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Abstract 

Background This study aimed to develop a computed tomography (CT) model to predict Ki‑67 expression in hepa‑
tocellular carcinoma (HCC) and to examine the added value of radiomics to clinico‑radiological features.

Methods A total of 208 patients (training set, n = 120; internal test set, n = 51; external validation set, n = 37) 
with pathologically confirmed HCC who underwent contrast‑enhanced CT (CE‑CT) within 1 month before surgery 
were retrospectively included from January 2014 to September 2021. Radiomics features were extracted and selected 
from three phases of CE‑CT images, least absolute shrinkage and selection operator regression (LASSO) was used 
to select features, and the rad‑score was calculated. CE‑CT imaging and clinical features were selected using univari‑
ate and multivariate analyses, respectively. Three prediction models, including clinic‑radiologic (CR) model, rad‑score 
(R) model, and clinic‑radiologic‑radiomic (CRR) model, were developed and validated using logistic regression analysis. 
The performance of different models for predicting Ki‑67 expression was evaluated using the area under the receiver 
operating characteristic curve (AUROC) and decision curve analysis (DCA).

Results HCCs with high Ki‑67 expression were more likely to have high serum α‑fetoprotein levels (P = 0.041, 
odds ratio [OR] 2.54, 95% confidence interval [CI]: 1.04–6.21), non‑rim arterial phase hyperenhancement (P = 0.001, 
OR 15.13, 95% CI 2.87–79.76), portal vein tumor thrombus (P = 0.035, OR 3.19, 95% CI: 1.08–9.37), and two‑trait predic‑
tor of venous invasion (P = 0.026, OR 14.04, 95% CI: 1.39–144.32). The CR model achieved relatively good and stable 
performance compared with the R model (AUC, 0.805 [95% CI: 0.683–0.926] vs. 0.678 [95% CI: 0.536–0.839], P = 0.211; 
and 0.805 [95% CI: 0.657–0.953] vs. 0.667 [95% CI: 0.495–0.839], P = 0.135) in the internal and external validation sets. 
After combining the CR model with the R model, the AUC of the CRR model increased to 0.903 (95% CI: 0.849–0.956) 
in the training set, which was significantly higher than that of the CR model (P = 0.0148). However, no significant differ‑
ences were found between the CRR and CR models in the internal and external validation sets (P = 0.264 and P = 0.084, 
respectively).

Conclusions Preoperative models based on clinical and CE‑CT imaging features can be used to predict HCC 
with high Ki‑67 expression accurately. However, radiomics cannot provide added value.
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Background
Hepatocellular carcinoma  (HCC) is the most common 
type of primary  liver carcinoma  in adults and the third 
leading cause of cancer-related deaths worldwide [1]. 
Despite advances in surgical resection, a high rate of 
recurrence and metastasis remains, leading to a poor 
prognosis of HCC after surgical resection.

As a nuclear antigen, Ki-67 is highly expressed in 
malignant cells but cannot be detected in normal cells, 
and its proliferation index reflects the station of tumor 
proliferation activity and has a strong relationship 
with tumor grade [2]. Previous studies have shown that 
patients with HCC with high Ki-67 expression have a sig-
nificantly poor prognosis in terms of recurrence rates, 
overall survival (OS), disease-free survival (DFS), and 
relapse-free survival (RFS) [2, 3]. In addition, Ki-67-tar-
geted strategies for renal carcinoma have been shown to 
be effective in killing renal carcinoma cells and prolong-
ing patients’ prognosis [4]. Therefore, Ki-67 has become a 
promising target for other solid cancer therapies such as 
HCC [4, 5]. To date, the gold standard for the diagnosis 
of Ki-67 relies on surgical specimens that involve a sub-
stantial time delay for patients with HCC. If Ki-67 can be 
predicted before surgery, patients with HCC may receive 
more appropriate treatment procedures (such as targeted 
therapies alone or in combination with locoregional ther-
apy). Therefore, it is important to forecast the Ki-67 sta-
tus using a non-invasive method before surgery.

With great advances in artificial intelligence and com-
puting equipment, radiomics has flourished. Radiomics 
quantifies and characterizes the biological characteristics 
of tumors through a large number of quantitative features 
that are transformed from visual images. It is expected 
to achieve non-invasive, comprehensive, and dynamic 
quantification of the temporal and spatial heterogeneity 
of lesions. Thus, radiomics has important clinical value 
for the accurate diagnosis and treatment of diseases and 
prognosis prediction. Radiomics has been widely studied 
for the diagnosis and treatment of diseases [6, 7]. Radi-
omics features based on magnetic resonance imaging 
(MRI) images combined with laboratory factors and/or 
imaging features to develop HCC Ki-67 expression pre-
diction models are well recognized [5, 8, 9]. Contrast-
enhanced computed tomography (CE-CT) is widely used 
in clinics for the detection and diagnosis of HCC and is 
relatively inexpensive and rapid. However, previous radi-
omic studies based on CE-CT images only used the arte-
rial and portal venous phases and ignored the important 
value of the delayed phase [10], which cannot reflect 
whole tumor characteristics. In addition, they did not 
include traditional imaging features, which are impor-
tant in daily work. Finally, these studies did not include 
an external validation set to verify further the model’s 

stability and generalizability [11, 12]. Therefore, whether 
radiomics based on CE-CT analysis can add ancillary 
value to predict Ki-67 expression remains unclear, and 
the stability of radiomics needs to be further explored.

Therefore, this study aimed to develop, test, and vali-
date a clinic-radiologic (CR) model based on CE-CT 
imaging features, a rad-score model based on three 
phases of CE-CT imaging radiomics features, and a com-
bined clinic-radiologic-radiomic (CRR) model to predict 
Ki-67 expression in HCC preoperatively, then compare 
the stability of the CR and rad-score model, and investi-
gate the added value of radiomics features.

Methods
Study population
This retrospective study was approved by the institu-
tional review boards of the participating centers, and the 
informed consent from patients was waived off. Between 
January 2014 and September 2021, 171 consecutive 
patients with HCC who underwent preoperative CE-CT 
examination and surgery in center 1 were enrolled. All 
enrolled patients were randomly allocated to the train-
ing (n = 120) and internal test sets (n = 51) in a 7:3 ratio. A 
total of 37 patients with HCC from center 2 were enrolled 
as an external validation set. The inclusion criteria were 
as follows: 1) patients with pathologically proven soli-
tary HCC; 2) patients who underwent abdominal CE-CT, 
including arterial phase (AP), portal venous phase (PP), 
and delayed phase (DP), within 1  month before surgery 
(hepatectomy or liver transplantation); 3) patients who 
had a post-surgery immuno-oncologic characteristic 
diagnosis of HCC with a definite Ki-67 status; and 4) 
patients who had not undergone any oncologic treatment 
before surgery (liver transplantation, hepatectomy, chem-
otherapy, radiotherapy, or systemic immunotherapy). The 
workflow of this study is shown in Fig. 1.

Preoperative clinical and histopathological data
The following baseline data were obtained from the med-
ical records: age, sex, tumor number and size, cirrhosis, 
liver disease etiology, serum liver function indexes, and 
serum tumor markers.

Ki-67 expression was evaluated by calculating the per-
centage of positively stained cells (cell nuclei stained 
brown-yellow). Immunoreactivity in > 14% of tumor cells 
was classified as high Ki-67 expression and ≤ 14% as low 
Ki-67 expression [4, 9]. Pathological data were obtained 
from the pathology departments of each center. All sur-
gical specimens were reviewed by two pathologists from 
the two centers. In case of disagreement, a consensus was 
reached through discussion.
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Preoperative CT image features
CT examination
CT scans of the two centers were made using Toshiba 
Aquilion 64-layer CT, GE Revolution CT, GE Discovery 
64-layer Screw CT, GE Lightspeed 16-layer Spiral CT, 
Siemens Dual Source CT, and Siemens 128-layer CT 
devices. The patient was placed in a supine position, and 
the scan range was from the top of the diaphragm to the 
lower stage of both kidneys. Scanning parameters: tube 
voltage 120  kV, automatic adjustment of tube current, 
scanning layer thickness and layer spacing are 5  mm, 
reconstruction layer thickness is 1.25  mm or 1.2  mm, 
rotation time 0.5  s/r, field of view 350–400  mm × 3 
50–400  mm, matrix 256 × 256 or 512 × 512, Siemens 
dual-source CT and Siemens 128–layer CT pitch is 
0.900:1, other CT scanning equipment pitch is 0.984:1. 
All patients were given elbow intravenous injection of 
contrast medium idohexol (containing iodine 350  mg/
mL, Shanghai General Electric Pharmaceutical), injec-
tion dose 1.0–1.5  mL/kg body mass, and flow rate 3.5–
4.0 mL/s. Using contrast agent tracing trigger technology, 
the trigger point was set at the beginning of the abdomi-
nal aorta, and the scanning scan began after injection of 
contrast medium for 15 s. The trigger threshold was 120 
HU, the intra-abdominal aorta CT value reached 120 HU 
when the arterial phase was scanned, and the portal vein 

and delayed phase scans were performed after 30 s and 
300 s, respectively.

Image analysis
Analysis of all LI-RADS v2018 major (except for those 
related to growth since these data were unavailable in the 
original registry) and ancillary features and some other 
important imaging features based on CE-CT were per-
formed retrospectively by two independent radiologists 
(Xie with 10 years and Zhao with 5 years of experience) 
who were blinded to related clinical and pathologi-
cal information. The radiologists assessed the following 
CE-CT features for each patient (Supplement Fig. 1): (a) 
maximum tumor length (L-max ≤ 5  cm; L-max > 5  cm; 
(b) non-rim arterial phase hyperenhancement (APHE); 
(c) non-peripheral washout; (d) tumor capsule; (e) cap-
sule enhancement; (f ) corona enhancement; (g) nodule 
in nodule sign; (h) mosaic architecture; (i) scar sign; (j) 
tumor rupture; (k) intratumor necrosis; (l) portal vein 
tumor thrombus (PVTT); (m) two-trait predictor of 
venous invasion (TTPVI) (consisting of “internal arter-
ies” and “hypodense halos”); and (n) peritumoral satel-
lite. The reproducibility of all intra- and interobserver 
features was assessed using Cohen’s Kappa. Features with 
Kappa values greater than 0.7 were considered reproduc-
ible and included in the following feature selection.

Fig. 1 Flowchart of study inclusion. HCC, hepatocellular carcinoma
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Image segmentation and radiomic analysis
Image segmentation was performed in the open-source 
3D-Slicer 4.10.2 software (https:// downl oad. slicer. org/) 
and was based on the expert consensus on CT and MRI 
labeling of liver visceral focal lesions (2020 edition). The 
three-dimensional volume of interest (VOI) containing 
the tumor mass was manually outlined layer by layer by 
two radiologists (with 5 and 10  years of experience in 
abdominal imaging diagnosis, respectively) on arterial, 
portal venous, and delayed phase.

Radiomic feature extraction: before the feature extrac-
tion, standardized preprocessing (including voxel size 
resampling and gray-level discretization) was con-
ducted. Radiomics packets in 3D-Slicer software were 
used to extract the features of the outlined VOI, and all 
images were processed standard before extraction. First, 
to reduce the influence of image size on the result, all 
images were resampled to a uniform scale, the image 
grayscale was uniformized, the Gauss Laplace filter and 
wavelet filter were used for filtering, and 1,037 features 
were obtained in the arterial, portal venous, and delayed 
phases. The inter-observer reproducibility of all radiomic 
features extracted from the VOI was analyzed, and fea-
tures with an inter-observer intra-class correlation coef-
ficient (ICC) ≥ 0.8 were included for subsequent radiomic 
analysis.

Using the "StandardScaler, " "Levene," and "LassoCV" 
packages in R Studio to achieve data normalization, 
one-factor analysis, and decile-fold cross-validation of 
minimum absolute convergence and selection opera-
tor (LASSO) regression by optimizing the regression 
parameters (λ), most of the eigenvalues were reduced to 
zero, select the remaining non-zero coefficient features 
to obtain omics features that are highly correlated with 
Ki-67 expression. The radiomics features obtained from 

the training set were used to calculate the radiomics 
score (rad-score) of each patient.

Model development
A CR model was developed based on clinical and radio-
logical features selected from univariate and multivari-
ate logistic regression analyses. Similarly, a combined 
model, the CRR model, was developed based on clinical, 
radiological, and radiomic features selected from uni-
variate and multivariate logistic regression analyses. The 
CRR model was used to test whether the radiomic sig-
nature and clinical features were complementary for the 
prediction of Ki-67 expression. The diagnostic ability of 
the two models was evaluated based on the area under 
the receiver operating characteristic (ROC) curve (AUC 
value), and the DeLong test was used to select the best 
model. Decision curve analysis (DCA) was performed by 
quantifying the net benefit at all threshold probabilities 
to determine the clinical utility of the model.

A flowchart of the image segmentation, radiomics 
feature extraction, and model development is shown in 
Fig. 2.

Statistical analysis
Data analysis was performed to select features using the 
Statistical Package for the Social Sciences v26 software 
(IBM, Armonk, NY, USA) and R software (version 4.1.2). 
The continuous variables were described as medians 
and interquartile ranges, and categorical variables were 
described as frequencies and percentages. The statistical 
differences (between the training and validation sets and 
between high Ki-67 expression and low Ki-67 expression 
groups in the training and validation sets) of continu-
ous variables were compared using either the t-test or 
Mann–Whitney U test, and categorical variables were 

Fig. 2 Flowchart of tumor segmentation, feature extraction, and model building. Manual segmentation was performed in the multi‑phase 
images, and radiomics features were extracted. Then, LASSO was used for radiomics feature selection and finally, a model was establishment. 
Receiver operating characteristic (ROC) curve and the DCA curve for predicting Ki‑67 status were then developed. LASSO, least absolute shrinkage 
and selection operator; DCA, Decision curve analysis

https://download.slicer.org/
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compared using either the χ2 test or Fisher’s exact test. 
Interobserver variability was determined using Cohen’s 
Kappa coefficient for categorical variables. ROC curves 
were created using the MedCalc software (version 19.6), 
and the DeLong test was used to compare the differences 
in AUC values between the groups.

All statistical tests were two-sided, and a P-value < 0.05 
was considered statistically significant.

Results
Baseline characteristics
A total of 208 patients were recruited; 171 patients from 
center 1 were classified into a training set (n = 120, 49 for 
low Ki-67 expression, 71 for high Ki-67 expression; 105 
men and 15 women) and an internal test set (n = 51, 21 
for low Ki-67 expression, 30 for high Ki-67 expression; 41 
men and 10 women). Moreover, 37 patients from center 
2 (27 men and 10 women; 12 with low Ki-67 expression 
and 25 with high Ki-67 expression) were included in the 
validation set. There were no significant differences in the 
demographic and laboratory features among the training, 
test, and externally validated patients (Table 1). Accord-
ing to the Kappa value (> 0.7), 13 CT imaging features 
were selected (Supplement Table  1). Comparisons of 
CE-CT imaging features between the high and low Ki-67 
expression groups of each set are shown in Table 2.

Radiomic feature selection and performance of radiomic 
signature
A total of 3,111 intra-tumoral features were extracted 
from the AP, PP, and DP images. After ICC, data 

normalization and LASSO were described in the Meth-
ods section. Seven radiomic features were selected for 
the construction of the radiomic signature. Among these 
features, four, two, and three features from AP, PP, and 
DP, respectively, and four were first-order features, two 
were gray level size zone matrix (GLSZM), and one was a 
gray level co-occurrence matrix (GLCM); feature names 
and their weights are shown in Supplement Fig.  2. The 
AUC value of the radiomic signature was 0.728 (95% con-
fidence interval [CI]: 0.659–0.796) in the training set and 
0.711 (95% CI: 0.640–0.781) in the test set and external 
validation set (Table 3).

Feature selection and predictive model development 
for Ki‑67 expression
On multivariate analyses, HCCs with high Ki-67 expres-
sion were more likely to have high serum α-fetoprotein 
(AFP) levels (P = 0.041, odds ratio [OR] 2.54, 95% CI: 
1.04–6.21), non-rim APHE (P = 0.001, OR 15.13, 95% 
CI: 2.87–79.76), PVTT (P = 0.035, OR 3.19, 95% CI: 
1.08–9.37), and TTPVI (P = 0.026, OR 14.04, 95% CI: 
1.39–144.32) (Table  3, Fig.  3). Therefore, the CR model 
was developed using the four factors mentioned above 
and the CRR model was developed using these four fac-
tors and the radiomic signature.

The AUC values of the CR model were 0.836 (95% 
CI: 0.765–0.907) in the training set, 0.805 (95% CI: 
0.683–0.926) in the internal test set, and 0.805 (95% 
CI: 0.657–0.953) in the external validation set. The 
radiomic model achieved 0.762 (95% CI: 0.673–0.850) 
in the training set, 0.678 (95% CI: 0.536–0.839) in the 

Table 1 Comparison of Ki67 status and characteristics in both training and test HCC patients

HBV hepatitis B varus, HCV hepatitis C varus, AFP α-fetoprotein, ALB albumin, CA-199 carbohydrate antigen19-9, CEA carcino embryonie antigen

Characteristic Model derivation and verification Model application P

Training set (n = 120) Internal test set (n = 51) External validation set (n = 37)

Sex 0.255

 Male 105 41 27

 Female 15 10 10

Age 56.55 ± 9.53 56.14 ± 10.82 58.32 ± 9.88 0.804

Etiology 0.606

 HBV/HCV 107 47 19

 None or other 13 4 18

Serum AFP 0.995

  Normal 47 20 8

  Abnormal 73 31 29

Total bilirubin (nmol/L) 17.15(11.43–32.04) 17.11(11.71–31.15) 15.8(12.0–19.75) 0.828

ALB(g/l) 37.85(32.00–42.10) 37.80(31.80–42.10) 43.5(39.55–45.05) 0.412

CA199(ng/ml) 19.89(10.44–45.11) 19.90(13.42–46.1) 16.84(10.59–26.21) 0.446

CEA (ng/ml) 2.53(1.78–3.69) 2.63(1.89–3.65) 2.11(1.61–4.13) 0.056
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internal test set, and 0.667 (95% CI: 0.495–0.839) in 
the external validation set. After adding the radiomic 
model to the CR model, the CRR model achieved 0.903 
(95% CI: 0.849–0.956) in the training set, 0.848 (95% 
CI: 0.742–0.954) in the internal test set, and 0.877 
(95% CI: 0.676–0.986) in the external validation set. 
The ROC curves for each model are shown in Fig.  4. 
After the Delong test, in the training set, there were no 
significant differences in the AUC values between the 
CR and Radiomic models, CRR and Radiomic mod-
els (P > 0.05), and the AUC value of the CRR model 
was greater than that of the CR model (P = 0.023). 
However, in the internal and external validation sets, 
no significant differences in the AUC values were 
observed between the CRR and CR models (P > 0.05).

In the internal test set, the sensitivity, specificity, and 
accuracy of the CR model were 90.0%, 71.0%, and 70.6%, 
respectively; for the CRR model, they were 83.0%, 76.0%, 
and 58.8%, respectively; and those of the radiomic model 
were 74.0%, 65.0%, and 47.1%, respectively. In the exter-
nal test set, the sensitivity, specificity, and accuracy of the 
CR model were 76.0%, 75.0%, and 75.7%, respectively; for 
the CRR model, 64.0%, 70.0%, and 62.2%, respectively; 
and those of the radiomic model were 48.0%, 66.0%, and 
37.8%, respectively (Table  4). After combining the rad-
score and CR models, the diagnostic sensitivity, specific-
ity, and accuracy of the CRR model did not increase.

The DCA of the CRR model in the training set is an 
optimal decision-making strategy compared with the 
other two models. However, the test and external vali-
dation sets did not result in significant extra significant 
benefits compared with the CR model (Fig. 4).

Discussion
In this study, we established and validated a CR model 
and a CRR model based on preoperative enhanced 
CT for the preoperative identification of high Ki-67 

expression in single HCCs, and compared the predictive 
performance of these two models. The results indicated 
that the CRR model showed a higher AUC value but no 
statistically significant improvement over the CR model.

Radiomics has recently been introduced as a novel 
method for detecting Ki-67 and is considered a potential 
bridge that connects medical imaging and personalized 
medicine. The 3D volume (VOI) of the tumor can pro-
vide better morphological information and better reflect 
tumor heterogeneity than 2D (ROI) [13, 14]. In our 
study, seven radiomic features were selected that were 
most related to Ki-67 expression in the three phases of 
CE-CT. Our results showed that the AUC value of the 
rad-score model decreased from the training set (0.762) 
to the internal test set (0.687) to the external validation 
set (0.667), and the performance of this model was not 
as good as that of Wu [12], which illustrates the instabil-
ity of the radiomics model despite the standardization 
of images and data before data analysis. The sensitivity, 
specificity, and accuracy of the rad-score model were 
unstable. In our study, the rad-score model may help to 
increase the prediction ability of the CR model in the 
training set; however, in the internal and external vali-
dation sets, there were no significant differences among 
the three models, indicating that radiomic features 
could not provide much-added value for the prediction 
of high Ki-67 expression HCCs, which yielded incon-
sistent results with other studies [5, 12]. This may be 
because although some published articles on the same 
topic of using a radiomics model based on CE-CT\Gd-
EOB-DTPA-enhanced MRI to predict Ki-67 expression 
in HCC [5, 9, 11, 12, 15], there are many differences in 
details compared with our study. First, most of the stud-
ies were based on the largest on multiple HCC lesions, 
which vary greatly and do not explain the one-to-one 
correspondence between each HCC lesion and Ki-67 
status, thus the results are unreliable. Second, radiom-
ics research based on CT imaging has not established an 
external validation set to verify the stability of the radi-
omics model [11, 12]. In contrast, the CR model is rela-
tively stable, both in AUC value, sensitivity, specificity, 
and accuracy, which is similar to the performance of the 
radiomics combined model of the internal test set (AUC 
value: 0.819) in Wu’s [12] study and is better than that in 
Ye’s [5] study based on MRI images. In the CRR model 
of the internal and external validation sets, the rad-score 
model had no added value for predicting Ki-67 expres-
sion preoperatively. DCA of the training set showed good 
clinical benefits; however, the test and external validation 
sets showed little clinical utility.

Most models based on radiomics methods are still 
in the scientific research stage and have not yet been 
clinically applied. This dilemma limits the social and 

Table 3 Factors significantly associated with Ki‑67 expression

Multivariable analysis 1: multivariate analysis with clinic-radiologic(CR) 
model variables. Multivariable analysis 2: multivariate analysis with clinic-
radiologic-radiomic(CRR) model variables and radiomic signature, OR odds 
ratio, CI confidence interval, AFP alpha-fetoprotein, APHE arterial phase 
hyperenhancement, PVTT portal venous tumor, TTPVI two-trait predictor of 
venous invasion

Variables Multivariate analysis1 Multivariate analysis2

OR(95%CI) P OR(95%CI) P

AFP(ng/ml) 2.54(1.04–6.21) 0.041 3.17(1.11–9.01) 0.031

APHE(absent) 15.13(2.87–79.76) 0.001 20.63(3.71–114.68) 0.001

PVTT(absent) 3.19(1.08–9.37) 0.035 2.69(0.793–9.11) 0.043

TTPVI(absent) 14.04(1.39–144.32) 0.026 2.92(1.72–4.96) 0.046

Rad‑score  < 0.001
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commercial value of radiomic approaches. The general-
izability of radiomics models is crucial for their clinical 
application. However, the reality is that most radiom-
ics models perform well on the training data but can-
not achieve stable performance in internal and external 
independent validation; that is, the generalization of the 

model is poor. There are many possible reasons, such 
as (1) insufficient data sample size and sample diversity, 
(2) poor consistency of data labeling, and (3) the special 
screening method was not good, and stable and univer-
sal features reflecting tumor heterogeneity could not be 
found. Therefore, improving the generalization of the 

Fig. 3 Representative images of multiphase contrast enhanced CT (CE‑CT). A‑E high Ki‑67 HCC lession (black arrow), A, non‑rim APHE and internal 
arteries (white arrow) on AP, B‑C, hypodense halo and PVTT on PP, wash out and enhancing capsule on DP; consisting of “internal arteries” 
and “hypodense halos” defined as TTPVI, E, High and low Ki67 expression (70.5%), the brown regions represent positive Ki67 expression; And F‑J 
show low Ki‑67 expression HCC lesion (black arrow), F, no internal arteries on AP, G‑I, no hypodense halos and PVTT on PP, non‑enhancing capsule 
on DP, no TTPVI present. J, low Ki67 expression (8.2%); AP, arterial phase; PP, portal venous phase; DP, delayed phase; PVTT, portal vein tumor 
thrombus; TTPVI, two‑trait predictor of venous invasion

Fig. 4 Three models predict ROC curves and DCA for KI‑67‑high expression. Figure A, D: training set; Figure B, E: internal test set; Figure C, F: external 
validation set. CR, clinico‑radiologic; CRR, clinic‑radiologic‑radiomic
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model is an important problem that urgently needs to be 
solved in the field of radiomics.

Our study found that the serum AFP levels in the high 
and low Ki-67 groups were significantly different, con-
sistent with previous studies [5, 16]. High serum AFP 
expression is correlated with more biologically aggres-
sive properties and unfavorable tumor behaviors in 
HCCs [16, 17]. High serum AFP levels are more likely to 
be observed in highly proliferative HCCs [5]. LI-RADS 
major and axillary features could help in the accurate and 
differential diagnosis of HCC [18]. In addition, previous 
studies have found some specific features important in 
reflecting the malignancy of hepatocellular carcinoma 
and making treatment regimens in daily diagnostic work 
[19, 20]. Segal et al. first proposed TTPVI, strongly cor-
related with MVI and a specific HCC molecular pro-
file related to angiogenesis, cellular proliferation, and 
matrix invasion [21–23]. It may also be used as a pre-
operative biomarker for predicting postoperative out-
comes in patients with early-stage HCC [24]. Portal 
vein tumor thrombus (PVTT) plays a major role in the 
prognosis and clinical staging of HCC [25]. We assumed 
that these features might help improve the prognosis of 
HCCs with high Ki-67 expression. Thus, in our study, 
we analyzed both the LI-RADS features and the imag-
ing features mentioned above. Non-rim APHE, TTPVI, 
and PVTT were independent predictors of high Ki-67 
expression. As Ki-67 reflects cellular proliferation and 
matrix invasion, TTPVI and PVTT could help improve 
the prognosis of HCC with high Ki-67 expression preop-
eratively. After combining these three imaging features 
with AFP level, the CR model showed good and stable 
predictive performance of Ki-67, with an AUC of 0.836 
(95% CI: 0.765–0.907), 0.805 (95% CI: 0.683–0.926), and 
0.805 (95% CI: 0.657–0.953) in training, testing, and 
external validation sets, respectively, helping identify 
high-risk HCC groups. This is even better than the CR 
model based on MRI [5]. Therefore, our model based on 
CE-CT imaging could assist in the formulation of clinical 
treatment protocols, such as high-risk HCC groups that 
could receive advanced treatment target therapy before 
surgery or postoperative adjuvant transcatheter arterial 
chemoembolization (PA-TACE), to reduce the rate of 
recurrence after surgery [4, 26]. Therefore, after compre-
hensive analysis, the CR model was found to be the best 
predictive model for this study because of its stability and 
generalization.

This study had several limitations. First, the sample 
size is still small, and there may be overfitting dur-
ing the establishment of the radiomics model; there-
fore, it is necessary to verify further the large sample 
and multi-center data in the future. Second, our study 
did not include planned CT scan imaging that could 

provide raw information about HCC, such as fat com-
position. Third, the three sets use several different 
models of scanning settings standby. Finally, although 
all images before extracting the radiomics features are 
resampled sampling and grayscale uniform processing, 
they cannot completely exclude the impact of differ-
ent equipment on the radiomics features, and there is a 
need for future research to further solve the problem of 
image standardization of different institutions and dif-
ferent devices.

Conclusions
As the preoperative CR model has good and stable pre-
dictive value in the preoperative prediction of Ki-67 
expression in HCC, radiomics does not provide added 
value. Thus, there may be no need to add workforce to 
the addition of radiomics features in the prediction of 
HCC Ki-67 expression preoperatively.
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