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Abstract 

Background Biparametric MRI (bpMRI) is a faster, contrast-free, and less expensive MRI protocol that facilitates 
the detection of prostate cancer. The aim of this study is to determine whether a biparametric MRI PI-RADS v2.1 score-
based model could reduce unnecessary biopsies in patients with suspected prostate cancer (PCa). 

Methods The patients who underwent MRI-guided biopsies and systematic biopsies between January 2020 and Jan-
uary 2022 were retrospectively analyzed. The development cohort used to derive the prediction model consisted 
of 275 patients. Two validation cohorts included 201 patients and 181 patients from 2 independent institutions. 
Predictive models based on the bpMRI PI-RADS v2.1 score (bpMRI score) and clinical parameters were used to detect 
clinically significant prostate cancer (csPCa) and compared by analyzing the area under the curve (AUC) and decision 
curves. Spearman correlation analysis was utilized to determine the relationship between International Society of Uro-
logical Pathology (ISUP) grade and clinical parameters/bpMRI score.

Results Logistic regression models were constructed using data from the development cohort to generate nomo-
grams. By applying the models to the all cohorts, the AUC for csPCa was significantly higher for the bpMRI PI-RADS 
v2.1 score-based model than for the clinical model in both cohorts (p < 0.001). Considering the test trade-offs, urolo-
gists would agree to perform 10 fewer bpMRIs to avoid one unnecessary biopsy, with a risk threshold of 10–20% 
in practice. Correlation analysis showed a strong correlation between the bpMRI score and ISUP grade. 

Conclusion  A predictive model based on the bpMRI score and clinical parameters significantly improved csPCa risk 
stratification, and the bpMRI score can be used to determine the aggressiveness of PCa prior to biopsy.
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Background
Prostate cancer (PCa) is the second most common can-
cer in males worldwide [1]. Standard screening using 
prostate-specific antigen (PSA) levels has led to an over-
all reduction in mortality from PCa. Regrettably, PSA 
screening is also associated with the underdetection of 
clinically significant prostate cancer (csPCa) and the 
overdetection of clinically insignificant cancer [2]. Clini-
cally insignificant cancers are cancers that are unlikely to 
progress or affect a man’s life expectancy and therefore 
do not require immediate treatment. In contrast, csPCa 
exhibits greater aggressiveness and has a higher mortality 
rate. Prostate biopsy is the traditional diagnostic pathway 
in the detection of csPCa. Despite positive improvements 
in prebiopsy preparation, hematuria, hematospermia 
and infections remain the main adverse effects after the 
procedure. A noninvasive, easy-to-administer testing 
pathway that accurately diagnoses csPCa and ultimately 
avoids unnecessary biopsies is a major unmet need.

Risk-based patient selection for prostate biopsy has 
been used in daily clinical practice, either through empir-
ical judgment or through the use of risk calculators. The 
use of multivariate risk calculators, such as the Euro-
pean Randomized Study of Screening for Prostate Can-
cer (ERSPC) and Prostate Cancer Prevention Trial Risk 
Calculator (PCPT-RC), has been demonstrated to avoid 
20–35% of unnecessary biopsies in a number of exter-
nal validation studies [3, 4]. Multiparametric magnetic 
resonance imaging (mpMRI) of the prostate has signifi-
cantly improved the diagnostic accuracy for csPCa. The 
Prostate Imaging and Reporting Data System (PI-RADS) 
was first developed to standardize prostate MRI acquisi-
tion, data reporting, and interpretation, with version 1 
published in 2012 and version 2.1 published in 2019 [5]. 
However, up to 24% of patients with a Gleason grade ≥ 2 
may still be missed by mpMRI alone [2, 6]. Recent studies 
have shown that mpMRI can improve csPCa detection 
and risk stratification when incorporated into the avail-
able clinical parameters [7–9]. Unfortunately, the full PI-
RADS compliant protocol is time-consuming (~ 40 min), 
and expensive testing might be difficult to implement on 
a large scale, especially for active surveillance. It is note-
worthy that the cohorts reported by Zhang et  al. [10] 
and Tamada et al. [11] demonstrated that the diagnostic 
performance of biparametric MRI (bpMRI) was compa-
rable to that of mpMRI by using PI-RADS v2.1 to detect 
csPCa. Theoretically, a predictive model based on this 
faster, cheaper and contrast-free bpMRI protocol may 
be an effective way to safely reduce unnecessary prostate 
biopsies.

Early diagnosis and timely treatment of csPCa can 
help improve the life expectancy of patients with PCa 
[12]. Although there are many different treatment 

options for PCa, aggressive PCa requires urgent, cura-
tive treatment [13]. However, active surveillance is a 
possible strategy for clinically insignificant PCa. Since 
mpMRI is part of the diagnostic pathway, it is neces-
sary to use simple MRI-derived parameters to assess 
the aggressiveness of PCa. Previous studies have shown 
that quantitative MRI parameters can be used to assess 
tumor aggressiveness [14, 15]. However, due to incon-
sistent methods in different studies, heterogeneous 
results have been observed.

The objectives of this study were (1) to investigate 
the added value of the bpMRI PI-RADS v2.1 score for a 
clinical-only model to avoid unnecessary prostate biop-
sies and (2) to demonstrate whether there is a correla-
tion between the simple bpMRI-derived score and PCa 
aggressiveness.

Methods
Study design and participants
A total of 815 consecutive men with clinically suspected 
PCa who underwent mpMRI and subsequent targeted 
biopsy (TBx) combined with systemic biopsy (SBx) 
between January 2020 and January 2022 were included 
in the institutional review board-approved databases of 
the development cohort (n = 345), the validation cohort 
1(n =245), and the validation cohort 2 (n = 225). Clini-
cal characteristics (i.e., PSA level, age, digital rectal 
examination (DRE) findings) at the time of enrollment 
were obtained. Eligible participants included males 
aged > 50 years with clinical suspicion of PCa due to ele-
vated PSA levels (> 4  ng/ml) or suspicious DRE exams 
who were recommended for an initial biopsy. Men with 
a history of treatment for benign/malignant prostate 
disease within the last 3  months were excluded. Men 
with clinical signs of urinary tract infection (includ-
ing prostatitis) and inadequate image quality were also 
excluded. The research ethics committees of all institu-
tions approved the retrospective study and all methods 
were carried out in accordance with relevant guidelines 
and regulations.

Sample size and sensitivity analysis
There is no accepted method to estimate the sample 
size required to develop a predictive model; however, 
an established rule of thumb is to ensure that at least 10 
events per predictive parameter are considered for inclu-
sion in the predictive model equation [16]. Based on pre-
vious studies, the prevalence of csPCa exceeds 35% [2, 
17, 18]; therefore, we set the event fraction at 34%, with 
8 candidate predictors and a mean absolute prediction 
error (MPSE) of 0.09 for this study. We ultimately needed 
at least 240 patients to meet the requirements, and the 
calculation tool is available online (https:// mvans meden. 

https://mvansmeden.shinyapps.io/BeyondEPV/


Page 3 of 14Wang et al. BMC Medical Imaging          (2023) 23:106  

shiny apps. io/ Beyon dEPV/). We conducted a sensitivity 
analysis to assess the net benefit (NB) of excluding miss-
ing values in the validation cohorts.

bpMRI protocol
The bpMRI imaging acquisition protocol was in com-
pliance with the PI-RADS v2.1 criteria, which includes 
high-resolution axial and sagittal T2-weighted imaging 
(T2WI), and axial diffusion-weighted imaging (DWI) 
[5]. Details of the bpMRI scan parameters are provided 
in the supplemental materials (Table S 1).

Prostate biopsy
Patients at all 3 institutions underwent MRI-guided 
cognitive targeted biopsies and subsequent SBx. MRI-
guided cognitive targeted biopsies were performed for 
each lesion with a PI-RADS v2.1 score ≥ 3. A minimum 
of 2 cores from each MRI target is recommended, with 
a greater number of cores at the operator’s discretion 
based on lesion size and location and confidence in tar-
geting accuracy. After performing the MRI-guided biop-
sies, a 12-core SBx was performed. Details of the biopsy 
procedure have already been reported in previous stud-
ies [19, 20]. Gleason scores were obtained according to 
the 2014 International Society of Urological Pathology 
(ISUP) consensus guidelines [21] by experienced pathol-
ogists at each institution (Table S 2). csPCa was defined 
as an ISUP grade ≥ 2.

Image analysis
In each institution, bpMR images were presented to 
a single experienced genitourinary radiologist (Table 
S  2) in random order. The radiologists were blinded to 
the clinical information of the patients. Each reader 
retrospectively reviewed the images independently 
and determined the bpMRI score by applying the PI-
RADS v2.1 criteria [5]. If more than one lesion was pre-
sent, the lesion with the highest PI-RADS v2.1 score 
was used as the index lesion. Prostate volume (PV) 
was determined with T2-weighted images, defined as 
π/6 × length × width × height. Prostate-specific antigen 
density (PSAd) was equal to the total serum PSA level 
divided by PV.

Statistical analysis
Model development, validation, and reporting were per-
formed according to the Transparent Reporting of Mul-
tivariate Predictive Models for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines [22]. We used Wilcoxon 
rank sum tests (continuous variables) or chi-squared 
analysis (categorical variables) to assess the baseline 
characteristics of the patients. Univariate and multivari-
ate logistic regression analyses were conducted to gener-
ate two nomograms based on clinical parameters (clinical 
model) and the bpMRI PI-RADS v2.1-based model. The 
receiver operating characteristic (ROC) curves of the 
logistic regression models were used to assess the 

Fig. 1 Flowchart showing the patient selection process

https://mvansmeden.shinyapps.io/BeyondEPV/
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performance of each model, and the DeLong test was uti-
lized to determine significant differences between AUCs. 
The calibration was explored graphically by constructing 
calibration plots.

Decision curve analysis (DCA) was carried out to 
evaluate and compare the clinical utility of the con-
structed models. To use DCA appropriately, we first 
determined whether the model outperformed another 
within a reasonable risk threshold range (10–20%). 
Second, we considered whether there were important 
additional costs (testing trade-offs) of using the model 
[23]. Net reduction curves were used to estimate the 
overall number of biopsies that could be avoided with-
out missing any cancers when the number of patients 
was standardized to 100. Spearman correlation coef-
ficients were calculated between ISUP grade and the 
clinical parameters as well as the bpMRI PI-RADS v2.1 
score in the total included study population (n = 657). 
The strength of the correlation was classified as small 
(< 0.3), medium (0.3–0.5) or large (> 0.5). Statistical 

significance was set at p < 0.05. Statistical analyses were 
performed using R software (version 3.3.1; R Founda-
tion for Statistical Computing, Vienna, Austria). The 
representative R codes used in this study are presented 
in the Supplementary table S 3.

Results
Patient characteristics and bpMRI results
A total of 657 men were retrospectively included; 158 
men were excluded for various reasons (Fig.  1). The 
development cohort, validation cohort 1 and validation 
cohort 2 consisted of 275, 201, and 181 patients, respec-
tively. Table 1 summarizes the patient demographics for 
all cohorts. The prevalence of csPCa was 35% (n = 97) in 
the development cohort (median age at biopsy, 73 years), 
38% (n = 77) in validation cohort 1 (median age at biopsy, 
71 years), and 39% (n = 73) in validation cohort 2 (median 
age at biopsy, 74 years).

The development cohort had a similar age, family his-
tory, DRE results, and median PSA level compared to the 

Table 1 Patient demographics of the development and validation cohorts

*  Represents Kruskal‒Wallis rank sum test; × represents Pearson’s Chi-squared test; IQR interquartile range, No number, DRE digital rectal examination, IQR interquartile 
range, PSA prostate-specific antigen, PSAd prostate-specific antigen density, PI-RADS v2.1 Prostate Imaging Reporting and Data System version 2.1, PCa prostate 
cancer, ISUP International Society of Urological Pathology

Variable Development Cohort: 
Institution 1 (n = 275)

Validation cohort p Value

Institution 2 (n = 201) Institution 3 (n = 181)

Median age at biopsy, yrs (IQR) 73 (66, 78) 71 (67, 76) 74 (69, 78) 0.130*

Family history of prostate cancer, No. (%) 0.500×

 Positive 115 (42%) 94 (47%) 83 (46%)

 Negative 129 (47%) 80 (40%) 80 (44%)

 Unknown 31 (11%) 27 (13%) 18 (9.9%)

DRE findings, No. (%)  > 0.900×

 Normal 127 (46%) 93 (46%) 90 (50%)

 Abnormal 121 (44%) 86 (43%) 76 (42%)

 Unknown 27 (9.8%) 21 (10%) 15 (8.3%)

Median PSA, ng/ml (IQR) 13 (7, 24) 12 (8, 19) 13 (8, 22) 0.700*

Median prostate volume, ml (IQR) 50 (33, 71) 57 (40, 80) 58 (42, 78) 0.014*

Median PSAd, ng/ml/ml (IQR) 0.25 (0.13, 0.49) 0.19 (0.11, 0.41) 0.20 (0.11, 0.44) 0.031*

PI-RADS v2.1 category, No. (%) 0.058×

 1 58 (21%) 24 (12%) 24 (13%)

 2 43 (16%) 38 (19%) 42 (23%)

 3 53 (19%) 56 (28%) 47 (26%)

 4 62 (23%) 33 (16%) 27 (15%)

 5 59 (21%) 50 (25%) 41 (23%)

Pathology results 0.078×

 No PCa 142 (51%) 98 (49%) 87 (48%)

 ISUP grade 1 36 (13%) 26 (13%) 21 (12%)

 ISUP grade 2 53 (19%) 36 (18%) 26 (14%)

 ISUP grade 3 19 (7%) 15 (7%) 22 (12%)

 ISUP grade 4 16 (6%) 17 (9%) 12 (6%)

 ISUP grade 5 9 (3%) 9 (4%) 13 (7%)
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validation cohort but had a significantly lower median 
prostate volume, a higher proportion of median PSAd 
values. Based on bpMRI results and pathology findings, 
there was no significant difference between the three 
groups.

Development of the predictive model and ROC curve 
analysis
In multivariate analysis, PSAd (odds ratio [OR] = 13.22 
[95% confidence interval (CI): 4.42–39.51], p < 0.001) 
and DRE outcomes (OR = 3.60 [95% CI: 1.58–8.24]), 
p = 0.002) were strongly associated with csPCa, and a 
clinical nomogram (clinical model) was constructed 
(Table  2; Fig.  2A). Multivariate logistic regression 
analysis showed that the PSAd (OR = 4.34 [95% CI: 
1.38–13.69], p = 0.012), DRE results (OR = 2.73 [95% 
CI: 1.07–6.97], p = 0.036), and the bpMRI PI-RADS 
v2.1 score (OR = 2.96 [95% CI: 2.10–4.18], p < 0.001) 
were independent predictors for csPCa detection, and a 
bpMRI PI-RADS v2.1-based nomogram was developed 
(Fig. 2B).

ROC curve analysis showed that the bpMRI PI-
RADS v2.1-based model significantly outperformed the 
clinical model in all cohorts (Table  3; Fig.  3). Using a 

fixed sensitivity for csPCa of 95% for the models, the 
specificity was higher for the bpMRI PI-RADS v2.1-
based model than for the clinical model in all data-
sets (Table 3). In addition, the calibration curve of the 
bpMRI PI-RADS v2.1-based model were similar to the 
standard curves in all cohorts, which was better than 
the calibration curve of the clinical model, indicating 
that the bpMRI PI-RADS v2.1-based model has better 
predictive ability (Fig. 4).

Decision curve analysis and correlation analysis
Figure  5 shows the net benefit in the development 
and validation cohorts. Figure 6 demonstrates the net 
reduction curves in all datasets. To assess the poten-
tial clinical benefit of both models, we performed a 
DCA using the different risk thresholds (10%-20%) in 
all cohorts. Overall, with increasing risk thresholds, 
more biopsies can be avoided (5–31 more patients 
per 100 patients can avoid biopsy) while maintaining 
a higher detection rate of csPCa (1–6.5 more csPCa 
patients per 100 patients can be detected) using the 
bpMRI PI-RADS v2.1-based model compared to the 
clinical model (Table  4). For example, compared to 
the clinical model, by applying the bpMRI PI-RADS 
v2.1-based model to validation cohort 1, a higher net 
benefit and net reduction in interventions per 100 
patients was achieved at risk thresholds above 10%. 
For the biopsy strategy utilized in validation cohort 2, 
using the bpMRI PI-RADS v2.1-based model instead 
of the clinical model, the net benefit was higher at a 
risk threshold of 15%, with 1 additional csPCa patient 
detected per 100 patients (without a change in unnec-
essary biopsies).

Because NB does not directly consider the cost and 
hazard of measuring predictors in the model, we used 
test trade-offs to compare the two models. In clinical 
practice, because bpMRI is a fast, noninvasive, and less 
costly testing protocol, the test trade-off can be consid-
ered low, so urologists would agree to perform 10 fewer 
bpMRIs to avoid one unnecessary biopsy in all cohorts 
with a risk threshold of 10–20% (Table 4).

Spearman correlation analysis showed that the pros-
tate volume, tPSA, PSAd and bpMRI PI-RADS v2.1 
score were significantly correlated with the ISUP grade 
(Table  5); bpMRI PI-RADS v2.1 scores were most 
strongly associated with PCa aggressiveness (correla-
tion coefficient = 0.503, p < 0.001). Sensitivity analysis 
showed that eliminating missing values in the valida-
tion cohort had little effect on the net benefit of the 
bpMRI PI-RADS v2.1-based model, indicating that 
the main findings of this study are relatively robust 
(Table 6).

Table 2 Logistic regression analysis for the detection of csPCa in 
the development cohort

PSA prostate-specific antigen, PSAd prostate-specific antigen density, DRE digital 
rectal examination, bpMRI biparametric Magnetic Resonance Imaging, PI-RADS 
v2.1 Prostate Imaging Reporting and Data System version 2.1, OR odds ratio, CI 
confidence interval

Univariate Multivariate

Clinical model OR (95% CI) p value OR (95% CI) p value

 tPSA 1.04 (1.02–1.05)  < 0.001 1.00 (0.98–1.03) 0.806

 fPSA 1.10 (1.04–1.17) 0.001 0.94 (0.85–1.05) 0.263

 Age 1.02 (0.99–1.05) 0.132 1.03 (0.99–1.07) 0.119

 Prostate 
volume

0.99 (0.99–1.00) 0.220

 PSAd 9.69 (4.50–
20.86)

 < 0.001 13.22 (4.42–
39.51)

 < 0.001

 DRE findings 2.30 (1.37–3.88) 0.002 3.60 (1.58–8.24) 0.002

 Family history 1.43 (0.85–2.40) 0.176 0.68 (0.30–1.55) 0.360

bpMRI PI-RADS v2.1-based model
 PI-RADS v2.1 
score

3.66 (2.64–5.09)  < 0.001 2.96 (2.10–4.18)  < 0.001

 tPSA 1.04 (1.02–1.05)  < 0.001 1.01 (0.98–1.04) 0.647

 fPSA 1.10 (1.04–1.17) 0.001 0.93 (0.83–1.04) 0.213

 Age 1.02 (0.99–1.05) 0.132 1.02 (0.98–1.07) 0.259

 Prostate 
volume

0.99 (0.99–1.00) 0.220

 PSAd 9.69 (4.50–
20.86)

 < 0.001 4.34 (1.38–
13.69)

0.012

 DRE outcome 2.30 (1.37–3.88) 0.002 2.73 (1.07–6.97) 0.036

 Family history 1.43 (0.85–2.40) 0.176 0.84 (0.32–2.19) 0.728
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Discussion
Biparametric MRI is increasingly being used to charac-
terise prostate cancer. This study confirms that when 

bpMRI is incorporated into the prediction model, the 
model exhibits better fit and higher diagnostic accu-
racy, with fewer unnecessary biopsies compared to the 

Fig. 2 A Clinical nomogram predicting csPCa. The clinical nomogram predicting the probability of csPCa in patients undergoing prostate biopsy 
based on PSAd and DRE results. Instructions: locate the patient’s prebiopsy PSAd on the PSAd axis. Draw a line straight upward to the point axis 
to determine how many points toward the probability of csPCa the patient receives for his PSAd level. Repeat the process for each additional 
variable. Sum the points for each predictor. Locate the final sum on the total-point axis. Draw a line straight down to find the patient’s probability 
of having csPCa. B bpMRI PI-RADS v2.1-based nomogram predicting csPCa. The nomogram predicting the probability of csPCa in patients 
undergoing prostate biopsy based on the PSAd, DRE outcomes and the bpMRI PI-RADS v2.1 score. csPCa = Clinically significant prostate cancer; 
PSAd = prostate-specific antigen density; DRE = Digital rectal examination; PI-RADS v2.1, Prostate Imaging Reporting and Data System version 2.1; 
bpMRI = biparametric Magnetic Resonance Imaging
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Table 3 Performance comparison (AUC, 95% CI) of the different models and the DeLong test for significance

AUC  area under the curve, CI confidence interval, bpMRI biparametric Magnetic Resonance Imaging, PI-RADS v2.1 Prostate Imaging Reporting and Data System version 
2.1

Cohorts Clinical model bpMRI PI-RADS v2.1-based model p value for AUCs

Sensitivity% Specificity% AUC (95% CI) Sensitivity% Specificity% AUC (95% CI)

Development Cohort 95 34 0.796(0.737, 0.856) 95 61 0.891 (0.849, 0.934)  < 0.001

Validation Cohort 1 95 0 0.676(0.586, 0.766) 95 51 0.877(0.826, 0.928)  < 0.001

Validation Cohort 2 95 8 0.664(0.577, 0.752) 95 19 0.833(0.768, 0.897)  < 0.001

Fig. 3 Receiver operating characteristic curves of risk prediction models for clinically significant prostate cancer in all cohorts. A Diagnosis of csPCa 
in the development cohort. B Diagnosis of csPCa in validation cohort 1. C Diagnosis of csPCa in validation cohort 2. csPCa = Clinically significant 
prostate cancer
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clinical model. Furthermore, we demonstrated that the 
bpMRI PI-RADS v2.1 score was strongly correlated with 
the ISUP grade, which may give clinicians prebiopsy 
information about the aggressiveness of PCa. Finally, 
the results of sensitivity analysis demonstrated that our 
major findings were relatively reliable.

Remarkably, among the previously well-known risk 
calculators (ERSPC-RC and PCPT-RC), PSAd is not 
included. According to recent studies, PSAd not only pre-
dicted the outcome of the biopsy but was also a predictor 
of MRI equivocal lesions (PI-RADS score = 3) [24, 25]. 
In addition, Cuocolo et al. [26] demonstrated that PSAd 
derived from MRI correlated more significantly with PCa 
aggressiveness than the value measured from transrectal 
ultrasonography (TRUS). Therefore, it is not surprising 
that in our study, PSAd was one of the strong predictors 
in the clinical model. Similar to previously developed risk 
calculators [27, 28], our research also demonstrated that 
DRE findings are an independent predictor for csPCa 
detection. Overall, the clinical model achieved an AUC 
of 0.796 in detecting csPCa in the development cohort, 
which is consistent with previous studies [29, 30], sug-
gesting that more efforts are needed to improve diagnos-
tic accuracy.

In all cohorts of this study, the model based on the 
bpMRI-RADS v2.1 score performed better than the 

clinical model, as illustrated by the increase in AUC val-
ues. In addition, the clinical model was not calibrated as 
well as the bpMRI PI-RADS v2.1-based model. Impor-
tantly, with the increasing risk thresholds in DCA, the 
use of the bpMRI PI-RADS v2.1-based model can avoid 
more biopsies while maintaining higher csPCa detec-
tion rates compared to the clinical model, suggesting 
that the bpMRI PI-RADS v2.1-based model has higher 
value in reducing unnecessary biopsies. Understand-
ably, the patient and the urologist can share the deci-
sion-making process to determine acceptable risk and 
biopsy thresholds to avoid missing csPCa [8]. In clinical 
practice, overtreatment of less invasive PCa decreases 
quality of life, but delayed treatment of csPCa increases 
treatment costs and mortality. Compared to mpMRI 
examination and biopsy, the bpMRI protocol is clearly 
a rapid, noninvasive, and less costly testing option, and 
the test trade-off can be considered low in clinical sce-
narios; therefore, the urologists would agree to perform 
10 fewer bpMRIs to avoid one unnecessary biopsy with 
a risk threshold of 10–20%.

Novel risk tools based on clinical variables and addi-
tional genetic and/or protein-based biomarkers have 
been demonstrated to help avoid unnecessary biopsies, 
but they are laboratory dependent and expensive [27, 
31]. In addition, in contrast to MRI-based stratification 

Fig. 4 A Calibration curve of the clinical-based nomogram in the development and validation cohorts. B Calibration curve of the bpMRI 
PI-RADS v2.1-based nomogram in the development and validation cohorts. The calibration curves of the bpMRI PI-RADS v2.1-based model 
were similar to the standard curves in both cohorts. The curves were better than those in the calibration curve of the clinical model, indicating 
that bpMRI PI-RADS v2.1-based model had better predictive ability. PI-RADS v2.1 = Prostate Imaging Reporting and Data System version 2.1; 
bpMRI = biparametric Magnetic Resonance Imaging
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models, these risk models cannot determine the location 
or size of tumors within the prostate and therefore can-
not be used to guide targeted biopsies. Multiple previ-
ous models that combine mpMRI findings with clinical 
variables have shown a 3–20% improvement in diagnos-
tic accuracy [2, 18]. Recently, a small number of bpMRI-
based nomograms have been developed [32–34]. In 
contrast to our study, a study by Boesen et al. [34] used 
bpMRI results to build a predictive nomogram. However, 

in his research, the bpMRI score was based on PI-RADS 
v2, and the results lacked external validation. The 
bpMRI-based nomograms constructed by Lee et al. [35] 
achieved a 92% diagnostic rate for csPCa, but nearly 80% 
of these patients underwent primary biopsies, which may 
have led to an overestimation of the diagnostic accuracy 
of the model. The implementation of prebiopsy mpMRI 
in all men with suspected PCa constitutes a fundamen-
tal paradigm shift in PCa diagnosis and could impose a 

Fig. 5 A Decision curve analysis (DCA) for the models for predicting csPCa in the development cohort. B DCA for the models for predicting csPCa 
in validation cohort 1. C DCA for the models for predicting csPCa in validation cohort 2. csPCa = Clinically significant prostate cancer; DCA = Decision 
curve analysis
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tremendous financial and resource burden on the health 
care system [36]. Since the bpMRI protocol represents a 
cost-effective procedure, this also accounts for its lesion 
identification in terms of high sensitivity [37], which may 
be helpful in low-risk patients who might be candidates 
for active surveillance.

The ISUP grade is a measure of cancer aggressiveness. 
Several MRI-based functional parameters and radiomic 
signatures have been developed for the assessment of 
the biological aggressiveness of PCa [38–40]. However, 
no standardized imaging protocols have been avail-
able, and subjective measurements of the ROI depend 
on the experience and expertise of the radiologist, thus 

limiting the accuracy and reproducibility of the results. 
Previous studies concluded that the PI-RADS score 
can be used to predict lymph node involvement and 
extraprostatic extension [41] but only weakly correlates 
with the ISUP grade [42, 43]. In the present study, we 
demonstrated a strong correlation between the bpMRI 
PI-RADS v2.1 score and PCa aggressiveness, which is 
consistent with research by Pan  et al. [32], suggesting 
that the bpMRI score can be used to predict the prebi-
opsy ISUP grade and potentially improve treatment 
planning.

Our study is not without limitations. First, this was a 
retrospective study, which may lead to patient selection 

Fig. 6 A Intervention avoidance curves in the development cohort. For example, with a probability threshold of 15%, the net reduction 
in interventions is approximately 14 per 100 patients by using the clinical model. In other words, at this probability threshold, the biopsies 
of patients on the basis of the clinical model are the equivalent of a strategy that reduced the biopsy rate by 14% without missing any cancers. The 
net reduction in interventions was approximately 32 per 100 patients by using the bpMRI PI-RADS v2.1-based model with a probability threshold 
of 15%. B Intervention avoidance curves in validation cohort 1. C Intervention avoidance curves in validation cohort 2. PI-RADS v2.1 = Prostate 
Imaging Reporting and Data System version 2.1; bpMRI = biparametric Magnetic Resonance Imaging
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bias. Further prospective, well-designed, large cohort 
studies are needed to confirm our findings. Second, the 
actual detection rate of csPCa may be underestimated 
compared to studies using template-mapped biopsies 
or whole-gland prostatectomy. Third, the data were 
interpreted by experienced radiologists at each insti-
tution using PI-RADS v2.1 for bpMRI; this may limit 
the generalizability of our results to less experienced 
institutions. Finally, assessing interobserver agreement 
for bpMRI PI-RADS v2.1 was beyond the scope of this 
study; however, van der Leest et al. [44] concluded that 
the interobserver agreement for biparametric MRI 
exceeded 90%.

Table 4 Biopsies avoided and test trade-off results for the constructed models to predict csPCa using different risk thresholds

csPCa clinically significant prostate cancer, bpMRI biparametric Magnetic Resonance Imaging, PI-RADS v2.1 Prostate Imaging Reporting and Data System version 2.1

Different 
risk 
thresholds

Clinical model bpMRI PI-RADS v2.1-based model

Overall 
biopsies 
avoided

Detected csPCa 
without unnecessary 
biopsies

Test trade-off, patients 
biopsied per detected 
csPCa

Overall 
biopsies 
avoided

Additional csPCa 
detected (without a 
change in unnecessary 
biopsies) when using 
the bpMRI PI-RADS 
v2.1-based model
rather than the clinical 
model

Test trade-off, patients 
undergoing bpMRI per 
avoided unnecessary 
biopsy

Development Cohort
 10% 0 23.2 4.3 26.1 2.6 3.8

 15% 13.6 20.1 4.9 31.8 3.5 2.8

 20% 11.2 15.1 6.6 36.0 6.5 1.5

Validation Cohort 1
 10% 0 25.9 3.8 15.9 1.8 5.5

 15% 0 21.6 4.6 24.5 3.6 2.7

 20% 0 10.9 9.1 31.3 14 0.7

Validation Cohort 2
 10% 0 34.9 2.8 0 0 0

 15% 0 31.1 3.2 5.3 0.9 9.1

 20% 0 26.8 3.7 11.6 2.8 3.5

Table 5 Spearman correlation between clinical/MRI parameters 
and ISUP grade

PSA prostate-specific antigen, PSAd prostate-specific antigen density, bpMRI 
biparametric Magnetic Resonance Imaging, PI-RADS v2.1 Prostate Imaging 
Reporting and Data System version 2.1, ISUP International Society of Urological 
Pathology

Correlation coefficient 
(r)

p value

bpMRI PI-RADS v2.1 score 0.503  < 0.001

tPSA 0.143  < 0.001

fPSA -0.004 0.901

Age 0.084 0.030

Prostate volume -0.357  < 0.001

PSAd 0.279  < 0.001

Table 6 Sensitivity analysis comparison of net benefits after excluding missing values in the validation cohorts

bpMRI biparametric Magnetic Resonance Imaging, PI-RADS v2.1 Prostate Imaging Reporting and Data System version 2.1, CI confidence interval

Risk thresholds Validation Cohort 1 Validation Cohort 2
Net benefit (95% CI) Net benefit (95% CI)

bpMRI PI-RADS v2.1-based model
 10% 0.277 (0.210, 0.347) 0.340(0.268, 0.432)

 15% 0.252 (0.191, 0.329) 0.320(0.242, 0.407)

 20% 0.249 (0.178, 0.318) 0.296(0.222, 0.387)

bpMRI PI-RADS v2.1-based model after excluding missing values
 10% 0.308 (0.227, 0.386) 0.357 (0.276, 0.459)

 15% 0.283 (0.210, 0.368) 0.338 (0.248, 0.427)

 20% 0.271 (0.196, 0.348) 0.320 (0.228, 0.407)
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Conclusion
In conclusion, a predictive model based on the bpMRI 
score and clinical parameters is an easily accessible tool 
for avoiding unnecessary biopsies, and furthermore, 
bpMRI scores derived from PI-RADS v2.1 can be used to 
determine the aggressiveness of PCa prior to biopsy.
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