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Abstract
Background  On the basis of visual-dependent reading method, radiological recognition and assessment of neonatal 
hyperbilirubinemia (NH) or acute bilirubin encephalopathy (ABE) on conventional magnetic resonance imaging 
(MRI) sequences are challenging. Prior studies had shown that radiomics was possible to characterize ABE-induced 
intensity and morphological changes on MRI sequences, and it has emerged as a desirable and promising future 
in quantitative and objective MRI data extraction. To investigate the utility of radiomics based on T1-weighted 
sequences for identifying neonatal ABE in patients with hyperbilirubinemia and differentiating between those with 
NH and the normal controls.

Methods  A total of 88 patients with NH were enrolled, including 50 patients with ABE and 38 ABE-negative 
individuals, and 70 age-matched normal neonates were included as controls. All participants were divided into 
training and validation cohorts in a 7:3 ratio. Radiomics features extracted from the basal ganglia of T1-weighted 
sequences on magnetic resonance imaging were evaluated and selected to set up the prediction model using the 
K-nearest neighbour-based bagging algorithm. A receiver operating characteristic curve was plotted to assess the 
differentiating performance of the radiomics-based model.

Results  Four of 744 radiomics features were selected for the diagnostic model of ABE. The radiomics model yielded 
an area under the curve (AUC) of 0.81 and 0.82 in the training and test cohorts, with accuracy, precision, sensitivity, 
and specificity of 0.82, 0.80, 0.91, and 0.69 and 0.78, 0.8, 0.8, and 0.75, respectively. Six radiomics features were selected 
in this model to distinguish those with NH from the normal controls. The AUC for the training cohort was 0.97, with 
an accuracy of 0.92, a precision of 0.92, a sensitivity of 0.93, and a specificity of 0.90. The performance of the radiomics 
model was confirmed by testing the test cohort, and the AUC, accuracy, precision, sensitivity, and specificity were 
0.97, 0.92, 0.96, 0.89, and 0.95, respectively.

Conclusions  The proposed radiomics model based on traditional TI-weighted sequences may be used effectively for 
identifying ABE and even differentiating patients with NH from the normal controls, which can provide microcosmic 
information beyond experience-dependent vision and potentially assist in clinical diagnosis and treatment.
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Introduction
Neonatal hyperbilirubinemia (NH) is caused by an ele-
vated level of bilirubin, which is attributable to genetic 
or perinatal factors, maternal or neonatal causes, and 
other risk factors and markers [1–3]. Hyperbilirubine-
mia affects 60–80% of neonates and is the main cause of 
hospitalisation in the first week after birth [4–6], ranked 
the seventh leading cause of neonatal death within a 
week after birth worldwide [2], particularly in Africa 
and Southeast Asia [7, 8]. Physiological hyperbilirubine-
mia is generally harmless for most newborns, except for 
bilirubin levels exceeding 20 or 25 mg/dl, which are con-
sidered dangerous [8]. When the bilirubin level exceeds 
the bilirubin binding capacity of albumin, unconjugated 
bilirubin increases and potentially penetrates the blood–
brain barrier, which can give rise to neurological dysfunc-
tion, termed bilirubin encephalopathy [1, 9]. If the acute 
manifestations of bilirubin toxicity occur within a few 
days of birth, acute bilirubin encephalopathy (ABE) can 
develop into permanent or chronic neurological damage 
(chronic bilirubin encephalopathy or kernicterus) [10]. In 
China, 8.9% of hospitalised neonates have severe hyper-
bilirubinemia, of which 0.9% eventually develop bili-
rubin encephalopathy due to a lack of proper diagnosis 
and prediction of its development or delayed treatment 
[11], which continues to lead to a disproportionately high 
burden.

Clinical recognition and assessment of NH or ABE are 
challenging. Currently, methods of measuring bilirubin 
and bilirubin/albumin (BA) are widely used for screen-
ing newborns for jaundice and grading hyperbilirubine-
mia [2]. However, it cannot directly measure the actual 
bilirubin level in the brain and specifically reflect the 
considerable nervous damage caused by bilirubin [12, 
13]. Paediatricians usually judge neurological dysfunc-
tion based on patients’ early neurological symptoms and 
qualitative methods such as physical and neurological 
examination and laboratory findings, including audi-
tory brainstem responses [14]; however, clinically, due to 
individual differences and treatment intervention, these 
changes may be non-existent or subtle, and even be over-
shadowed by more serious concomitant diseases.

In some cases with severe bilirubin-induced nerve 
damage, magnetic resonance imaging (MRI) can 
reflect the signal changes caused by the injury to a cer-
tain extent, which progress chronically and shifts from 
bilateral symmetrical hyperintensity on T1-weighted 
sequences to hyperintensity on T2-weighted and fluid-
attenuated inversion recovery (FLAIR) sequences in 
specific areas of the brain [15]. However, not all patients 
with hyperbilirubinemia show visually observable typi-
cal imaging manifestations in existing traditional MRI 
sequences, which have been used clinically and fre-
quently [16], on account of atypical imaging features of 

some patients and the normal myelination process in 
infants [17], particularly in patients not critically ill or at 
an early stage. Therefore, recognition of ABE or hyper-
bilirubinemia using MRI by traditional radiological expe-
rience-based reading methods is rather challenging in 
clinical practice. A variety of functional MRI techniques, 
including magnetic resonance spectroscopy [18] and dif-
fusion tensor imaging [19] have been used in the quanti-
tative analysis of bilirubin encephalopathy to attempt to 
address the issue of difficult qualitative diagnosis of ABE 
using traditional clinical MRI protocols, and some break-
throughs have been made [19, 20]. However, information 
on traditional MR sequences has been neglected, and few 
studies have been conducted using advanced image pro-
cessing technology.

Radiomics, a practice for converting images into mine-
able quantitative data via high-throughput extraction 
with characterisation algorithms, has proven to be a 
desirable and promising future in several studies [21]. Liu 
et al. used a radiomics feature-based prediction model 
to differentiate between ABE and normal myelination in 
infants [22]. Therefore, taking advantage of radiomics in 
processing image information, we hypothesised that the 
combination of MRI and radiomics could deliver more 
quantitative information that cannot be recognised by 
visual-dependent reading to assist the radiological esti-
mation of NH and the diagnosis of ABE in patients with 
NH.

Materials and methods
Patients
A total of 158 patients were enrolled in our study from 
February 2014 to July 2018. We enrolled 88 neonatal 
patients with severe hyperbilirubinemia who were admit-
ted to the hospital for further treatment, and their cere-
bral MRI findings were examined during hospitalisation. 
The inclusion criteria for NH patients are: (1) neonates 
with NH; and (2) MRI images were obtained on the spe-
cific 1.5T scanner during NH period. Patients with the 
following conditions were excluded: (1) complications 
with other diseases that result in changes in MR images, 
such as infection, metabolic encephalopathies, congenital 
developmental anomalies, brain injury, etc.; (2) artefacts 
interfering with observation of the region of the basal 
ganglia; and (3)a lack of patient clinical information. 
Among them, 38 neonates were ABE-negative and 50 
were ABE-positive diagnosed by neonatologists. ABE was 
defined as hazardous neonatal hyperbilirubinemia com-
bined with symptoms such as apnea, hypotonia, reduced 
movement, convulsion, lethargy, irritability, hypotonous, 
hypertonus, feeding difficulties, or hyperthermia [3, 6].

Seventy age-matched neonates without jaundice who 
required cerebral MRI for clinical requirements were 
included in the control group. Age-matched neonates 
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without NH must also meet the following criteria in 
order to be included: (1) need for clinical follow-up due 
to innocuous conditions like premature birth, benign 
prenatal abnormalities (mild lateral ventricular dilata-
tion, small subependymal cyst, or choroid plexus cyst), 
or scalp hematomas caused by birth canal injury; (2) 
MRI images must also have been taken on the designated 
1.5T scanner. Patients with the following conditions 
were excluded in the study: (1) complications with other 
diseases that result in changes in MR images, such as 
infection, metabolic encephalopathies, congenital devel-
opmental anomalies, brain injury, etc.; (2) basal ganglia 
artifacts; (3) a lack of patient clinical information.

Patient demographics and clinical characteristics, 
including sex, gestational age (GA), birth weight, deliv-
ery method, age at the time of MRI examination, age 
at admission, peak total serum bilirubin (TSB), biliru-
bin/albumin (B/A), length of stay, and treatments, were 
obtained from medical records.

Imaging acquisition, region of interest (ROI) segmentation, 
and visual-based reading
Imaging acquisition
All images of the participants were obtained using a 1.5-T 
MRI scanner (Achieva Nova dual, Philips Medical Sys-
tems) using the traditional clinical brain MRI protocol, 
which included the sequence of axial T1-weighted spin-
echo imaging (T1WI), axial and sagittal T2-weighted fast 
spin-echo imaging, axial T2-weighted FLAIR, and diffu-
sion-weighted imaging. T1WI was used to construct the 
radiomics model in our current study with the following 
scanning parameters: 2000–3500 millisecond(ms) repeti-
tion time, 90–120 ms echo time, 3–5 mm(mm) thick sec-
tions, slice gap, 140–300 mm field of view, 69° flip angle 
and a matrix of 256 × 256.

ROI segmentation
T1-weighted MRI images were analysed using free and 
open-source ITK-SNAP software (http://www.itksnap.

org/pmwiki/pmwiki.php) for semi-automatic segmenta-
tion. A region-growing method was used to sketch the 
whole basal ganglia as the ROI by the radiologist with 
five years of experience on each image slice appearing in 
the basal ganglia. For each subject, 4–5 image slices were 
included in the analysis.

Thirty subjects were randomly selected and sketched 
by another radiologist (10 years of pediatric radiology 
experience) without knowing all other information. Tex-
ture of the 30 participants’ ROI were extracted, and its 
consistency was analysis. The ROI drawing method is 
illustrated in Fig. 1.

Visual-based reading
All T1WI images of 88 NH patients and 70 neonates 
in control group were reviewed by a seasoned radiolo-
gist with 10 years of experience in paediatric imaging. 
He judged whether there were positive imaging changes 
observed on these T1 sequences of the basal ganglia 
using a visual-based reading strategy. All subjects were 
randomly assigned to radiologists who were only given 
access to the MRI images and no clinical data during the 
visual-based reading process.

Radiomics feature extraction and feature selection
All radiomics features were extracted using the 
PyRadiomics open-source package [23]. Original image 
data were segmented with ROI masks, and the gray level 
matrix of ROI were processed by intensity discretiza-
tion with a default binsize of 64. No special operation 
was done for spatiala resampling, since the tight con-
trol of imaging acquisition, the pixel size of all images 
was between 0.37 and 0.57. In addition to the first-order 
radiomics features, we used a wavelet filter base on the 
original gray level matrix for wavelet radiomics features 
extraction, the parameters used for wavelet decomposi-
tion are shown in Table 1. A total of 744 radiomic data 
points were extracted from the ROI. Using stratified 
random sampling by class, eligible patients were divided 

Fig. 1  Semi-automatic segmentation. A region-growing method was used to sketch the whole basal ganglia on each image slice appearing in the basal 
ganglia as the ROI
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into training and testing cohorts in a 7:3 ratio. All fea-
ture selection methods were established in the train-
ing cohort, and the results were reused in the testing 
cohort. Spearman’s rank correlation coefficient between 
the radiomics features was calculated, and for each pair 

of features, one was eliminated if the correlation coeffi-
cient was higher than a threshold of 0.95. Then, we used 
the random forest method for feature selection with a 
threshold of 1.25 times the importance mean. The heat 
maps of the correlation coefficients between the features 
and the feature selection coefficient bar chart are shown 
bellow (Figs. 2 and 3).

Statistical analysis
We used stratified sampling by class to split the origi-
nal dataset into training and test cohorts, and all miss-
ing values of each feature were filled with median values. 
In the feature extraction step, some samples are brought 
into the formula, and the calculation results are too large 
or too small, leading to NAN values such as the denomi-
nator being extremely close to 0. We call these kinds of 

Table 1  Parameters Used for Wavelet Decomposition
Wavelet Feature Extraction pyRadiomics
Wavelet Filtering 8 decomposition per level

Wavelet Features been Extracted wavelet-LLH
wavelet-LHL
wavelet-LHH
wavelet-HLL
wavelet-HLH
wavelet-HHL
wavelet-HHH
wavelet-LLL

Fig. 3  Features selection discriminating NH from the controls. The heat graph of correlation coefficient between features and bar graph of feature selec-
tion coefficient

 

Fig. 2  Features selection of diagnosis of ABE. The heat graph of correlation coefficient between features and bar graph of feature selection coefficient
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NAN values by missing values. Statistical analysis were 
performed with the software program D2G (Data to 
Graph software, Version 3.02; Bayer Healthcare Co.,Ltd., 
China). Spearman’s rank correlation was used to assess 
the redundancy of each pair of radiomics features. Sta-
tistical analysis was performed using IBM SPSS Statistics 
version 25.0. Intraclass correlation efficient (ICC) was 
used to consistency analysis of the ROI segmentation 
by two radiologists. Continuous variables are expressed 
as the mean ± standard deviation or median (5% con-
fidence interval [CI], 95% CI) and compared using the 
t-test or Mann–Whitney U test. Categorical variables 
are expressed as numbers and percentages and compared 
using the χ2 test or Fisher’s exact test. Multivariate binary 
logistic regression was performed to build radiomics-
based models, and the model was optimised using a 
5-fold cross-validation method. The discrimination per-
formance of each prediction model was quantified using 
the receiver operating characteristic (ROC) curve and 
area under the curve (AUC). Statistical significance was 
defined as a two-sided P-value of < 0.05.

Results
Participants
A total of 158 neonates were enrolled in this study, 
including 88 and 70 patients in the NH and control 
groups, respectively. Of the 88 patients with NH, 50 
newborns with hyperbilirubinemia were diagnosed 

with ABE (ABE-positive) by neonatologists, and 38 NH 
patients were spared for ABE (ABE-negative). Due to 
the follow-up of premature newborns, 12 instances in 
the control group of 70 neonates required neurological 
MRI; however, their MRI results were normal, showing 
no issues with the nervous system or physical growth. 
Due to benign prenatal anomalies, including minor lat-
eral ventricular dilatation, a tiny subependymal cyst, or 
a choroid plexus cyst, 33 neonates required postpartum 
MRI follow-up. Additionally, 25 cases of birth canal dam-
age without intracerebral hemorrhage resulted in scalp 
hematomas.

Between the ABE-positive and ABE-negative par-
ticipants, there were statistically significant differences 
in the delivery method (P = 0.024) and length of stay 
(P = 0.034). No significant differences were observed in 
other clinical characteristics between patients with ABE 
and patients with NH without ABE cohorts (Table  2), 
including GA, birth weight, sex, age at MRI, corrected 
age, age at admission, peak TSB, B/A, length of stay, and 
treatment methods. The GA, birth weight, sex, and age 
at MRI were calculated, and no significant difference was 
observed in the baseline data between the NH cohort and 
the controls, with P-values of 0.63, 0.18, 0.15, and 0.19, 
respectively (Table 3).

Table 2  Clinical characteristics of ABE-positive cohorts and ABE-negative cohorts
Cohorts

Information ABE-positive ABE-negative P
Gestational Age (weeks) Range 35.00-41.43 35.14–41.86 0.22

Mean ± STD 38.28 ± 1.46 38.69 ± 1.54

Birth weight (g) Range 2200.00-5050.00 2250.00-4350.00 0.16

Mean ± STD 3131.63 ± 499.60 3284.08 ± 509.80

Gender Male 25 19 1.0

Female 25 19

Age at MRI (weeks) Range 0.29–3.57 0.43–3.14 0.35

Mean ± STD 1.31 ± 0.73 1.17 ± 0.63

Corrected Age (weeks) Range 36.00-43.14 35.86–42.43 0.64

Mean ± STD 39.64 ± 1.62 39.79 ± 1.37

Mode of Delivery Eutocia 28 30 0.024*

Cesarean 22 8

Age at admission (hours) Range 26–518 26–456 0.14

Median 160.50 125

Peak of TSB (µmol/L) Range 302.00-690.60 256.60-606.30 0.46

Mean ± STD 455.41 ± 91.94 441.14 ± 84.43

B/A (mg/dl: g/l) Range 4.50–11.50 4.80–10.50 0.95

Mean ± STD 7.41 ± 1.54 7.38 ± 1.31

Length of Stay (days) Range 4–31 3–12 0.034*
(U = 701)Median 7 5.50

Treatment Phototherapy 4 4 0.72

Phototherapy +Exchange Transfusion 46 34
Note: Corrected Age = Gestational Age (weeks) + Age at MRI (weeks), TSB = total serum bilirubin, B/A = bilirubin/albumin
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Consistency of the region of interest segmentation
In total, 744 original radiomic characteristics were 
extracted, and 677 remained after eliminating the sin-
gle value, as some of which are one value in all samples, 
e.g., all are 0. Among them, there are 630, 7, 26, and 14 
features, respectively, with ICC > 0.8, ICC=0.75 ~ 0.8, 
ICC~0.5 ~ 0.75, and ICC<0.5. And each potential predic-
tor was still included in the radiomics model for feature 
selection, if they had a high or medium level of cor-
relation, so we finally involved 630 features for model 
construction.

Identifying ABE in patients with NH
The results of experience-dependent radiological reading 
showed that the expert observed the imaging character-
istics of bilirubin injury in 30 (60%) of 50 ABE-positive 
patients. In addition, 15 (39.5%) of the 38 patients with-
out ABE were mistakenly judged to have representa-
tive imaging of bilirubin nerve damage. The accuracy of 
visual-based strategy was 60.2%, and detailed diagnostic 
figures are shown in Table 4.

A total of 744 radiomics features were extracted 
from 88 patients with NH, including 50 newborns with 
ABE and 38 newborns with NH without ABE, who 
were divided into training and validation sets in a 7:3 

ratio. After removing redundant features and features 
with low level consistency (ICC<0.5) feature selection 
was performed in 630 features and then four potential 
predictors were selected based on the random forest 
importance algorithm. These were as follows: WL_lbp_
hist_cD2_4, wavelet-HLH_lbp-3D-k_firstorder_Energy, 
wavelet-HLH_lbp-3D-k_firstorder_TotalEnergy, and 
WL_lbp_hist_cD2_3.

The radiomics signature showed an AUC of 0.81, an 
accuracy of 0.82, a precision of 0.80, a sensitivity of 0.91, 
and a specificity of 0.69 in the primary cohort, while the 
validation cohort showed similar results (0.82, 0.78, 0.8, 
and 0.8, and 0.75, respectively). The ROC curves are 
shown in Fig. 4.

Table 3  Characteristics of NH patients and the healthy neonates cohorts
Characteristics Cohorts

NH Patients Control Subjects P
Gestational Age (weeks) Range 35–41 31–42 0.63

Mean ± STD 38.50 ± 1.51 39.12 ± 2.40

Birth weight (g) Range 2200–5050 1410–4690 0.18

Mean ± STD 3198.21 ± 506.90 3065.13 ± 671.10

Gender Male 44 43 0.15

Female 44 27

Age at MRI (days) Range 2–25 1–28 0.19

Median 7.00 8.50
Note: NH = neonatal hyperbilirubinemia

Table 4  Diagnostic form
Method Clinical status

ABE With-
out 
ABE

visual-based
Radiodiagnosis Positive (+) 30 15

Negative (-) 20 23

Radiomics-based
Train cohort Positive (+) 28 11

Negative (-) 7 15

Test cohort Positive (+) 14 8

Negative (-) 1 4
Note: NH = neonatal hyperbilirubinemia, ABE = acute bilirubin encephalopathy, 
Positive (+) = patients were diagnosed as ABE by visual-based or Radiomics-
based methods, Negative (-) = patients were diagnosed as NO-ABE by visual-
based or Radiomics-based methods

Fig. 4  ROC curve of diagnosis of ABE. Note: ROC = receiver operator char-
acteristic. AUC = area under the curve
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Distinguishing patients with NH from the controls
All 88 NH patients (including the 30 NH newborns with 
ABE) had 45 (51.1%) neonates that were identified as 
positive, while 13 (18.6%) of the 70 normal controls were 
incorrectly labeled as positive patients who suffered from 
bilirubin injury. The accuracy of visual-based strategy 
was 64.6%.

A total of 88 patients with NH and 70 controls were 
divided into training and test cohorts with a 7:3 ratio. 
In total, 744 radiomics features were extracted from the 
images, and six were selected based on the same feature 
selection process mentioned previously. The radiomics 
features included PLBP_hist_tumour_orient7_0, 
WL_lbp_hist_cV1_0, PLBP_hist_tumour_orient7_1, 
WL_lbp_hist_cV1_8, wavelet-HLL_lbp-3D-m2_fir-
storder_RootMeanSquared, and WL_lbp_hist_cH1_0.

The AUC for the training cohort was 0.97, with an accu-
racy of 0.92, a precision of 0.92, a sensitivity of 0.93, and 
a specificity of 0.90. The performance of the radiomics 
model was confirmed by testing the test cohort. The AUC 
for the test cohort was 0.97, and the accuracy, precision, 
sensitivity, and specificity were 0.92, 0.96, 0.89, and 0.95, 
respectively (Fig. 5).

Discussion
In this study, to prevent potential misidentification of 
basal ganglia changes in myelination such as bilirubin-
induced nerve damage in neonates with a clinical his-
tory of detrimental hyperbilirubinemia exposure, the 
crucial data of GA and postnatal age (age at MRI) in 

different groups were at the same baseline to avoid the 
error caused by inconsistent myelination process, which 
was visualised as hyperintensity on T1WI sequences [17, 
24, 25] due to its high lipid content. To avoid a poten-
tial impact, patients with a history of diseases which 
could affect the signal intensity of the basal ganglia were 
excluded.

In the clinical data of our study, it is worth noting that 
the delivery method between ABE-positive and ABE-
negative patients was different, which showed that the 
delivery method would be a possible risk factor for ABE. 
This result was consistent with a previous study show-
ing that the delivery method is a potential risk factor for 
severe NH [2]. Significantly, there were no statistical dif-
ferences in TSB and B/A between the ABE-positive and 
ABE-negative groups, which was different from a pre-
vious study where TSB and B/A had potential predic-
tive value for bilirubin encephalopathy [12], which may 
reflect that individual differences could affect nerve dam-
age under the same high serum bilirubin level.Customar-
ily, ABE-positive patients need more treatment measures 
and hospital observation time in clinical practice, result-
ing in an increased length of stay, which was in accor-
dance with the clinical characteristics of the participants 
in our study. Although there are several factors leading to 
jaundice [2, 3], this study mainly focuses on the current 
MR images of neonates with hyperbilirubinemia, which 
were waived in our model, and the related prenatal or 
postnatal risk factors were not collected and analysed in 
detail.

Bilirubin-induced brain injury is distinctive, with 
remarkably selective involvement of the globus pallidus, 
basal ganglia, substantia nigra, hippocampus, thalamic 
nuclei, and putamen nuclei with a symmetric pattern 
[5, 16, 26]. The most common and characteristic find-
ing of ABE was bilateral, symmetric hyperintensity on 
T1-weighted MRI. In our current study, as the globus 
pallidus without a well-defined margin could reduce 
the consistency of manual segmentation, we selected 
all vulnerable areas of the basal ganglia as the ROI on 
T1-weighted MRI to avoid the unclear contour to blur 
the accuracy of manual sketching, which was different 
from Liu’s research [22]. It’s important to note that the 
anterior internal capsule limb lies between the lentiform 
and caudate nuclei. The anterior internal capsule limb 
was incorporated into the ROI to form a whole in order 
to guarantee structural integrity and avoid the error pro-
duced by drawing two ROIs of the caudate nucleus and 
lenticular nucleus, respectively.

Hyperintensity on T1WI sequences of specific areas 
is the characteristic imaging manifestation of ABE; 
however, it cannot be denied that it is rather challeng-
ing to determine whether the high signals were due to 
NH [19] and even confirm the potential nerve injury in 

Fig. 5  ROC curve of discriminating NH from the controls. Note: ROC = re-
ceiver operator characteristic. AUC = area under the curve
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patients with hyperbilirubinemia using the current tra-
ditional radiological protocol. Although MRI has yet 
to become a clinical standard practice to evaluate ABE, 
we tried to define positive intensity using experience-
dependent visual-based conventional reading strate-
gies. In our study, an experienced paediatric radiologist 
could only find 34 abnormal basal ganglia in the images 
of 50 patients with ABE and misjudged 13 of the 38 ABE-
negative patients as positive, with 60.2% findings being 
consistent with the clinical diagnosis. This may be due 
to the absence of radiological features in some ABE-
positive patients, being masked by normal myelination 
or the slight difference being indistinguishable to the 
human eye. Moreover, bilirubin-induced neuronal dam-
age or necrosis, white matter connections [5], and pro-
liferation of microglia in the basal ganglia [27] may cause 
subtle changes which could be invisible, more than the 
abnormality of signal intensity. Therefore, we believe that 
traditional magnetic sequences may contain quantitative 
information that has not yet been discovered. Compared 
with advanced or functional MRI, conventional MRI pro-
tocol can shorten the examination and neonatal sedation 
time, increase the success of scanning, and is beneficial 
to the safety of infants. Accordingly, T1WI was designed 
to be combined with the process of radiomics in our 
research. In the practice of radiomics, quantitative image 
features reflecting the underlying pathophysiology and 
tumour microenvironment were extracted from digital 
images [28, 29].

In 2019, Liu et al. used a radiomics approach to develop 
and validate a model for distinguishing ABE from nor-
mal myelination based on the T1 sequence and found 
that the AUC of the best classification performance 
was 0.946 [22]. In contrast to Liu’s research design, we 
included patients with hyperbilirubinemia without ABE 
as the control cohort instead of the normal controls in 
the research on the diagnosis of ABE primarily because 
in clinical practice, identifying patients with bilirubin-
induced brain injury from patients with hyperbilirubi-
nemia is exceedingly challenging and requires urgent 

attention. Four radiomics features selected from 744 
were incorporated into the machine learning classifica-
tion model of our current research, including wavelet 
and partial local binary patterns (LBP). LBP efficiently 
capture the local spatial patterns and greyscale contrast 
in the images and reflects the texture information of the 
region around the pixel, which was selected owing to its 
robustness to low-contrast and low-quality images [30], 
and wavelet image decomposition can remove redundant 
information that is not necessary [30] for diagnosing ABE 
in the raw image. The radiomics signature achieved AUC 
values of 0.81 and 0.82 for predicting ABE in patients 
with hyperbilirubinemia in the training and testing 
cohorts, respectively. The accuracy of 0.82 and 0.78 was 
comparable with the 0.67 accuracy of the radiologist. 
Radiomics with traditional MRI performed prospectively 
for diagnosing ABE prevails over visual-based tradi-
tional reading. Cases correctly identified by radiomics-
based method were shown in Figs.  6 and 7. However, 
there were still some cases that could be misclassified 
by the radiomics-based model, as shown in Figs.  8 and 
9, which were also incorrectly diagnosed using the tradi-
tional reading strategy. We believe that the small number 
of participants and unique T1 sequence may weaken its 
robustness. Hence, although improvements have been 
made in identifying ABE by the model, the sample size 
could be increased, and further exploration of potential 
advanced MR sequences for more useful subtle features 
and a more advanced deep learning algorithm for opti-
mising the model could be performed.

Quantitative texture features identified by computa-
tional methods can further enhance the discrimination 
of ABE, which indirectly reflects pathophysiological 
changes in the brain tissue. Based on the progression of 
the disease, we hypothesize that even if the NH patients 
do not have neurological symptoms, there may already be 
microscopic changes in the brain caused by high levels of 
bilirubin, that are indistinguishable by visual identity. The 
individual variances and therapeutic intervention meth-
ods could result in significant differences in neurological 

Fig. 6  True positive case. Neonate with ABE was categorized as ABE-positive by the radiomics-based model correctly
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symptoms in patients with hyperbilirubinemia, which 
lead to a huge challenge to accurately determine the true 
damage caused by high bilirubin to the nervous system. 
Therefore, it is particularly important to directly reflect 
the effects of hyperbilirubinemia on nervous system uti-
lizing quantitative neuroimaging. If the pathological and 
physiological changes in brain tissue may be reflected in 
the bilirubin level, it is crucial for early clinical interven-
tion of patients. Unfortunately, it is difficult to discern 
between NH neonates and normal infants using the con-
ventional image reading methods. Therefore, 70 healthy 
newborns who were age-matched and free of jaundice 

were thus added to the study as the control group for 
analysis. In this study, only 45 out of 88 NH participants 
(ABE-positive and ABE-negative), including 30 NH 
patients with ABE who clearly displayed a signal inten-
sity shift, could consistently distinguish from the normal 
using visual-based reading methods, and 13 out of 70 
normal counterparts were incorrectly identified as having 
positive bilirubin injury. While the results of radiomics 
model showed that the radiomics-based machine learn-
ing approach could distinguish hyperbilirubinemia 
involvers from the normal controls, with an AUC of 0.97 
in the training (sensitivity of 0.93 and specificity of 0.90) 

Fig. 9  False positive case. Neonate with hyperbilirubinemia, who was spared from ABE but categorized as ABE-positive by the radiomics-based model

 

Fig. 8  False negative case. Neonate with ABE was categorized as ABE-negative by the radiomics-based model

 

Fig. 7  True positive case. Neonate without ABE was categorized as ABE-negative by the radiomics-based model correctly
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and validation (sensitivity of 0.89 and specificity of 0.95) 
sets.

However, this study has some limitations. Only a few 
cases from a single centre were included, and the study 
lacked external validation. Hence, our future study will 
investigate the robustness of the radiomics-based model 
applied to explore hyperbilirubinemia issues in multiple 
neonatal centres with adequate recruiters. Furthermore, 
this study was retrospective, and data were obtained 
from discharge summaries, where information could 
have been omitted. Lastly, the study lacked the combina-
tion of other advanced or functional MR sequences and 
the limitation of investigation of long-term prognosis, 
which is what we are working on in our future study.

In conclusion, our current study constructed and vali-
dated a radiomics-based machine learning model that 
estimated and diagnosed ABE and even quantitatively 
distinguished patients with hyperbilirubinemia from 
normal controls, which is superior to conventional radio-
logical reading strategies and has the potential to provide 
neonatologists with clinical hints other than laboratory 
tests or clinical signs and symptoms.
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