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Abstract
Background  In studies of the association of adiposity with disease risk, widely used anthropometric measures of 
adiposity (e.g. body-mass-index [BMI], waist circumference [WC], waist-hip ratio [WHR]) are simple and inexpensive 
to implement at scale. In contrast, imaging-based techniques (e.g. magnetic resonance imaging [MRI] and dual x-ray 
absorptiometry [DXA]) are expensive and labour intensive, but can provide more accurate quantification of body fat 
composition. There is, however, limited evidence about the relationship between conventional and imaging-derived 
measures of adiposity.

Methods  We searched Scopus and Web of Science for published reports in English of conventional versus imaging-
derived measurements of adiposity. We identified 42 articles (MRI = 22; DXA = 20) that met selection criteria, involving 
42,556 (MRI = 15,130; DXA = 27,426) individuals recruited from community or hospital settings. Study-specific 
correlation coefficients (r) were transformed using Fisher’s Z transformation, and meta-analysed to yield weighted 
average correlations, both overall and by ancestry, sex and age, where feasible. Publication bias was investigated 
using funnel plots and Egger’s test.

Results  Overall, 98% of participants were 18 + years old, 85% male and 95% White. BMI and WC were most strongly 
correlated with imaging-derived total abdominal (MRI-derived: r = 0.88-; DXA-derived: 0.50–0.86) and subcutaneous 
abdominal fat (MRI-derived: 0.83–0.85), but were less strongly correlated with visceral abdominal fat (MRI-
derived: 0.76-0.79; DXA-derived: 0.80) and with DXA-derived %body fat (0.76). WHR was, at best, strongly correlated 
with imaging-derived total abdominal (MRI-derived: 0.60; DXA-derived: 0.13), and visceral abdominal fat (MRI-
derived: 0.67; DXA-derived: 0.65), and moderately with subcutaneous abdominal (MRI-derived: 0.54), and with DXA-
derived %body fat (0.58). All conventional adiposity measures were at best moderately correlated with hepatic fat 
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Introduction
Globally, obesity affects about 700 million adults and the 
prevalence continues to rise steadily in most countries 
[1]. Higher levels of adiposity, which can be measured in 
various ways, are associated with impaired glucose and 
insulin resistance [2–4], hypertension [2, 4–9], and dys-
lipidaemia [2, 4, 10], and with increased risks of many 
different diseases such as cardiovascular disease (CVD) 
[11–14], diabetes [2, 4], and certain cancers (e.g. colon 
[15], breast [16] and prostate [17]). As a simple conven-
tional anthropometric measurement, body mass index 
(BMI), defined as weight (kg) divided by height square 
(meter), has been widely used to measure body fat and 
to predict risks of morbidity [18] and mortality [1, 19]. 
However, people with similar BMI may have different 
comorbidities and disease risks [20], reflecting in part the 
inability of BMI to reliably measure total body fat, and 
the large variation of visceral fat distribution between 
individuals [21, 22]. Other conventional anthropomet-
ric measures include waist circumference (WC) and 
waist to hip ratio (WHR), which are often used as proxy 
measures of abdominal fat [23], and have been shown to 
be better predictors of certain diseases (e.g. type 2 dia-
betes) compared to BMI in some populations [24, 25]. 
There is, however, relatively little evidence as to how well 
these anthropometric measures of abdominal adiposity 
are likely to reflect the relative distribution of visceral as 
opposed to subcutaneous adipose tissue in the abdomen.

Adipose tissue exists under the skin (i.e. subcutane-
ous adipose tissue [SAT]), and around the muscles of the 
upper arm, buttocks, abdomen, hips and thighs. It also 
accumulates inside the peritoneal cavity and between 
the internal organs and torso (i.e. visceral adipose tissue 
([VAT]). Moreover, it may be stored within tissues that do 
not normally store fat, such as the liver and the muscles, 
in which case it is termed ectopic fat [26]. The amount 
and distribution of adipose tissue among individuals dif-
fers by sex, age and ancestry but is also affected by many 
other factors (e.g. lifestyles, genetics). Adipose tissue is 
dynamically regulated, through the size and number of 
adipocytes, in response to varying energy demands [27]. 
A positive energy balance between intake and expendi-
ture results in more fat storage and leads to weight gain.

Advances in imaging techniques have allowed more 
accurate quantification of body fat composition includ-
ing visceral and ectopic fat deposition (e.g. cardiac and 
hepatic fat). Currently, magnetic resonance imaging 
(MRI) and dual X-ray absorptiometry imaging (DXA) are 
the two most commonly used imaging techniques. MRI 
involves three-dimensional imaging, enabling precise 
measurement and quantification of adipose tissue in all 
organs such as muscle, bone and regional areas includ-
ing hepatic fat. However, it is more expensive, time con-
suming, and labour intensive compared with DXA [28]. 
By differentiating lean from fat tissue reliably, DXA pro-
vides good quantification of total and abdominal fat, but 
can only indirectly measure visceral fat by subtracting 
subcutaneous from the total abdominal fat. Nevertheless, 
compared with conventional anthropometric measures 
such as BMI and WC, these imaging-based techniques 
are difficult to implement at scale. Moreover, substan-
tial uncertainty remains about the relationship between 
imaging-derived and conventional measures of adiposity 
and about their relevance, both qualitatively and quan-
titatively, for risks of specific diseases in diverse popula-
tions. Hence there is a need to bring together and review 
findings from all published studies which have assessed 
the agreement between imaging- and anthropometric- 
based measures of body fat.

We present a systematic review and meta-analyses of 
the published findings comparing conventional anthro-
pometric with MRI- and DXA-based measures of body 
fat composition.

Methods
We carried out a systematic literature review using the 
Preferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) checklist [29].

Eligibility criteria
Studies were eligible for inclusion if they reported cor-
relations between MRI/DXA and any of the conventional 
anthropometric measures of body composition (e.g. BMI, 
WC, WHR) in adolescent or adult participants. Explicit 
details on inclusion and exclusion criteria can be found 
in Additional file (1) Two online biographic databases 

(MRI-derived: 0.36–0.43). In general, correlations were stronger in women than in men, in Whites than in non-Whites, 
and in those aged 18 + years.

Conclusions  In this meta-analysis, BMI and WC, but not WHR, were very strongly correlated with imaging-derived 
total and subcutaneous abdominal fat. By comparison, all three measures were moderately or strongly correlated 
with imaging-based visceral abdominal fat, with WC showing the greatest correlation. No anthropometric measure 
was substantially correlated with hepatic fat. Further larger studies are needed to compare these measures within the 
same study population, and to assess their relevance for disease risks in diverse populations.
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(Scopus and Web of Science) were searched covering a 
period from 1 to 2000 to 4 January 2023. Details of the 
search strategy are given in Additional file (2) Results 
were limited to publications in English. Although fat and 
adipose tissue have separate biochemical and metabolic 
characteristics, these terms have been used interchange-
ably for the purposes of the current study.

For included studies, two reviewers independently 
extracted the relevant pre-defined data regarding study 
population, participant demographic characteristics 
(e.g. sex, age, and ancestry), method of assessing weight, 
height and BMI, and adjustment for confounders. The 
measures of adiposity are composed of: (i) conven-
tional anthropometric measures: BMI, WC, WHR; (ii) 
MRI-derived measures: abdominal total adipose tissue 
(ATAT), abdominal subcutaneous adipose tissue (ASAT), 
visceral adipose tissue (VAT), and hepatic fat; (iii) DXA-
derived: ATAT, VAT, and %body fat (%BF) (defined as the 
percentage of total body fat mass over total body mass). 
The extracted information was recorded onto a spread-
sheet and compared between two reviewers. Any incon-
sistencies were checked, reviewed and corrected upon 
discussion.

Statistical analyses
We used the metacor function from the meta package in 
R to calculate the weighted average correlations between 
imaging- and anthropometric-based adiposity measures. 
In this method, study specific correlations (r) are trans-
formed to Fisher’s Z values, with an estimated variance of 
1/(n-3), where n is the number of participants included in 
the study. The overall weighted correlation for all studies 
was derived by applying study-specific weights propor-
tional to the inverse of the variance of the study-specific 
Fisher’s Z values [30]. We defined absolute correlations of 
magnitude < 0.20 as very weak, 0.20–0.39 as weak, 0.40–
0.59 as moderate, 0.6–0.79 as strong, and ≥ 0.8 as very 
strong. Heterogeneity in estimated correlations accord-
ing to study, ancestry, sex and age was assessed using 
the Q-test [31]. Statistical tests with a p-value less or 
equal to 0.05 were considered significant. One included 
study [32] was extremely large compared with all other 
included studies and therefore contributed substantially 
to the overall findings [32]. To assess the potential impact 
of this study on the overall findings, we presented the 
results of the meta-analysis separately with and without 
inclusion of this study.

Publication bias was assessed using Funnel plots and 
Egger’s test [33]. All analyses were performed in pro-
gramming language R version 4.1.1.

Results
In total, the initial search identified 4,978 reports. After 
removing duplicate reports (n = 2,102), 42 studies were 
included in the meta-analysis, including 22 on MRI, 20 
on DXA and 2 on both MRI and DXA (Fig.  1). Overall 
these 42 studies included a total of 42,556 participants, 
including 15,130 with information on MRI [32, 34–54] 
and 27,426 with information on DXA [32, 50, 55–72] 
(Table 1). Participant characteristics of included articles 
in the literature review are presented in Additional files 
3 and 4.

Of the participants included, 98% were adults (i.e. 
18 + years), 85% were men, 95% were White, and 95% 
were recruited from the general community. The mean or 
median BMI of study populations ranged from normal to 
obese class II according to the World Health Organisa-
tion criteria.

Anthropometric vs. MRI-derived body composition
Figure  2 presents the weighted average correlations 
between anthropometric and MRI measures of body 
fat composition. Overall, BMI and WC showed very 
strong correlations with ATAT (BMI: r = 0.88, 95%CI 
0.87–0.88; WC: 0.88, 0.88–0.89) and ASAT (BMI: 0.85, 
0.85–0.86; WC: 0.83, 0.82–0.83), and strong correlation 
with VAT (BMI: 0.76, 0.76–0.77; WC: 0.79, 0.79–0.80). 
Compared with BMI and WC, the corresponding cor-
relations between WHR and MRI-derived measures of 
body fat composition were generally lower (ATAT: 0.60, 
0.59–0.61; VAT: 0.67, 0.66–0.68; ASAT: 0.54, 0.52–0.55). 
Unlike BMI and WC, WHR was more strongly correlated 
with VAT than with ASAT. However,  BMI and WC still 
showed greater correlations with VAT than did WHR. All 
of the anthropometry measures were at best only weakly 
to moderately correlated with hepatic fat (BMI: 0.43, 
0.41–0.44; WC: 0.41, 0.40–0.43; WHR: 0.36, 0.34–0.37). 
Overall, the results of the meta-analysis with and without 
the UKB study were comparable.

The correlations between anthropometric and specific 
MRI-derived measures of body fat varied to some extent 
by ancestry, sex, age and study setting. Notably, the cor-
relations were significantly stronger in Whites than non-
Whites for BMI with VAT (0.77 vs. 0.66) and ASAT (0.85 
vs. 0.71);   for WC with VAT (0.80 vs. 0.58) and ASAT 
(0.83vs 0.69); and for WHR with VAT (0.67 vs. 0.36) 
(Additional file 5). Correlations were stronger in women 
than men for BMI with ATAT (0.92 vs. 0.88) and ASAT 
(0.91 vs. 0.85); but weaker in women than men for BMI 
with VAT (0.72 vs. 0.78), and WHR with ATAT (0.38 vs. 
0.60); and VAT (0.55 vs. 0.67) (Additional file 6). There 
was also some evidence of differences by age, in that cor-
relations were somewhat higher in those aged 18+  com-
pared with those aged <18 for BMI with ATAT (0.88 vs. 
0.82) and VAT (0.77 vs. 0.65); for WC with VAT (0.79 vs. 
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0.70), and for WHR with VAT (0.67 vs. 0.54). However, 
there was a lower correlation in those aged 18+ com-
pared with those aged <18  for WHR with ASAT (0.54 
vs. 0.69) (Additional file 7). There was some evidence 
that correlation coefficients between anthropometric 
and MRI-derived measures were somewhat greater in 
studies conducted within a community as opposed to a 
hospital setting. In particular, correlations were greater 
in community versus hospital based studies for BMI 
with VAT (0.78 vs. 0.59) and ASAT (0.86 vs. 0.61); for 
WC with ATAT (0.89 vs. 0.81), VAT (0.80 vs. 0.70) and 
ASAT (0.83 vs. 0.61); and for WHR with ATAT (0.60 vs. 
0.47) and ASAT (0.54 vs. 0.06) (Additional file 8). At least 
some of the between study heterogeneity observed in 
certain pairwise comparisons (16 out of 28) may be due 

to differences in study populations according to one or 
more of ancestry, sex, age and study setting (Additional 
files 5–8).

Anthropometric vs. DXA-derived body composition
Figure  3 shows correlations of anthropometric with 
DXA-based measures of body fat. BMI was most strongly 
correlated with ATAT (0.86, 0.86–0.87), followed by 
VAT (0.80, 0.79–0.80) and %BF (0.76, 0.76–0.77). Com-
pared with BMI, the correlations between WC and DXA-
derived measures of body fat were generally weaker for 
ATAT (0.50, 0.48–0.52), but not for VAT (0.80, 0.79–
0.80) or %BF (0.76, 0.76–0.77). Likewise, compared with 
WC, WHR showed weaker correlations with ATAT (0.13, 
-0.22-0.45), VAT (0.65, 0.64–0.66) and %BF (0.58, 0.57–
0.59), albeit based on relatively few studies. Overall, the 

Fig. 1  Flow diagram of selection procedures in the literature review. a. Details of the excluded studies can be found in Additional file 14
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results of the meta-analysis with and without the UKB 
study were comparable, but for correlation of WC with 
VAT the addition of the UKB study increased the correla-
tion from moderate to strong (0.51 vs. 0.80).

Women showed stronger correlations than men for 
BMI with VAT (0.81 vs. 0.74), and %BF (0.77 vs. 0.66); 
and for WC with ATAT (0.61 vs. 0.40), and VAT (0.84 vs. 
0.43) (Additional file 9). Correlations were significantly 
stronger in those aged 18+ compared with those <18 for 
BMI with VAT (0.80 vs. 0.59) and %BF (0.77 vs. 0.39); and 
for WC with VAT (0.80 vs. 0.68) and %BF (0.76 vs. 0.46), 
but weaker for WC with ATAT (0.48 vs. 0.84) (Additional 
file 10). At least some of the between study heterogene-
ity observed in certain pairwise comparisons (9 out of 
14) may be due to differences in the study populations 
according to one or more of sex and age (Additional files 
9 and 10). None of the studies included reported correla-
tions of interest by ancestry groups, and subgroup analy-
ses by study setting were not feasible for DXA related 
measures, because too few studies with DXA measures 
were conducted within a hospital setting (< 2%).

In general, correlations of all anthropometric measures 
with imaging-derived ATAT and VAT were higher for 
MRI- than DXA-derived measures, the only exception 
being for BMI and WC, which showed a slightly greater 
correlation with DXA- than MRI-derived VAT (Addi-
tional file 11).

Publication bias
Although the number of included studies was relatively 
small, funnel plots showed evidence of an asymmetric 
distribution for some pairwise comparisons, with the 
majority of the smaller studies clustering to the left of the 
mean Fisher’s Z correlations, suggesting some degree of 
publication bias (Additional files 12 and 13). The formal 
tests showed nominally significant results for correla-
tions of (a) BMI versus MRI-derived and DXA-derived 
VAT, (b) WC versus MRI-derived VAT, and (c) WHR ver-
sus DXA-derived VAT, which may be due to the different 
population characteristics between studies. For example, 
the MRI studies included a mixture of large and small 
studies, with sample sizes ranging from 10 to 11,501, and 
participants recruited from hospital and community set-
tings, and at different ages.

Discussion
This systematic literature review and meta-analysis of 
42 studies provides a comprehensive summary of the 
available evidence regarding the correlation between 
imaging-based body fat composition and conventional 
anthropometric measurements. We found that both BMI 
and WC were very strongly correlated with MRI-derived 
total and subcutaneous fat in the abdominal area, and to a 
slightly lesser extent, with visceral abdominal fat. In con-
trast, WHR showed moderate to strong correlations with 
all MRI-derived measures, which were somewhat stron-
ger with visceral than with subcutaneous abdominal fat. 
All the anthropometric measures considered were weakly 
to moderately correlated with MRI-derived hepatic fat. 
In general, correlations of anthropometric with imag-
ing-based abdominal total fat and visceral abdominal 
fat tended to be higher for MRI-derived than for DXA-
derived metrics. For certain pairwise comparisons, there 
was evidence of heterogeneity across certain popula-
tion subgroups (e.g. somewhat stronger correlations in 
women than men for WC with ATAT and VAT, and in 
Whites). Although the UK Biobank study [32] accounted 
for around 85% of all male participants included in the 
meta-analyses, the overall correlation estimates were 
relatively similar with and without inclusion of this study, 
suggesting that the presence of high proportion of men 
did not unduly influence the overall estimates.

It remains unclear to what extent imaging-derived 
adiposity may improve our understanding of obesity-
related diseases. In a few small cohort studies (sample 
size around 3,000) that have measured body fat using 
computed tomography, there was good evidence that 
increased VAT, hepatic fat and pericardial fat are asso-
ciated with certain cardio-metabolic risk factors such as 
impaired glucose and hypertension [73–76], and cancer 
[77] after adjusting for BMI or WC. Some of these stud-
ies reported correlations ranging from weak to strong 

Table 1  Summary of participant’s characteristics in the meta-
analyses

Imaging 
method

Characteristics MRI DXA
No. of studies 23a 20
No. of participants 15,130 27,426
Age group, %
< 18 years 2.5 1.4

≥ 18 years 97.5 98.6

Male,% 89.8 83.1
BMI rangeb, kg/m2 22.0–

35.0
17.7–
33.3

Ethnicity, %
White 96.1 95.1
Non-White 3.9 4.9
Study setting, %
Community 89.1 98.1
Hospital 8.5 1.5
Unspecified 2.4 0
a. The number of unique studies included was 22. The study by Kulberg et al., 
2007 was included as two studies with distinct age groups (mixed younger 
adults and elderly adults)

b. mean or median according to what was reported in the study
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between BMI and visceral fat (-0.19-0.61), and between 
WC and visceral fat (0.23–0.66), and reported very weak 
correlations of BMI and WC with hepatic fat (-0.19 and 
-0.04, respectively) [73, 74].

A key finding from this study is that BMI, which is gen-
erally viewed as a measure of overall or general adiposity, 
had similar if not higher correlations with imaging-based 
measures of visceral fat as did WC and WHR, which are 
commonly used as anthropometric markers of abdominal 

and/or visceral fat. In fact, although the correlation of 
BMI with MRI-derived visceral fat (0.76, 0.76–0.77) was 
slightly smaller than that for WC (0.79, 0.79–0.80), it was 
slightly greater than that for WHR (0.67, 0.66–0.68). The 
more modest correlation of WHR with visceral fat com-
pared to that of BMI or WC may reflect a greater degree 
of error in its measurement since, unlike BMI and WC, it 
is derived from two separate body measurements (waist 
and hip) [78–80]. Although anthropometric measures of 

Fig. 2  Correlations between MRI-derived adiposity and conventional anthropometric measures of adiposity. A black box denotes the correlation coef-
ficient reported in each study with its size proportional to (n -3), where n is the sample size of the study. A diamond denotes the meta-analysed overall 
correlation coefficient with the solid line indicating zero correlation. Heterogeneity is assessed with a Q-test
Abbreviations: MRI = magnetic resonance imaging; r = correlation coefficient; BMI = body mass index; WC = waist circumference; WHR = waist to hip ratio; 
ATAT = abdominal total adipose tissue; VAT = visceral adipose tissue; ASAT = abdominal subcutaneous adipose tissue; N/A = not available
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Fig. 3  Correlations between DXA-derived measures of adiposity and conventional anthropometric measures of adiposity. Conventions as in Fig. 2. Ab-
breviations: DXA, dual x-ray absorptiometry; r, correlation coefficient; BMI, body mass index; WC, waist circumference; WHR, waist to hip ratio; ATAT, 
abdominal total adipose tissue; VAT, visceral adipose tissue; %BF, percent body fat; N/A, not available
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adiposity are strongly correlated with visceral fat, they 
are not well correlated with measures of ectopic fat, as 
evidenced by their modest correlations with MRI-derived 
liver ectopic fat. It should be noted, however, that these 
correlations were mainly based on a mixture of direct 
and indirect comparisons of different participants. Future 
large studies of different measures of adiposity in the 
same study populations are needed to confirm (or refute) 
the present study findings.

Previous studies have suggested that both MRI and 
DXA can provide an extremely accurate assessment of 
adipose tissue distribution [36, 47, 81–85]. Unfortunately 
we were not able to directly assess this because none of 
the studies included in the present meta-analyses simul-
taneously applied these two imaging techniques to the 
same participant. Nevertheless, our indirect compari-
son of the data showed that the correlations of anthro-
pometric with MRI-derived adiposity measures were 
consistently higher than corresponding correlations with 
DXA-derived measures. Differences in study population 
characteristics between studies reporting on MRI- and 
DXA- based measures could have contributed to the 
apparent differences in the agreement between anthro-
pometric measures and DXA-derived compared with 
MRI-derived measures. In particularl the fact that signifi-
cant differences were found in the agreement of the latter 
between community versus hospital based participants 
may support the above argument.

As in the present study, previous studies have reported 
modest differences in the correlation between imaging 
and anthropometric measurement by sex, ancestry and 
age [34, 38, 42, 44–47, 49, 50, 56, 57, 61, 63, 68, 70, 86]. 
There is also evidence that body fat composition differs 
by ancestry, with East and South Asians more likely to 
accumulate visceral fat, in comparison to other ancestry 
populations [87]. Although we were not able to investi-
gate these ancestry groups, we found evidence of signifi-
cant differences between Whites and non-Whites, albeit 
based on small number of participants, in correlations of 
WHR with various imaging-based adiposity measures. It 
is well established that body shape and fat distribution 
differ by sex, with men more likely to store fat around 
their abdomen, known as an android pattern, and women 
more likely to store subcutaneous fat around their hips, 
buttocks and thighs producing a body profile known as 
gynoid pattern [88]. These differences in fat distribution 
by sex may have contributed to the consistently higher 
correlations which we observed of BMI with abdominal 
total, subcutaneous and visceral fat in women than men. 
Ageing also affects body fat distribution with the amount 
of visceral fat increasing and subcutaneous fat decreasing 
with age [89]. We found some evidence of differences by 
age with the most notable those aged 18+ having a higher 
correlation than those <18  for all the anthropometric 

measures with both MRI- and DXA-derived visceral fat. 
It is well established that certain diseases (e.g. sarcope-
nia and cachexia) affect body fat distribution [90]. We 
found some evidence of greater correlations between 
anthropometric and MRI-derived adiposity measures in 
those studies that were community based. This may sug-
gest that anthropometric indices are a poorer measure 
of specific body fat components in those with underly-
ing health conditions. Previous studies also reported that 
activity levels, medications, dietary habits, alcohol and 
smoking consumption affect the body fat profile [91, 92], 
but it was not possible to investigate these since the cor-
relations of interest were not available in the published 
studies.

This is the first systematic literature review and meta-
analysis to investigate the correlations between imaging-
derived and anthropometric measurements of adiposity, 
including more than 15,000 individuals with MRI-derived 
body fat measures,  and more than  27,000  with DXA-
derived measures. However, our study also had several 
limitations. Firstly, the included studies had inconsistent 
definitions of body fat components in the abdominal 
area. For example, one study defined visceral fat between 
L4 and L5 intervertebral disk [39], while another defined 
visceral fat between L1 and L5 [38]. Moreover, although 
most studies investigated total and/or subcutaneous 
abdominal fat, two studies [38, 42] measured these from 
head to toe and one study measured gluteal subcutane-
ous fat [93]. Furthermore, the imaging techniques and 
data extraction software used across the studies differed, 
particularly for MRI in terms of scanner brand, field 
strength, and segmentation method. Although such dif-
ferences may not have materially affected the summary 
results, they could explain at least some of the hetero-
geneity observed between different studies. Secondly, 
although our meta-analyses included more than 40 indi-
vidual studies, nearly all apart from the UKB study [32] 
included small sample sizes. Collectively, the total num-
ber of participants involved from these studies was not 
large and there was evidence of publication bias, which 
may lead to biased estimates and comparisons. On the 
other hand, it is possible that the skewed distribution in 
Funnel plots and Egger’s tests could also reflect hetero-
geneity between the studies due to different population 
characteristics. Thirdly, given the limited power, our sub-
group findings related to ancestry, sex and age should be 
interpreted with caution and require further validation 
in larger studies of diverse populations. Fourth, there are 
other imaging-derived adiposity metrics (e.g. pericardial 
and epicardia ectopic fat, muscle fat infiltration, and pan-
creatic fat) that would be important to investigate in rela-
tion to anthropometric measures of adiposity, but these 
were unavailable in the published literature.
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In summary this meta-analysis demonstrated that 
conventional anthropometric measures of adiposity, 
particularly BMI and WC, are strongly correlated with 
imaging-derived total abdominal, subcutaneous abdomi-
nal, and to a slightly lesser extent with visceral abdomi-
nal fat, but are weakly correlated with imaging-derived 
hepatic fat. Further studies involving simultaneous 
assessment of anthropometric and different imaging-
based measures in large population-based studies are 
needed to further validate the present study findings, to 
extend the analyses to other imaging-derived measures 
of body fat and fat composition, and to further assess the 
relationship of different measures of adiposity with risks 
of specific diseases in diverse populations.
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