscopic images-based deep learning model 
were also developed to detect nasopharyngeal carcinoma 
with good results [17, 18]. Uthoff et al. proposed an oral 
and oral pharyngeal cancer detection model, as well as 
a portable image collection tools to aid in self-diagnosis 
[14, 19]. Recently, Hao et al. established a deep learning 
model called DCNN to classify the tissues from normal, 
pre-cancerous, and benign ailments. The model had a 
sensitivity and specificity of 72.0% and 94.8%, respec-
tively, and an area under curve (AUC) of 0.953[20]. Some 
benign disease diagnostic models have also been devel-
oped for mucosa diseases of the oral pharynx, such as 
the strep throat identification model [21], which can dis-
tinguish bacterial from viral infection of the throat. Van 
Staveren et  al. constructed a diagnostic model for oral 
leukoplakia [22].

However, the machine learning method has rarely been 
applied in rUDRT using a single neural network model 
to identify cancers in all rUDRT mucosa. The model 
constructed to detect nasopharyngeal carcinoma was 
only used to identify nasopharyngeal cancer rather than 
laryngeal cancer, etc. Tumors in this region share com-
mon characteristics, such as irregular shape, ulceration, 
roughness, and tendency to bleed; while normal tissue 
has a smooth appearance and texture. These features 
suggest that the machine learning method may be suit-
able for identifying cancerous regions in an integrated AI 
model. This can facilitate self-monitoring of tumors in 
these regions, which may improve early tumor diagnosis. 
A new point-wise spatial attention network using seman-
tic segmentation, was adopted to do the cancerous region 
detection [23]. Here we reported the detailed design and 
training process.

Contributions:

1. The research in this article has confirmed that the 
mucosa of rUDRT shares a common appearance, as 
well as the tumor appearance which can be recog-
nized by a single integrated deep learning neural net-
work model.

2. The finding implies that an integrated AI model 
could be constructed to detect tumors in the rUDRT 
region.

3. The finding here facilitate a pan cancer detection 
deep learning neural network model, with the com-
bination with portable self-examination equipments, 
this may facilitate the easily early diagnosis of the 
carcinoma in this region.

Materials and methods
Image data collection and data augmentation
To conduct this study, 1742 cancerous endoscopic images 
from 101 patients were collected and labeled by two 
experts in this field. These patients were all histologi-
cally proved squamous carcinoma. And 6473 normal or 
benign lesion images of rUDRT from 200 patients were 
prepared. Before model training, we also carried out data 
enhancement on the cancerous images through image 
rotation, scaling, shearing, panning, and image flipping, 
etc. The cancerous endoscopic images increased from 
1742 to 8725.

During endoscopy, endoscopists always took many 
images of the tumor from different angles to achieve a 
comprehensive perception. As a result, one case may be 
taken several images from different positions, which was 
similar to the data augmentation process. As a result, 
these similar images were all adopted, labeled and used in 
the training, testing as well as validation process.

During machine learning, many algorithms and models 
have a very basic assumption that the data distribution is 
homogeneous. If we apply the algorithm directly to the 
above data, in most cases we will not achieve the desired 
result because the uneven distribution that the non-
malignant images are several times more than malig-
nant tumor. Therefore, we need to enhance the data for 
the cancerous images, so that the number of cancerous 
images is about the same or even more than the num-
ber of benign images, as the main objective of our model 
training is to identify the cancerous areas of the images. 
We eventually expanded the number of cancerous images 
to 8,725 by randomly flipping them and other common 
data enhancement methods.

We train the PSANet model for image segmentation 
of rUDRT medical images. The core idea of this model 
is to use the spatial attention mechanism to enhance 
the feature representation ability of CNN model at the 
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pixel level, so as to achieve more accurate scene analy-
sis results.

With adaptive predictive attention graphs, each posi-
tion in the feature map is connected to all other posi-
tions to gather a variety of information near and far 
away. In addition, to fully understand the complex 
scene, we designed a bi-directional information propa-
gation path. Each location collects information about 
all other locations to help predict itself, and vice versa, 
and then information from each location can be glob-
ally distributed to help predict all other locations. 
Finally, the bi-directional aggregated context informa-
tion is fused with local features to form the final repre-
sentation of complex scenes.

Selection of models
In order to find a semantic segmentation model that 
performs well on the cancer region detection task, we 
have selected some classical semantic segmentation 
models for comparison experiments, such as Accu-
racy (Acc) and IOU. Acc can be understood as the 
percentage of pixels in an image that are correctly clas-
sified, and the class imbalance problem occurs when 
one or some classes dominate in the data, while some 
other classes are only a small part of the image. At 
this point, Acc is not able to evaluate the performance 
of the model very well, as a good performing model 
must be able to have a high accuracy rate for all classes 
trained. Therefore, this paper also introduces the evalu-
ation metric IOU, which is simply the area of overlap 
between predicted segmentation and live annotation 
divided by the joint area between predicted segmenta-
tion and live annotation. The range of this metric is 0–1 
(0–100%), with 0 indicating no overlap and 1 indicating 
a fully overlapping segmentation.

In Table 1, mAcc and mIoU are calculated separately 
for each category and then averaged by category. As 
shown in Table 1, The mIOU and mAcc in PSANet are 
86.83 and 92.38, receptivity, outperforming than other 
models. The basic reason is that the PSANet model 
is more reasonable. By using the spatial relationship 

between points to enhance the ability of feature repre-
sentation, PSANet has higher efficiency and accuracy 
than other existing methods.

The main models involved in the comparison experi-
ments are: FCN-UNet, PSPNet [24], DeepLabv3 [25], 
EMANet [26] and PSANet [23]. The FCN-UNet model 
combines the features of the very classical FCN [27] and 
UNet [28] in the development of semantic segmentation 
techniques, with the symmetric structure of UNet for the 
feature extraction part of the model and the structure of 
FCN for the decoupling head part. The PSPNet frame-
work is mainly based on the FCN approach and provides 
a pyramid pooling module for fusing features at differ-
ent levels to achieve a fusion of semantics and details. 
DeepLabv3 not only improves the ability of the model to 
capture contextual information through the Atrous Spa-
tial Pyramid Pooling module, but also uses Conditional 
Random Field as a post-processing tool to make image 
boundary segmentation more accurate. EMANet [26] 
and PSANet are attention-based semantic segmentation 
models that improve the model’s ability to capture global 
information by introducing a self-attentive mechanism. 
In this paper, we use MMSegmentation [29], an open 
source target detection framework from Shang Tang 
Technology, which basically includes the mainstream 
semantic segmentation algorithms. In order to ensure a 
fair comparison, we use the same dataset and pre-train-
ing weights, and set the same hyperparameters such as 
training times and input image sizes. The experimental 
results are shown in Table 1 below, from which it can be 
concluded that PSANet performs better for cancer region 
detection on rUDRT images.

Hence, a point-wise spatial attention network (PSANet) 
was adopted to address this study [23], which can aggre-
gate long-range contextual information in a flexible and 
adaptive manner. This model was constructed by Zhao 
et al. at 2018, which achieved top performance on various 
competitive scenes parsing datasets, including ADE20K, 
PASCAL VOC 2012, and Cityscapes, demonstrating its 
effectiveness and generality [23]. The backbone of this 
model was ResNet [30], which was the champion in 
the competition ImageNet 2015. In this study transfer 
learning was used to detect the cancerous region of the 
rUDRT by using PSANet.

Training process and environment setting
To test this model and validate our hypothesis, 8725 
labeled tumor images and 6473 normal mucosa images 
of the rUDRT were prepared. These images were labeled 
by the Labelme (v4.2.9) software, which was used to tell 
the model which part of the image was the tumor region, 
where the masks have a value of 0 for pixels considered to 
be normal, and a value of 1 for pixels of being cancerous. 

Table 1 Model training results

Method mIOU mAcc

FCN-UNet 63.93 69.15

PSPNet 86.6 91.92

DeepLabv3 86.53 90.96

EMANet 80.69 88.24

PSANet 86.83 92.38
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The image dataset was constructed according to the VOC 
2012 semantic segmentation format. Among all of the 
15198 images, 80% were randomly selected for training 
and the rest 20% were randomly selected as validation 
and testing set, among which 1/3 was set as testing, the 
other 2/3 was set as validation set. The details of the split 
were listed in Table 2.

All images were resized to 480 × 480 pixels. The color 
channel was converted to RGB and the pixel values of all 
the three channels were standardized to a floating-point 
number between 0 and 1. Then the pixel values are nor-
malized by the following formulation (1).

where pinput is the input pixel value to the PSANet, p is 
the current pixel value,pmean = [0.485, 0.456, 0.406] , and 
∂ = [0.229, 0.224, 0.225] [23]. At last the model was sub-
ject to training process. We have several model training 
parameter in the training process. For example, we use 
the Adam as the optimizer, where the learning rate is 
set to 2× 10−4 , the decay rate is set to 6× 10−8 , and the 
batch size is set to 8.

(1)pinput =
p− pmean

∂

In order to improve the model training, we tried to 
add auxiliary losses to the original model structure of 
PSANet, and the training results are shown in Table  3. 
From the results, although the mIOU values decreased, 
our improvement did have the effect of improving the 
accuracy of the model, increasing from 92.38 to 96.3. The 
training was conducted with the PyTorch deep learning 
framework. The total number of epochs was 50, where 
the total number of iterations was 27450. The total train-
ing time was about 24 h on an Ubuntu 18.04 system by 
using an NVIDIA Tesla V100 (32 G memory). Figure  1 
illustrated the architecture of the PSANet used in this 
study.

Results
Validation process
After the training process, 2026 labeled validation images 
were loaded to validate the model’s accuracy. Figure  2 
illustrated the predicted masks compared with the pre-
vious manually labeled actual masks by two experts 
in this field. The first column illustrated the original 
images derived from the endoscopy of rUDRT. The pre-
dicted masks overlaid on the top of the original images 
were illustrated in the second column. The third column 
showed the manually labeled mask overlaid on the top of 
the original images. The comparison of predicted masks 
with the manually labeled actual masks in the last two 
columns was made by two experts in this field.

Because there are many types of equipment in the 
clinical work, the image tone or color style may be dif-
ferent among each other. Figure 2. listed the three image 
sources, the first row images were captured by XION 
soft endoscope, the 2, 3, and 4 rows were captured by 
XION rigid endoscope, and the 5 row images were cap-
tured by AOHUA soft endoscope. All endoscopic images 
were captured from each patient under local anesthesia. 
Standard white light was used during image capture. All 

Table 2 The image split in this study

Training Testing Validation Total

Cancer 6979 583 1163 8725

Normal 5179 431 863 6473

Table 3 Training results

Method mIOU mAcc

PSANet 86.83 92.38

PSANet + Auxiliary Loss 86.25 96.3

Fig. 1 Architecture of the PSANet [23] used in this study
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the three source images were pulled in the training pro-
cess to enhance the robustness of the model [20].

The accuracy of the proposed model in performing 
rUDRT cancer detection was evaluated using two crite-
ria, namely the sensitivity as in Eq. (2) and the specificity 
as in Eq. (3). The semantic segmentation was evaluated 
by mIoU as in Eq. (4) and average pixel accuracy.

where TP denoted true positive, TN denoted true nega-
tive, and FP and FN denoted false positive and false nega-
tive, respectively. The masksegmentation denoted the mask 
predicted by model and the masktruth was the true mask. 
The calculated sensitivity was 94.39% and the specificity 
was 98.68%. Figure 3 is the receiver operating character-
istic curve (ROC), indicted that the AUC is 0.97. The cal-
culated average mIoU was 86.25%, and the average pixel 
accuracy was 96.3%. The true positive or negative and 
predicted positive or negative data was listed in Table 4.

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)mIoU =
masksegmentation ∩masktruth

masksegmentation ∪masktruth

Fig. 2 The predicted masks and comparison with the manually constructed masks with the Labelme software

Fig. 3 The ROC curve of the PASNet model used in this study

Table 4 The false positive and false negative images

True positive True negative

Predicted positive 202 2

Predicted negative 12 150
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Additional validation
After training and validation, in order to guarantee the 
independency between the training set and the testing 
set, other new endoscopic rUDRT images from clinically 
proven carcinoma were loaded to do the validation step. 
The prediction results were illustrated in Fig.  4. show-
ing a well match with the cancerous contours labeled by 
experts in this field. The first column contained the origi-
nal images; the second column illustrated the predicted 
masks overlaid on the top of the original images. And the 
third column was the masks predicted by this model.

Discussion
The images choosing and labeling
Medical image research using machine learning meth-
ods often suffers from a lack of training images. To 
address this, various augmentation strategies such as 
rotation and cropping have been used in the training of 
deep neural networks [20]. In this study, during exami-
nation, endoscopists took multiple images from differ-
ent positions of a carcinoma case, which were selected 
except for the blurred ones. The goal of the study was 
to recognize the carcinoma as the region of interest 
(ROI), so the precise cancerous region was labeled. 

Images from at least three different endoscopes were 
chosen to capture images of enrolled patients, result-
ing in training images with varying tone and size, which 
could enhance the model’s robustness [20].

The prediction accuracy
The prediction accuracy was evaluated using four met-
rics: sensitivity, specificity, average mIoU, and aver-
age pixel accuracy. Xiong et  al. reported a sensitivity 
of 72.0%, specificity of 94.8%, and an AUC of 95.3% in 
detecting laryngeal cancer from pre-cancerous lesions, 
[20]. Li et  al. constructed a deep learning neural net-
work to recognize the nasopharyngeal carcinoma, 
achieving a sensitivity of 91.3%, specificity of 83.1%, 
and an overall accuracy of 88.7% [17]. In the current 
study, the sensitivity was 94.4% and specificity was 
98.7%, while the mIoU score was 86.3%, and the aver-
age pixel accuracy was 96.3%. The PSANet used in this 
study effectively aggregated information with global 
attention maps, capturing long-range contextual infor-
mation effectively and improve scene parsing perfor-
mance [23]. The results demonstrate the key role of 
context information for image understanding [23].

Fig. 4 The predicted carcinoma region masks of the rUDRT carcinoma using thePSANet
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Limitations
Limitations of the study include the collection of images 
from a single tertiary care center, insufficient diversity 
and number of endoscopic images, and the lack of clas-
sification from other precancerous lesions. Future studies 
should collect and analyze multicenter images and pro-
vide classification processes, such as differentiating can-
cer from benign tumors or infections like polyps, cysts, 
or edema. Additionally, finding a combination method of 
the AI model with a portable self-diagnosis device would 
be beneficial.

The implication to the model design and application
The transfer learning method of retraining a previously 
trained deep neural network model with the endoscope 
images of rUDRT regions proved effective in this study. 
The PSANet model was able to recognize cancerous 
regions of rUDRT carcinoma, suggesting that an inte-
grated AI model can be constructed to detect tumors 
in these regions. Previous models were designed to rec-
ognize different regions separately. However, this study 
demonstrated that carcinomas in these regions share 
common visual characteristics that could be utilized to 
design an integrated AI model, reanimating huge expec-
tations for future applications. This pan-cancer detection 
model, combined with portable self-examination equip-
ment [19], could facilitate the early diagnosis of carcino-
mas in the rUDRT region.

Conclusion
This research confirms that the mucosa of rUDRT has 
a common appearance, including the appearance of 
tumors, which can be recognized by a single deep learn-
ing neural network model. This suggests that an inte-
grated AI model could be designed to detect tumors in 
these regions, leading to the development of a pan-can-
cer detection deep learning neural network model in the 
future. This could also extend to other mucosa cancer.

In practice, this could facilitate the self-monitor of 
tumors in these regions, improving the early detection 
of tumors. Portable image collection tools aid in self-
diagnosis [14, 19]. With the development of a pan-can-
cer detection model, monitoring of mucosa cancer in 
the rUDRT region could be improved. The advancement 
of portable video laryngoscopes may also facilitate self-
diagnosis in the future. All of these developments hold 
promise for improving the early diagnosis of the rUDRT 
cancer.
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