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Abstract 

Background  In recent years, contrast-enhanced ultrasonography (CEUS) has been used for various applica-
tions in breast diagnosis. The superiority of CEUS over conventional B-mode imaging in the ultrasound diagnosis 
of the breast lesions in clinical practice has been widely confirmed. On the other hand, there have been many pro-
posals for computer-aided diagnosis of breast lesions on B-mode ultrasound images, but few for CEUS. We propose 
a semi-automatic classification method based on machine learning in CEUS of breast lesions.

Methods  The proposed method extracts spatial and temporal features from CEUS videos and breast tumors are clas-
sified as benign or malignant using linear support vector machines (SVM) with combination of selected optimal fea-
tures. In the proposed method, tumor regions are extracted using the guidance information specified by the exam-
iners, then morphological and texture features of tumor regions obtained from B-mode and CEUS images and TIC 
features obtained from CEUS video are extracted. Then, our method uses SVM classifiers to classify breast tumors 
as benign or malignant. During SVM training, many features are prepared, and useful features are selected. We name 
our proposed method "Ceucia-Breast" (Contrast Enhanced UltraSound Image Analysis for BREAST lesions).

Results  The experimental results on 119 subjects show that the area under the receiver operating curve, accuracy, 
precision, and recall are 0.893, 0.816, 0.841 and 0.920, respectively. The classification performance is improved by our 
method over conventional methods using only B-mode images. In addition, we confirm that the selected features are 
consistent with the CEUS guidelines for breast tumor diagnosis. Furthermore, we conduct an experiment on the oper-
ator dependency of specifying guidance information and find that the intra-operator and inter-operator kappa coef-
ficients are 1.0 and 0.798, respectively.

Conclusion  The experimental results show a significant improvement in classification performance compared 
to conventional classification methods using only B-mode images. We also confirm that the selected features are 
related to the findings that are considered important in clinical practice. Furthermore, we verify the intra- and inter-
examiner correlation in the guidance input for region extraction and confirm that both correlations are in strong 
agreement.

Keywords  Contrast-enhanced ultrasonography, Breast lesion, Computer-aided diagnosis, Support vector machines

Background
Contrast-enhanced ultrasonography (CEUS) uses an 
intravenous contrast agent to provide a detailed view of 
hemodynamics. CEUS can be used to diagnose lesions 
in various organs. Currently, the liver is the organ where 
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CEUS diagnosis is most commonly used  [1–7]. On the 
other hand, in Japan, the second-generation ultrasound 
contrast agent Sonazoid®   (perflubutane microbubbles; 
GE Healthcare) was approved for use in breast lesion 
diagnosis in 2012  [8]. In recent years, CEUS has been 
used for various applications in breast diagnosis, such 
as differentiating between benign and malignant breast 
lesions [9–12], examining sentinel lymph nodes [13, 14], 
determining the efficacy of chemotherapy  [15, 16], and 
analyzing the correlation with pathological prognostic 
factors [17].

Compared with contrast-enhanced MRI and contrast-
enhanced CT, CEUS has superior spatial and temporal 
resolution and allows the inflow and outflow of contrast 
agent to be observed in real time  [8]. Various reports 
have been made on the diagnostic performance of CEUS 
in classifying breast lesions, and it has been shown that 
CEUS can achieve higher diagnostic performance than 
conventional ultrasonography (US), and the diagnos-
tic performance of CEUS is almost equivalent to that 
of contrast-enhanced MRI  [9, 10]. For example, Li et al. 
reported a meta-analysis comparing the diagnostic per-
formance of US, CEUS, and a combination of US and 
CEUS (US+CEUS)  [10]. In the comparison of US and 
CEUS, the sensitivity was 0.87 and 0.93, and the speci-
ficity was 0.72 and 0.86, respectively, for a total of 1545 
patients and 1609 cases (751 of which were malignant) in 
nine studies, showing significantly better diagnostic per-
formance of CEUS in the Area Under the Receiver Oper-
ating characteristic Curve (AUROC)1. When comparing 
US and US+CEUS, the sensitivity was 0.87 and 0.94, and 
the specificity was 0.80 and 0.86, respectively, for a total 
of 924 patients and 959 cases (505 of which were malig-
nant) in five studies, showing that US+CEUS had signifi-
cantly better diagnostic performance in AUROC. In [9], 
a comparison of the diagnostic performance of conven-
tional ultrasound (B-mode and Doppler, US), CEUS, a 
combination of US and CEUS (US+CEUS), and MRI was 
compared in 61 cases (28 benign and 33 malignant). The 
results showed no significant difference in diagnostic per-
formance between US and CEUS, and US+CEUS showed 
significantly improved diagnostic performance com-
pared with US and CEUS. The diagnostic performance of 
US+CEUS was better than that of MRI, although the dif-
ference was not significant.

One of the advantages of CEUS is that it allows quan-
titative analysis. Time-intensity curve (TIC) analysis [18] 
is commonly used as the quantitative analysis method of 

CEUS. A TIC plots the changes in the reflective compo-
nents from the contrast agent in the region of interest 
(ROI) against time. Curve fitting is performed on the TIC 
and the curve parameters are calculated and then used 
for quantitative analysis. A number of studies [12, 19–21] 
have reported the usefulness of TIC analysis in CEUS for 
the diagnosis of breast lesions.

Thus, the superiority of CEUS over conventional 
B-mode imaging in the ultrasound diagnosis of breast 
lesions in clinical practice has been widely confirmed. 
And the usefulness of TIC parameters in CEUS for quan-
titative analysis has also been widely confirmed. On the 
other hand, there have been many proposals for com-
puter-aided diagnosis of breast lesions on B-mode ultra-
sound images [22–33], but few for CEUS [34].

In this study, we propose a method for semi-automatic 
classification of breast lesions based on machine learn-
ing and the use of CEUS. In the proposed method, tumor 
regions are extracted using the guidance information indi-
cating the inside and outside of tumor regions specified 
by the examiners, then morphological and texture fea-
tures of tumor regions obtained from B-mode and CEUS 
images and TIC features obtained from CEUS video are 
extracted. Then, our method uses SVM classifiers to clas-
sify breast tumors as benign or malignant. During the 
training of SVM, the features that provide maximum 
classification performance are selected from the mor-
phological, texture and TIC features. Through the experi-
ments we will show that the classification performance is 
significantly improved over conventional methods using 
only B-mode images. In addition, although the TIC is 
not obtained empirically for the whole tumor, but for the 
area where a strong contrast effect is observed in clinical 
practice, the proposed method automatically sets ROIs 
in areas where a strong contrast effect is observed, and 
we quantitatively confirm the usefulness of the method. 
Furthermore, we discuss the relationship between the 
features selected during training and the results obtained 
in clinical practice. Finally, we verify the intra- and inter-
examiner dependence on the specification of the guidance 
information required for the analysis.

Related works
In this section, we introduce computer-aided diagnosis tech-
niques for breast ultrasound using B-mode images, quantita-
tive analysis using TIC for CEUS videos, and computer-aided 
diagnosis techniques for breast ultrasound using CEUS vid-
eos, as related works of our proposed method.

Computer‑aided diagnosis for breast ultrasound using 
B‑mode images
Many computer-aided diagnostic techniques using 
B-mode images have been proposed for breast 

1  In general, the area under the receiver operating characteristic curve is 
abbreviated as AUC. However, we use AUROC for the abbreviation because 
we have a different AUC (in terms of time intensity curve) in this paper
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ultrasound. Table  1 shows a summary of representa-
tive works in this area. Table  1 arranges the references 
in chronological order and shows the machine learning 
method, the features, whether feature selection is used 
or not, the selected features, the number of cases used 
in the experiment, and the classification performance 
of each work. As can be seen in Table 1, SVM has been 
widely used until the mid-2010s. These methods use 
handcrafted features such as morphological and texture 
features, and prepare numerous features, and select use-
ful features from them. Since the last half of the 2010s, 
the design of deep learning-based classification methods 
has been increased.

Quantitative analysis using TIC for CEUS videos
In Table 2, we show representative works on quantitative 
analysis methods using TIC in breast CEUS. These works 
do not use machine learning methods, but rather statisti-
cal tests to determine whether individual TIC parameters 
are significantly different between benign and malignant 
cases, and to obtain statistical discriminative power using 
a single TIC parameter.

Computer‑aided diagnosis for breast ultrasound using CEUS 
videos
We found only one paper  [34] on computer-aided diag-
nosis for breast CEUS. In [34], a B-mode image and a 
CEUS video are used as input, and the features obtained 
by processing the image and the video with separate deep 
neural networks are integrated to classify them as benign 
or malignant. The evaluation is performed with 10-fold 
cross-validation using 268 cases (122 benign, 146 malig-
nant). The results are 0.902 accuracy, 0.914 recall, 0.952 
precision, and 0.932 F1 score 2.

Contribution of our proposed method
The proposed method in [12] shows a very high perfor-
mance. On the other hand, the classification performance 
cannot be guaranteed when the amount of data is limited, 
and the explainability of the classification results is low 
because the method is based on deep learning. The lat-
ter issue is particularly important from the perspective of 
real-world clinical use. There is a study [37] on improving 

Table 1  Computer-aided diagnosis methods for breast ultrasound using B-mode images. Abbreviations are as followings. B: Benign, 
M: Malignant, Acc.: Accuracy, Sens.: Sensitivity, Spec.: Specificity, AUROC: Area Under the Receiver Operating characteristic Curve

Reference Machine learning 
method

Features Feature 
selection

Number of cases Classification performance

Chang et al. 2005 [22] SVM 6 morphological features No 210 (B: 120, M: 90) Acc.: 0.909, Sens.: 0.888, 
Spec.:0.925

Nascimento et al. 2016 [24] Non-linear SVM 5 morphological features, 
39 texture features

Yes 120 (B: 70, M: 50) Acc.: 0.958, Sens.: 0.960, 
Spec.: 0.957

Wei et al. 2019 [27] SVM 4 morphological features, 3 
texture features

No 1061 (B: 472, M: 589) Acc.: 0.873, Sens.: 0.870, 
Spec.: 0.876

Daoud et al. 2020 [28] SVM 18 morphological features, 
800 texture features, VGG 
features

Yes 643 (B: 327, M: 216) Acc.: 0.961, Sens.: 0.957, 
Spec.: 0.949

Fujioka et al. 2019 [32] CNN (GoogLeNet [35]) – – 360 (B: 144, M: 216) Acc.: 0.925, Sens.: 0.958, 
Spec.: 0.875, AUROC: 0.913

Lazo et al. 2020 [31] CNN (VGG-16 [36]) – – 947 (B: 587, M: 360) Acc.: 0.919, AUROC: 0.934

Luo et al. 2023 [33] Spatial attention CNN (for 
images) MLP (for BIRADS 
descriptors)

25 BIRADS descriptors 
(Manually annotated)

– 596 (B: 291, M: 305) Acc.: 0.910, Sens.: 0.928, 
Spec.: 0.890, AUROC: 0.945

Table 2  Quantitative analysis method for breast ultrasound using TIC obtained from CEUS videos. Abbreviations are as followings. TTP: 
Time To Peak, PI: Peak Intensity, WIS: Wash-In Slope, MTT: Mean Transit Time, AUTIC: Area Under the Time Intensity Curve, B: Benign, M: 
Malignant, AUROC: Area Under the Receiver Operating characteristic Curve

Reference TIC parameters Significant TIC parameters Number of cases Classification performance

Nemcova et al. 2015 [19] TTP, PI, WIS WIS, TTP 120 (B: 67, M: 43) AUROC (with WIS): 0.735 AUROC (with TTP): 0.697

Zhao et al. 2017 [20] PI, TTP, WIS, MTT PI, Relative PI, Relative AUTIC, 
Relative start time

304 (B: 161, M: 143) AUROC (with Relative PI): 0.919

Janu et al. 2020 [12] TTP, PI, WIS, AUTIC TTP, WIS 213 (B: 146, M: 67) AUROC (with TTP): 0.678 AUROC (with WIS): 0.698

2  F1 score is the harmonic mean of precision and recall.



Page 4 of 14Kondo et al. BMC Medical Imaging          (2023) 23:114 

the explainability of a deep learning model by visualizing 
regions of interest using GradCAM [38], but visualizing 
regions of interest alone does not provide a high level of 
explainability with respect to clinical use.

In addition, it has been empirically used in clinical set-
tings to obtain TIC for CEUS not over the entire tumor 
region, but over a small region of high intensity in the 
tumor region  [19] (hereafter referred to as "hot spot"). 
However, no study has verified whether it is more useful 
to use TIC measured over the whole tumor or TIC meas-
ured over hot spots.

In this paper, we propose a computer-aided diagnosis 
technique for breast CEUS based on machine learning. 
In the proposed method, morphological and texture fea-
tures are extracted from both B-mode and CEUS images, 
and TIC from CEUS images, and then the case is clas-
sified into benign and malignant using linear SVM. The 
proposed method prepares numerous features, and 
selects useful features from them during the training 
of SVM. We show that the selected features in our pro-
posed method are consistent with the features consid-
ered important in clinical practice. It can be said that the 
explainability of the classification results can be ensured, 
for example, by presenting a typical distribution and a 
value for each feature. In addition, we investigate the use-
fulness of obtaining a TIC for a hot spot rather than the 
entire tumor. Since our method requires the examiners to 
manually specify some guidance information in order to 
extract tumor regions, we will also conduct experiments 
to investigate the dependency of the guidance informa-
tion specification.

Materials and methods
Overview of Ceucia‑Breast
With the proposed method, we recorded a breast CEUS 
video using an ultrasound diagnostic machine and then 
analyzed the recorded video. Figure  1 shows examples 
of the recorded images. The images and videos recorded 
by the ultrasound diagnostic machine are arranged with 
non-enhanced images on the right (hereafter, we refer 
to this image as “B-mode image”3) and the contrast-
enhanced images on the left (hereinafter, we refer to this 
image as “contrast image”). The B-mode and contrast 
images in the same image correspond to the same loca-
tion and time.

The proposed method uses morphological and tex-
ture features obtained from the B-mode and contrast 

images, region overlap features that indicate the 
degree of overlap of tumor regions in the B-mode and 
contrast images, and TIC-based features that indicate 
the temporal change in contrast intensity of the tumor 
region or hot spot. These features are described in the 
following sections.

Features used in proposed method
Table  3 shows the list of features used in our proposed 
method. As morphological features, we use 16 fea-
tures proposed in [23]. As texture features, 22 features 
obtained from the gray level co-occurrence matrix 
(GLCM) are used  [24, 40, 41]. Two region overlap fea-
tures, Jaccard and Dice, are obtained as features indi-
cating the overlap of tumor regions in the B-mode and 
contrast images. For details on how to compute these fea-
tures, please refer to [23, 40]

The contrast agent is administered intravenously and 
flows into the mammary gland within approximately 20 
seconds after intravenous injection. The contrast agent 
then circulates throughout the body and is primarily 
expelled with the breath. Therefore, TIC increases rap-
idly until approximately 20 seconds after administra-
tion and then gradually decreases. Equation (1) models 
the characteristics of TIC. In our proposed method, 
TIC is fitted to a curve. Equation  (1) is used as the 
model function f(t) to fit the curve and we have eight 
types of TIC features.

, where t is time, ai(i = 1, 2, · · · , 6) are the curve param-
eters, tp is the time at which the TIC reaches its maxi-
mum value, and T is the TIC length. Conceptually, a1 is 
equivalent to the peak value of the TIC, a2 is the rate at 
which the curve rises, a3 is the time offset, a4 is the offset 
of the contrast intensity axis, and a5 and a6 are the rate at 
which the curve falls. An example of the TIC before and 
after curve fitting is shown in Fig. 2.

Eight features, shown in Table 3, are obtained from the 
TICs and the curve fitting parameters. Peak intensity is 
the maximum value in the TIC, and it is equivalent to a1 
in (1). Time-to-peak is the time required to reach the peak 
intensity and is equal to tp in (1). AUTIC-all, AUTIC-in and 
AUTIC-out are the Area Under the Time Intensity Curves 
(AUTIC)4. AUTIC represents the area between the x-axis 
and the TIC. AUTIC is obtained with (2).

(1)f (t) =
a1

1+exp{−a2×(t−a3)}
+ a4 ; 0 ≤ t ≤ tp

a1 × exp(−a5 × (ta6)) ; tp < t < T

3  Specifically, it is an image obtained by extracting the fundamental com-
ponent of echo signals from organs and contrast agent, and is imaged using 
a method different from conventional B-mode imaging, but it is referred 
to here as “B-mode” from the standpoint of its relevance to conventional 
methods.

4  In general, the area under the time intensity curve is abbreviated as AUC. 
However, we use AUTIC for the abbreviation because we have a different 
AUC (in terms of receiver operating characteristic curve) in this paper.
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Fig. 1  Examples of images in CEUS. The left side is the contrast image, and the right side is the B-mode image. a At contrast injection. b 20 seconds 
after contrast injection (in arterial phase). c 30 seconds after contrast injection (in venous phase). The phases are defined in [39]
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and the AUTIC-all feature is the AUTIC value for the 
whole TIC, the AUTIC-in feature is the AUTIC value 
from time 0 to tp , the AUTIC-out feature is the AUTIC 
value from time tp to T. The wash-in slope feature is the 
rate of change of intensity from the rise of TIC to the 
peak value, and is the value obtained by dividing the peak 
intensity by (tp − a3) . The wash-out slope feature is the 
rate of change of intensity after time tp . Finally, the full 
width at half maximum feature is the time from when the 

(2)AUTIC =

∫ t2

t1

f (t)dt,
TIC exceeds half the peak intensity to when it falls below 
half the peak intensity.

Procedure to extract features
The feature extraction procedure in the proposed method 
is illustrated in Fig. 3. The first step is to search for a ref-
erence frame in the input video. A reference frame is a 
frame for which the examiner specifies guidance infor-
mation for extracting the tumor region. Although it is 
desirable to select a reference frame that has the maxi-
mum average intensity value of the tumor region in the 
contrast image, the tumor region cannot be known 

Table 3  List of features used in our proposed method

Features (Number of features) BUS CEUS Features

Morphological features (16) � � Perimeter, Area, Enc, LS ratio, Aspect ratio, Form factor, Roundness, Solidity, Convexity, Extent, TCA ratio, 
TEP ratio, TEP diff, TCP ratio, TCP diff, AP ratio

Texture features (22) � � Autocorrelation, Correlation, Correlation-I, Correlation-II, Cluster Prominence, Cluster shade, Dissimilar-
ity, Energy, Entropy, Homogeneity-I, Homogeneity-II, Maximum probability, Sum of squares:Variance, 
Sum average, Sum entropy, Sum variance, Difference variance, Difference entropy, Information 
measure of correlation 1, Information measure of correlation 2, Inverse difference normalized, Inverse 
difference moment normalized

Region overlap (2) � Jaccard, Dice

TIC (8) – � Peak intensity, Time-to-peak, AUTIC-all, AUTIC-in, AUTIC-out, Wash-in slope, Wash-out slope, Full width 
at half maximum

Fig. 2  An example of TIC. The blue and red lines show the TICs before and after the curve fitting, respectively



Page 7 of 14Kondo et al. BMC Medical Imaging          (2023) 23:114 	

before the guidance information is specified. Therefore, 
in our proposed method, the frame with the largest aver-
age intensity value in the contrast image, i.e., averaged 
not the tumor region but over the whole image, is used 
as the reference frame. In several cases, we checked the 
average intensity value of the tumor area and the frames 
selected with the average intensity in the whole image, 
but all of them differed by a few frames, and we judged 
that there was no problem. Before the feature extrac-
tion process, the pixel values of the B-mode and contrast 
images are multiplied by the dynamic range obtained 
from the ultrasound diagnostic machine to standardize 
the level criteria between cases.

In the reference frame, the examiner inputs guid-
ance information indicating the inside and outside of 

the tumor, respectively. The proposed method uses this 
guidance information to extract the tumor region on 
the B-mode and contrast images, respectively, using 
GrabCut  [42]. Figure  4 shows examples of the guidance 
information and the extracted tumor regions. It is worth 
noting that the guidance information is the only one that 
requires manual input by the examiner in the proposed 
method.

For each of the extracted tumor regions in the B-mode 
and contrast images, 16 morphological features and 22 
texture features as described in “Features used in pro-
posed method” subsection are obtained. After extracting 
the tumor regions in the B-mode and contrast images, 
two region overlap features described in “Features used 
in proposed method” subsection are obtained.

Fig. 3  A flowchart to extract the features from CEUS video
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The next step is to automatically extract the most 
hyper-enhanced region, or hot spot, from the tumor area 
in the contrast image. The size of the hot spot should be 
2 to 5 mm square. The hot spot can be detected using the 
sliding window technique. A TIC is calculated for the 
detected hot spot area. The proposed method obtains 
the TIC for 60 seconds of CEUS video. Since the position 
of the tumor in the image changes in each frame due to 

slight displacements of the probe or the patient’s breath-
ing and heartbeat, the tumor area is tracked by a tracking 
technique. The tracking is performed using the B-mode 
image because the intensity of the B-mode image changes 
very little, but the intensity of the contrast image changes 
significantly when the contrast agent reaches the breast, 
as shown in Fig. 1. The template used for tracking is an 
image of a rectangular region surrounding the tumor 

Fig. 4  An example of tumor region extraction. a Guidance information. The red (inner) and yellow (outer) lines show inside and outside the tumor 
area in the contrast image (left side), respectively. The green (inner) and blue (outer) lines show inside and outside the tumor area in the B-mode 
image (right side), respectively. b Results of tumor region extraction. The red (left) and green (right) lines show the contours of tumor regions 
in the contrast and B-mode images, respectively
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region in the B-mode image in the reference frame. For 
the remaining frames, the translational shift relative to 
the reference frame is obtained using a Kernelized Cor-
relation Filter  [43]. The eight TIC features described in 
the “Features used in proposed method” subsection are 
computed from the obtained TIC.

The above process results in a total of 86 features: 38 
features for the B-mode image, 46 features for the con-
trast image, and two region overlap features. As a pre-
processing step for classification, standardization is 
performed for each feature using the mean and standard 
deviation of the training data.

Lesion classification
In the proposed method, linear SVM is used to classify 
the breast lesions as benign or malignant. When training 
the classifier, instead of using all the features described in 
the “Features used in proposed method” subsection, the 
best combination of features is selected as follows.

In feature selection during training, the importance 
of features is first determined by the Recursive Fea-
ture Elimination method  [44] using training data. Then, 
the feature with the highest importance is selected, and 
the classification performance of the selected feature is 
evaluated by the leave-one-out method with the train-
ing data. Then, the classification performance with the 
features up to the second most important among the 
features is evaluated by the leave-one-out method on the 
training data. This process of evaluating the classification 
performance by increasing the number of features one by 
one in order of importance is repeated until all the fea-
tures are selected. Then, the feature combination with the 
highest AUROC is selected. Finally, the obtained feature 
combinations are used to evaluate the performance of the 
classifier. We explain the method to evaluate the classifi-
cation performance depending on the experiments.

Results and discussion
Dataset
The study includes 119 cases of 119 patients who were 
examined and underwent CEUS at Hokkaido Uni-
versity Hospital between August 2015 and Decem-
ber 2016. All subjects were female with a mean age of 
56.6± 13.6 years old.

The Ethical Review Board of Hokkaido University Hos-
pital approved this study. The number of the approved 
research study is 015-0147. Informed consent was 
obtained from all patients. The following breast lesions 
were studied: 33 benign and 86 malignant. Malignant 
tumor diagnoses were confirmed by biopsy or a histo-
pathologic examination after surgery. Benign tumor 
diagnoses were confirmed by comprehensive clini-
cal imaging studies using CT or MRI for at least 1 year. 

These diagnostic results were used as ground truth 
in our experiments. The mean diameter of the breast 
tumors was 19.1± 14.1 mm. The ultrasound machine 
used in the experiments was Aplio 500 (Canon Medical 
Systems Corporation, Otawara, Japan). The probe was 
PLT-1005BT. The contrast agent Sonazoid®  0.015ml/kg/
body was rapidly infused and flushed with 10-15 ml of 
physiological saline solution using a 22G Suflo infusion 
needle. The guidance information for extracting tumor 
regions was specified by the Japan Society of Ultrasonics 
in Medicine (JSUM) Registered Medical Sonographers in 
surface anatomy.

In the following, we first discuss the results of verify-
ing how the difference in hot spot size affects the classi-
fication performance of the proposed method. Next, we 
present the comparison results between the proposed 
method and conventional methods. Finally, the results of 
the verification of the examiner dependence on the guide 
specification are discussed.

Verification of hot spot size
In this section, we describe the verification results of how 
the hot spot size affects the classification performance 
in the proposed method. The evaluation metrics in this 
experiment are AUROC, accuracy, precision (positive 
predictive value), recall (sensitivity), F1 score, specific-
ity, and negative predictive value. In total, we used 119 
cases, and the metrics and their 95 % confidence inter-
vals were obtained using the Bootstrap method  [45] 
after feature selection was performed using the method 
described in the “Lesion classification” section. We evalu-
ated the proposed methods in two cases; the first using 
48 features obtained from contrast images and feature 
selection (referred to as “CEUS”), and the second using a 
total of 86 features for B-mode and contrast images with 
feature selection (referred to as “BUS+CEUS”). Com-
parisons were made for hot spot sizes ranging from 2 to 
5 mm, as well as for the case where the TIC is obtained 
over the entire tumor area, i.e., without a hot spot. Since 
the cases used in the experiments were imbalanced 
between benign and malignant, weights proportional to 
the inverse of the class frequency were used in the SVM 
training.

Tables  4 and 5 show the experimental results. These 
tables show the number of features using feature selec-
tion and their respective metrics for each hot spot size. 
Table 4 shows the results for “CEUS” and Table 5 shows 
the results for “BUS+CEUS”. The results in Table 4 show 
that although the hot spot size that shows the best per-
formance varies depending on the evaluation metrics, the 
classification performance with a hot spot size of 2 mm 
is the highest in AUROC. Table 5 shows that the classifi-
cation performance for most evaluation metrics is higher 
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when the hot spot size is set to 2 mm than when the TIC 
is calculated for the whole tumor. This confirms that the 
TIC analysis for hot spots, which has been used in clini-
cal practice as qualitatively useful  [19], is also quantita-
tively useful.

Comparison with conventional methods
This section describes the experimental results of com-
paring the performance of the proposed method with 
that of the conventional methods. We use classifica-
tion methods for breast ultrasound using only B-mode 
images as the conventional methods. It is not possible 
to directly compare the experimental results of the pro-
posed method presented in the “Verification of hot spot 
size” section with those of the previous works presented 
in the “Related works” section. For this purpose, we use 
the classification results using 38 features obtained from 
the B-mode images with feature selection as a conven-
tional method. This method will be referred to as “BUS” 
in the following.

The evaluation metrics in this experiment are AUROC, 
accuracy, precision (positive predictive value), recall 
(sensitivity), F1 score, specificity, and negative predictive 
value. We use 119 cases, and the metrics and their 95 % 

confidence intervals were obtained using the Bootstrap 
method [45] after feature selection was performed using 
the method described in the “Lesion classification” sec-
tion. The proposed method was evaluated in two cases; 
one using 48 features obtained from contrast images and 
feature selection (referred to as “CEUS”), and the other 
using a total of 86 features for the B-mode and contrast 
images (referred to as “BUS+CEUS”). From the results 
shown in the “Verification of hot spot size” section, we 
used a 2 mm hot spot size in our proposed method. As 
in the experiments in the “Verification of hot spot size” 
section, weights proportional to the inverse of the class 
frequency were used in the SVM training.

Table 6 shows the experimental results. The number of 
features selected by the feature selection and their respec-
tive metrics are shown in Table  6, as in Tables  4 and 5. 
Table  6 shows that the proposed method (BUS+CEUS) 
can significantly improve the classification performance 
in most of the evaluation metrics compared to the con-
ventional method (BUS).

In this experiment, Table 7 shows the features selected 
in each method. These features are listed in the order of 
importance selected by the Recursive Feature Elimina-
tion method.

Table 4  Comparison of classification performance by hot spot size in “CEUS”. All units except AUROC are in percent. Values in 
parentheses are 95 % confidence interval

Bold numbers indicate the best hot spot size within each metric

Hot spot size (mm) 2 3 4 5 Entire tumor
Number of selected features 5 4 4 4 16

AUROC 0.862 (0.792 - 0.924) 0.855 (0.780 - 0.922) 0.847 (0.776 - 0.912) 0.851 (0.776 - 0.919) 0.856 (0.778 - 0.921)

ACC​ 0.788 (0.717 - 0.850) 0.795 (0.733 - 0.850) 0.790 (0.733 - 0.850) 0.796 (0.733 - 0.850) 0.797 (0.733 - 0.850)

Precision (PPV) 0.825 (0.754 - 0.902) 0.832 (0.759 - 0.895) 0.824 (0.750 - 0.889) 0.831 (0.760 - 0.889) 0.825 (0.759 - 0.889)

Recall (Sensitivity) 0.898 (0.814 - 1.000) 0.897 (0.791 - 1.000) 0.903 (0.814 - 1.000) 0.902 (0.814 - 1.000) 0.913 (0.814 - 1.000)

F1 0.858 (0.817 - 0.899) 0.862 (0.817 - 0.901) 0.860 (0.818 - 0.897) 0.863 (0.815 - 0.903) 0.865 (0.824 - 0.905)

Specificity 0.510 (0.176 - 0.765) 0.535 (0.235 - 0.765) 0.502 (0.176 - 0.765) 0.527 (0.235 - 0.765) 0.504 (0.235 - 0.706)

NPV 0.680 (0.500 - 1.000) 0.692 (0.529 - 1.000) 0.693 (0.526 - 1.000) 0.703 (0.529 - 1.000) 0.712 (0.545 - 1.000)

Table 5  Comparison of classification performance by hot spot size in “BUS+CEUS”. All units except AUROC are in percent. Values in 
parentheses are 95 % confidence interval

Bold numbers indicate the best hot spot size within each metric

Hot spot size (mm) 2 3 4 5 Entire tumor
Number of selected features 7 13 12 12 13

AUROC 0.875 (0.795 - 0.936) 0.865 (0.795 - 0.926) 0.862 (0.791 - 0.928) 0.865 (0.791 - 0.934) 0.868 (0.791 - 0.934)

ACC​ 0.816 (0.750 - 0.883) 0.805 (0.750 - 0.867) 0.803 (0.750 - 0.867) 0.814 (0.750 - 0.867) 0.809 (0.750 - 0.867)

Precision (PPV) 0.841 (0.764 - 0.905) 0.838 (0.765 - 0.900) 0.834 (0.764 - 0.897) 0.842 (0.769 - 0.905) 0.835 (0.774 - 0.889)

Recall (Sensitivity) 0.920 (0.814 - 1.000) 0.907 (0.814 - 1.000) 0.909 (0.814 - 1.000) 0.915 (0.814 - 1.000) 0.918 (0.814 - 1.000)

F1 0.877 (0.828 - 0.921) 0.869 (0.822 - 0.913) 0.869 (0.824 - 0.911) 0.876 (0.825 - 0.913) 0.873 (0.828 - 0.913)

Specificity 0.550 (0.235 - 0.765) 0.548 (0.235 - 0.765) 0.536 (0.235 - 0.765) 0.558 (0.294 - 0.765) 0.535 (0.294 - 0.706)

NPV 0.749 (0.562 - 1.000) 0.718 (0.550 - 1.000) 0.720 (0.555 - 1.000) 0.740 (0.556 - 1.000) 0.737 (0.562 - 1.000)



Page 11 of 14Kondo et al. BMC Medical Imaging          (2023) 23:114 	

We discuss here the features selected in BUS+CEUS. 
Figure 5(a) shows the distribution of the most important 
feature, the wash-in slope of TIC, in benign and malig-
nant cases as a box-and-whisker plot. As can be seen in 
Fig. 5(a), the wash-in slope is higher for malignant cases 
than in benign cases. This is consistent with the charac-
terization “Malignant lesions show early wash-in with 
more intense enhancement and fast wash-out compared 
to benign masses” reported in a survey paper [46].

Figure 5(b) shows the distribution of the second impor-
tant feature, convexity, as a morphological feature of the 
tumor region in the contrast image. Convexity is the 
perimeter of the convex hull of the tumor region divided 
by the perimeter of the tumor region. The more convex 
the tumor region, the larger the value, close to 1. As can 
be seen in Fig. 5(b), the convexity in the contrast image 
shows lower values for malignant than benign tumors in 
our experimental results. Extent, a morphological feature 
of the tumor region, in the B-mode image. Extent is the 
tumor area divided by the area of the rectangle circum-
scribed by the tumor and takes a large value for areas 
with smooth boundaries and a small value for areas with 
irregular boundaries. As shown in Fig. 5(c), in our experi-
mental results, extent has lower values for malignant 
tumors than for benign tumors. A guideline for breast 
ultrasound diagnosis  [47] states that “localized masses 
with clear boundaries are benign, while irregular masses 
with speculated boundaries are often malignant,’, and the 

experimental results shown in Fig. 5(b) and (c) are con-
sistent with this finding.

In addition, the distribution of the Dice feature is 
shown in Fig.  5(d) as a box-and-whisker plot. Dice is a 
measure of the overlap between a tumor region in the 
B-mode image and that in the contrast image, and takes 
0 if there is no overlap and 1 if there is complete over-
lap. The guideline [47] states that “malignant tumors have 
more contrast than B-mode”, and the result shown in 
Fig. 5(d) is consistent with this finding.

Finally, the aspect ratio, a morphological feature of 
the tumor area, in the B-mode image is the height of the 
tumor divided by its width, and is greater than 1 for a 
vertical shape and less than 1 for a horizontal shape. The 
guideline  [47] states that “malignant tumors are gener-
ally larger than benign tumors, and the standard value for 
distinguishing between benign and malignant tumors is 
0.7, but we should be aware that both benign and malig-
nant tumors gradually decrease as the tumor diameter 
increases.” The aspect ratio distribution for the B-mode 
image shown in Fig. 5(e) is consistent with this finding.

In this way, most, but not all, of the selected features 
in our proposed method are consistent with the fea-
tures considered important in clinical setting. Therefore, 
when the proposed method is applied in clinical sites, the 
explainability of the classification results can be ensured, 
for example, by presenting a typical distribution and a 
value for each feature.

Table 6  Comparison of conventional method (BUS) and proposed methods (CEUS, BUS+CEUS). All units except AUROC are in 
percent. Values in parentheses are 95 % confidence interval

Bold numbers indicate the best method within each metric

Method Conventional (BUS) Ours (CEUS) Ours (BUS+CEUS)
Number of selected features 5 5 7

AUROC 0.742 (0.642 - 0.833) 0.862 (0.792 - 0.924) 0.875 (0.795 - 0.936)

ACC​ 0.718 (0.650 - 0.767) 0.788 (0.717 - 0.850) 0.816 (0.750 - 0.883)

Precision (PPV) 0.737 (0.712 - 0.789) 0.825 (0.754 - 0.902) 0.841 (0.764 - 0.905)

Recall (Sensitivity) 0.947 (0.791 - 1.000) 0.898 (0.814 - 1.000) 0.920 (0.814 - 1.000)

F1 0.827 (0.771 - 0.860) 0.858 (0.817 - 0.899) 0.877 (0.828 - 0.921)

Specificity 0.140 (0.000 - 0.412) 0.510 (0.176 - 0.765) 0.550 (0.235 - 0.765)

NPV 0.402 (0.000 - 1.000) 0.680 (0.500 - 1.000) 0.749 (0.562 - 1.000)

Table 7  Selected features. “(B)” and “(C)” means the feature is selected from the B-mode and contrast image, respectively

Method Selected features

BUS TEP diff(B), Info measure correlation 2(B), Aspect ratio(B), Perimeter(B), Extent(B)

CEUS Wash-in slope, Convexity(C), Inverse difference moment normalized(C), Dice, Jaccard

BUS+CEUS Wash-in slope, Convexity(C), Inverse difference moment normalized(C), Dice, Aspect 
ratio(B), Extent(B), Cluster shade(C)
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Examiner dependency
The examiner specifies the guidance information, which 
is the only information that requires manual input, in 
our proposed method for extracting tumor regions, as 
described in the “Procedure to extract features” section. 
Therefore, the guidance information provided by differ-
ent examiners may lead to different classification results. 
Also, the same examiner may give different guidance 
information over time, which may lead to different clas-
sification results.

In this section, we describe the results of an experiment 
to verify the effect of guidance information on classifi-
cation performance. To validate the examiner depend-
ency, we divided 119 cases into two groups: Group 1 and 
Group 2. Group 1 consists of 99 cases (23 benign and 76 
malignant), and Group 2 consists of the remaining 20 
cases (10 benign and 10 malignant). A random split of 
the data was performed, with the number of cases in each 
group fixed. In this experiment, two examiners (examiner 

A and examiner B, who are JSUM Registered Medi-
cal Sonographers) independently entered the guidance 
information. Examiner A entered guidance information 
for all 119 cases, and four weeks later entered guidance 
information for the cases in Group 2. Examiner B entered 
guidance information only once for the cases in Group 2. 
A classifier (SVM) was trained on the Group 1 cases, with 
the guidance information provided by examiner A, and 
the classification performance for the Group 2 cases was 
evaluated. The features used in the classifier were combi-
nations of seven features described in the “Verification of 
hot spot size” section.

In this way, we obtained three sets of classification 
results: the first one is for the first input of guidance 
information by examiner A; the second one is for the sec-
ond input of guidance information of examiner A; and 
the third one is for the input of guidance information 
by examiner B. Intra-examiner correlation (comparison 
of the results of the two experiments using the guidance 
information by examiner A) and inter-examiner correla-
tion (comparison of the results of the first experiment of 
examiner A with the results of the experiment of exam-
iner B) were calculated with the kappa coefficients. The 
kappa coefficients were 1.0 for intra-examiner correlation 
and 0.798 for inter-examiner correlation. We confirmed 
that excellent agreement results were obtained for both 
intra- and inter-examiner correlations [48].

Conclusions
In this paper, we proposed a machine learning-based 
semi-automatic classification method for breast lesions 
on CEUS called Ceusia-Breast. Experimental results 
on 119 cases showed a significant improvement in clas-
sification performance compared with conventional 
classification methods using only B-mode images. We 
also confirmed that the selected features are related to 
findings considered important in clinical practice. Fur-
thermore, we verified the intra- and inter-examiner 
correlation in the guidance input for region extraction 
and confirmed that both correlations were in strong 
agreement.

The number of benign cases in this study was small 
compared to malignant cases, which is a limitation of this 
study because cases were collected at a second screening 
facility. Future work includes increasing the number of 
benign cases to confirm the effectiveness of our proposed 
method.
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