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Abstract
Background Lymph node metastasis is an important factor affecting the treatment and prognosis of patients with 
cervical cancer. However, the comparison of different algorithms and features to predict lymph node metastasis is 
not well understood. This study aimed to construct a non-invasive model for predicting lymph node metastasis in 
patients with cervical cancer based on clinical features combined with the radiomic features of magnetic resonance 
imaging (MRI) images.

Methods A total of 180 cervical cancer patients were divided into the training set (n = 126) and testing set (n = 54). 
In this cross-sectional study, radiomic features of MRI images and clinical features of patients were collected. The least 
absolute shrinkage and selection operator (LASSO) regression was used to filter the features. Seven machine learning 
methods, including eXtreme Gradient Boosting (XGBoost), Logistic Regression, Multinomial Naive Bayes (MNB), 
Support Vector Machine (SVM), Decision Tree, Random Forest, and Gradient Boosting Decision Tree (GBDT) are used to 
build the models. Receiver operating characteristics (ROC) curve and area under the curve (AUC), accuracy, sensitivity, 
and specificity were calculated to assess the performance of the models.

Results Of these 180 patients, 49 (27.22%) patients had lymph node metastases. Five of the 122 radiomic features 
and 3 clinical features were used to build predictive models. Compared with other models, the MNB model was the 
most robust, with its AUC, specificity, and accuracy on the testing set of 0.745 (95%CI: 0.740–0.750), 0.900 (95%CI: 
0.807–0.993), and 0.778 (95%CI: 0.667–0.889), respectively. Furthermore, the AUCs of the MNB models with clinical 
features only, radiomic features only, and combined features were 0.698 (95%CI: 0.692–0.704), 0.632 (95%CI: 0.627–
0.637), and 0.745 (95%CI: 0.740–0.750), respectively.

Conclusion The MNB model, which combines the radiomic features of MRI images with the clinical features of the 
patient, can be used as a non-invasive tool for the preoperative assessment of lymph node metastasis.

Keywords Cervical cancer, Lymph node metastasis, Radiomic features, Magnetic resonance imaging, multinomial 
naive bayes model
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Background
Cervical cancer is one of the most common cancers 
among women, with an estimated 604,127 new cases 
and 341,831 deaths from cervical cancer worldwide in 
2020 [1]. Treatment options for cervical cancer patients 
with cervical cancer vary depending on the International 
Federation of Gynecology and Obstetrics (FIGO) stages 
and the status of lymph nodes [2]. Lymph node metas-
tasis is one of the most important prognostic factors in 
patients with cervical cancer [3, 4]. The 5-year survival 
rate for patients with early-stage cervical cancer with-
out lymph node metastases is reported to be 85-90%, 
but only 50-55% for those with lymph node metastasis 
[5]. Furthermore, many patients with early-stage cervi-
cal cancer may undergo unnecessary lymph node dissec-
tion because of undiagnosed or inaccurate assessment of 
lymph node status [6, 7]. Therefore, accurate assessment 

of the preoperative lymph node status has an important 
impact on the treatment and prognosis of patients with 
cervical cancer.

The criteria for lymph node diagnosis are histopatho-
logic examination after surgical lymphadenectomy or 
lymph node biopsy [8]. However, these invasive detection 
methods have some limitations, such as the potential for 
infection, nerve or vascular injury, and lower extremity 
lymphedema from the surgical procedure, while biopsy 
results are influenced by the presence of abnormal lym-
phatic drainage, the quality of the preoperative lymph-
adenectomy, and the experience of the surgeons [9–11]. 
Recently, non-invasive radiomic analysis has been widely 
used for prognostic assessment [12, 13] and prediction of 
lymph node metastasis in patients with cervical cancer 
[14–16].

Previous studies have reported the prediction of lymph 
node metastasis in patients with cervical cancer based 
on the radiomic features of different images [14–22]. 
Liu et al. reported a radiomic features model based on 
computed tomography (CT) images to predict lymph 
node metastasis, and the area under the receiver operat-
ing characteristic curve (AUC) of their model was 0.859 
[20]. Song et al. predicted lymph node metastasis using 
a radiomic features model of magnetic resonance imag-
ing (MRI) images with an AUC of 0.75 [15]. The radiomic 
features models for predicting lymph node metastasis in 
patients with cervical cancer from previous studies are 
summarized in Table 1. However, most previous studies 
have explored the predictive effect of only one modeling 
approach. In addition, the predictive effect of combining 
radiomic feature with clinical feature models is not well 
understood. The modeling method and the features used 
for modeling are important factors that affect the predic-
tive performance of the model.

Herein, we aimed to establish a model that combines 
the radiomic features of MRI images with the clinical 
features of patients to predict lymph node metastasis in 
patients with cervical cancer. Seven machine learning 
methods were used to construct models to identify the 
optimal model.

Methods
Study population
Data on cervical cancer patients were obtained from 
The First Affiliated Hospital of Bengbu Medical College 
between 2018 and 2021. The identification of the patient’s 
lymph node metastases was based on histopathologi-
cal examination. Inclusion criteria were as follows: (1) 
patients aged ≥ 18 years; (2) patients with primary cervical 
cancer confirmed by histopathological examination; (3) 
patients who underwent radical hysterectomy and pelvic 
lymph node dissection; (4) patients who underwent MRI 
examination within 2 weeks before hysterectomy; and (5) 

Table 1 Overview of studies using radiological features to 
predict lymph node metastasis in patients with cervical cancer
Imaging 
modality

Au-
thor, 
year

Training/
testing/
validation 
set

Radiomics/
clinical fea-
tures used

Algorithm AUC 
(95%CI)

PET/CT Zhang, 
2022 
[18]

104/44/0 14/0 Machine 
learning

0.786 
(0.636–
0.895)

MRI Song, 
2021 
[15]

90/42/0 7/4 Logistic 
regression

0.75 (-)

CT Liu, 
2021 
[20]

148/74/51 464/0 Artificial 
neural 
network

0.859 
(0.776–
0.941)

MRI Xiao, 
2020 
[19]

155/78/0 23/0 Logistic 
regression

0.883 
(0.809–
0.957)

CT Dong, 
2020 
[21]

176/50/0 5/2 Logistic 
regression, 
support 
vector 
machine, 
deep 
neural 
network

0.99 (-)

Ultrasound Jin, 
2020 
[14]

100/72/0 6/0 Logistic 
regression

0.77 
(0.65–
0.88)

CT Chen, 
2020 
[22]

104/46/0 2/1 Ridge 
logistics 
regression

0.75 
(0.53–
0.93)

MRI Kan, 
2019 
[17]

100/43/0 10/0 Support 
vector 
machine

0.754 
(0.584–
0.924)

MRI Wu, 
2019 
[16]

126/63/0 14/1 Support 
vector 
machine

0.847 (-)

Note: PET/CT, positron emission tomography/computed tomography; MRI, 
magnetic resonance imaging; CT, computed tomography; AUC, the area under 
the receiver operating characteristic curve
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available clinical information. Exclusion criteria were as 
follows: (1) patients with combined other malignancies; 
(2) patients with palliative tumor resection; (3) preg-
nant or lactating women; (4) patients with preoperative 
chemotherapy or radiation; (5) patients who underwent 
biopsy puncture or conization before MRI examination; 
and (6) patients whose MRI imaging did not meet the 
requirements for post-processing. This cross-sectional 
study was approved by the Institutional Review Board of 
The First Affiliated Hospital of Bengbu Medical College 
(approval number: 2022KY039), and informed consent 
was obtained from the patients. All methods were carried 
out in accordance with relevant guidelines and regula-
tions (declaration of Helsinki).

MRI image acquisition
All patients underwent pelvic MRI in the supine posi-
tion using the same 3.0-T MRI scanner (Siemens AG, 
Munich, Germany) with 8-channel phased-array coil. 
Before an examination, patients fasted for at least 4 h and 
filled the bladder moderately. The scanning sequences 
included axial and sagittal T1-weighted imaging (T1WI) 
and axial T2-weighted imaging (T2WI). Pelvic T1WI 
and T2WI images were obtained after injection of 0.2ml/
kg gadopentetate dimeglumine for 80–120 s. All images 
were Digital Imaging and Communications in Medicine 
(DICOM) format data. The ITK-SNAP (www.itksnap.org) 
was used to perform manual 3D segmentation of MRI 
images. Radiologists experienced (more than 10 years) 
in pelvic MRI diagnosis performed manual segmentation 
of the lymph node and tumor region of interest (ROI) on 
each cross-section to validate the segmentation results 
for each image. The radiologists were blinded to the 
patient’s lymph node status.

Radiomics feature extraction
All images are normalized before feature extraction, and 
the resolution of all images is unified to 1 × 1mm2 by 
interpolation. The interpolation process uses sitkNear-
estNeighbor as a resampling interpolator to resample the 
mask to preserve the label values. Radiomic features were 
extracted from the processed MRI images by Python 3.8 
software (PyRadiomics package) [23]. Specifically, the 
PyRadiomics package’s “RadiomicsFeatureExtractor()” 
function was used to preprocess the image and create 
a feature extraction generator, set an optional custom 
image type using the “enableImageTypes()” function 
within the generator, and then use the “execute()” func-
tion within the generator to calculate the image label 
of the original image combined with the ROI to obtain 
the corresponding type of radiomic features. A total of 
122 radiomic features were extracted, including First 
Order Statistics (18 features), Shape-based (2D) (14 fea-
tures), Gray Level Cooccurrence Matrix (24 features), 

Gray Level Run Length Matrix (16 features), Gray Level 
Size Zone Matrix (16 features), Neighbouring Gray 
Tone Difference Matrix (5 features), Gray Level Depen-
dence Matrix (14 features), and basic image features (5 
features).

Feature selection
The datasets were randomly assigned to the training set 
and testing set in a ratio of 7:3. All clinical and radiomic 
features were screened by the least absolute shrinkage 
and selection operator (LASSO) regression to select the 
optimal predictive features. Five-fold cross-validation 
was applied to tune the parameters of the elastic net to 
select the key features from the high-dimensional feature 
space and to avoid over-fitting. Finally, 3 clinical features 
(eosinophil count, red blood cell volume distribution 
width, squamous cell carcinoma antigen), 2 radiomic 
features of T1 images (original_firstorder_Range, origi-
nal_ngtdm_Complexity), and 3 radiomic features of T2 
images (diagnostics_Mask-original_VolumeNum, origi-
nal_glcm_InverseVariance, original_glszm_SmallArea-
HighGrayLevelEmphasis) were incorporated into the 
model.

Construction, validation, and performance of machine 
learning model
Seven machine learning methods, including eXtreme 
Gradient Boosting (XGBoost), Logistic Regression, Mul-
tinomial Naive Bayes (MNB), Support Vector Machine 
(SVM), Decision Tree, Random Forest, and Gradient 
Boosting Decision Tree (GBDT) are used to build pre-
diction models. All models used 8 clinical and radiomic 
features that were screened out. Receiver operating char-
acteristics (ROC) curve and area under the curve (AUC), 
accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) were calcu-
lated to assess the performance of the models. The abla-
tion analysis was performed to validate the resilience of 
the model [24, 25]. The model with the best combined 
performance was selected, and the performance of mod-
els with clinical features only, radiomic features only, and 
combined features was further compared. The flowchart 
of this study is shown in Fig. 1.

Statistical analysis
For continuous clinical variables, there were expressed 
as mean and standard deviation (SD) or median and 
interquartile range [M (Q1, Q3)], and compared using 
the Student’s t-test or rank-sum test. Categorical clinical 
variables were expressed as numbers and percentages [n 
(%)] and compared using the Chi-square test or Fisher’s 
exact test. Statistical analyses of clinical data were per-
formed using SAS 9.4 software (SAS Institute Inc., Cary, 
NC, USA). The extraction of radiomic features and the 

http://www.itksnap.org
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construction of the model were performed using Python 
3.8 software (Python Software Foundation, Delaware, 
USA). A two-sided P < 0.05 was considered statistically 
significant.

Results
Clinical characteristics of patients
A total of 259 adult women diagnosed with cervical can-
cer were selected. Of these patients, 79 women were 
excluded including 73 patients without MRI image data 
and 6 patients whose MRI images did not meet post-pro-
cessing requirements. Table  2 shows the characteristics 
of the 180 included patients. The mean age was 53.07 ± 
9.79 years and 97 (53.89%) patients were postmenopausal 
women. The number of patients in the FIGO stages was 
11 (6.11%) for IA2, 2 (1.11%) for IB1, 45 (25.00%) for IB2, 
53 (29.44%) for IB3, 18 (10.00%) for IIA1, and 51 (28.33%) 
for IIA2. The median squamous cell carcinoma antigen 
(SCC-Ag) level was 1.63 (0.84, 4.55) ng/mL. There were 

49 (27.22%) patients with lymph node metastasis and 131 
(72.78%) patients without lymph node metastasis.

Prediction performance of models
Three clinical features and five radiomic features were 
selected to build the prediction model. The process of 
screening features by LASSO regression is presented in 
Fig. 2. Table 3 shows the performance of different mod-
els in predicting lymph node metastasis in patients with 
cervical cancer. In the training set, the AUCs were 0.939 
(95%CI: 0.938–0.940) for the XGBoost model, 0.687 
(95%CI: 0.683–0.690) for the Logistic Regression model, 
0.611 (95%CI: 0.607–0.615) for the MNB model, 0.830 
(95%CI: 0.827–0.832) for the SVM model, 0.691 (95%CI: 
0.688–0.694) for the Decision Tree model, 0.875 (95%CI: 
0.873–0.877) for the Random Forest model, and 0.997 
(95%CI: 0.997–0.997) for the GBDT model. In the testing 
set, the performance parameters of the models, except for 
the MNB model, differed significantly between the train-
ing and testing sets. The AUC, specificity, and accuracy 

Fig. 1 Flowchart of the study. The composition of the prediction system including image input, feature extraction, feature selection, model building, and 
model evaluation

 



Page 5 of 10Liu et al. BMC Medical Imaging          (2023) 23:101 

of the MNB model in the testing set were 0.745 (95%CI: 
0.740–0.750), 0.900 (95%CI: 0.807–0.993), and 0.778 
(95%CI: 0.667–0.889), respectively. Therefore, the MNB 
model was used to predict preoperative lymph node 
metastasis in patients with cervical cancer. The ROC 
curves and calibrate curves of the MNB model in the 
training set and testing set are shown in Fig. 3. In addi-
tion, the ablation analysis was performed based on the 
parameter “alpha” of the MNB model. The results showed 
that when the parameter “alpha” of the MNB model was 
5, the test accuracy was best at 77.78% and the test loss 
was the lowest at 0.8032% (Supplement Table 1).

Performance comparison of models using different 
features
A comparison of the prediction performance of the MNB 
model using different features is shown in Table 4. In the 
testing set, the AUCs of the MNB model with clinical fea-
tures only, radiomic features only, and combined features 
were 0.698 (95%CI: 0.692–0.704), 0.632 (95%CI: 0.627–
0.637), and 0.745 (95%CI: 0.740–0.750), respectively. 
Compared with other feature models, the MNB model 
with radiomic features combined with clinical features 
had a better performance for predicting preoperative 
lymph node metastasis in patients with cervical cancer.

Table 2 Clinical characteristics of patients
Variables Total (n = 180) Non-LNM (n = 131) LNM (n = 49) P
Age, years, Mean ± SD 53.07 ± 9.79 52.87 ± 10.20 53.61 ± 8.69 0.652

Marital status, n (%) 1.000

 Unmarried 2 (1.11) 2 (1.53) 0 (0.00)

 Married 178 (98.89) 129 (98.47) 49 (100.00)

Reproductive history, n (%) 0.576

 No 4 (2.22) 4 (3.05) 0 (0.00)

 Yes 176 (97.78) 127 (96.95) 49 (100.00)

Weight, kg, Mean ± SD 62.13 ± 9.88 61.61 ± 10.11 63.54 ± 9.21 0.244

Menopausal status, n (%) 0.630

 Non-menopausal 67 (37.22) 50 (38.17) 17 (34.69)

 Peri-menopause 16 (8.89) 10 (7.63) 6 (12.24)

 Post-menopausal 97 (53.89) 71 (54.20) 26 (53.06)

FIGO stage, n (%) 0.018

 IA2 11 (6.11) 4 (3.05) 7 (14.29)

 IB1 2 (1.11) 2 (1.53) 0 (0.00)

 IB2 45 (25.00) 38 (29.01) 7 (14.29)

 IB3 53 (29.44) 39 (29.77) 14 (28.57)

 IIA1 18 (10.00) 10 (7.63) 8 (16.33)

 IIA2 51 (28.33) 38 (29.01) 13 (26.53)

White blood cells, 10^9/L, M (Q1, Q3) 6.85 (5.64,8.87) 6.92 (5.65,8.72) 6.47 (5.62,9.24) 0.684

Eosinophil count, 10^9/L, M (Q1, Q3) 0.10 (0.05,0.20) 0.11 (0.05,0.21) 0.08 (0.06,0.13) 0.251

Basophil count, 10^9/L, M (Q1, Q3) 0.01 (0.00,0.02) 0.01 (0.00,0.02) 0.01 (0.00,0.02) 0.627

Monocyte count, 10^9/L, M (Q1, Q3) 0.43 (0.34,0.54) 0.43 (0.34,0.54) 0.41 (0.33,0.51) 0.483

Red blood cells, 10^12/L, Mean ± SD 4.14 ± 0.58 4.16 ± 0.57 4.10 ± 0.61 0.574

Hemoglobin, g/L, Mean ± SD 120.68 ± 18.14 121.92 ± 17.45 117.35 ± 19.68 0.132

Hematocrit, %, Mean ± SD 36.23 ± 4.92 36.53 ± 4.71 35.44 ± 5.42 0.187

Mean corpuscular volume, fL, Mean ± SD 87.48 ± 6.47 87.86 ± 6.52 86.45 ± 6.29 0.195

Mean corpuscular hemoglobin, pg, Mean ± SD 29.16 ± 2.79 29.35 ± 2.76 28.66 ± 2.82 0.138

Mean erythrocyte hemoglobin concentration, g/L, Mean ± SD 332.57 ± 13.59 333.53 ± 13.10 330.00 ± 14.64 0.122

Red blood cell distribution width- coefficient of variation, %, Mean ± SD 13.57 ± 1.91 13.41 ± 1.69 14.01 ± 2.37 0.110

Red blood cell distribution width-standard deviation, %, Mean ± SD 42.75 ± 3.66 42.53 ± 3.37 43.34 ± 4.33 0.240

Mean platelet volume, fL, Mean ± SD 10.76 ± 1.13 10.80 ± 1.11 10.66 ± 1.18 0.479

Thrombocytocrit, %, Mean ± SD 0.28 ± 0.79 0.28 ± 0.81 0.29 ± 0.74 0.455

Platelet distribution width, %, Mean ± SD 13.09 ± 2.54 13.15 ± 2.69 12.92 ± 2.11 0.587

Platelet large cell ratio, %, Mean ± SD 31.13 ± 9.27 31.21 ± 9.58 30.92 ± 8.50 0.853

Squamous cell carcinoma antigen, ng/mL, M (Q1, Q3) 1.63 (0.84,4.55) 1.50 (0.80,3.80) 3.60 (1.20,10.76) < 0.001
Note: LNM, lymph node metastasis; FIGO, the International Federation of Gynecology and Obstetrics
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Table 3 Performances of different models in predicting lymph node metastasis in patients with cervical cancer
Models Cutoff Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI) AUC 

(95%CI)
Accuracy 
(95%CI)

XGBoost model
Training 
set

0.413 0.886(0.780–0.991) 0.890(0.826–0.954) 0.756(0.625–0.888) 0.953(0.908–0.998) 0.939(0.938–
0.940)

0.889(0.834–
0.944)

Testing set 0.413 0.786(0.571-1.000) 0.600(0.448–0.752) 0.407(0.222–0.593) 0.889(0.770-1.000) 0.721(0.716–
0.727)

0.648(0.521–
0.776)

Logistic Regression model
Training 
set

0.263 0.657(0.500-0.814) 0.670(0.574–0.767) 0.434(0.301–0.567) 0.836(0.751–0.921) 0.687(0.683–
0.690)

0.667(0.584–
0.749)

Testing set 0.263 1.000(1.000–1.000) 0.150(0.039–0.261) 0.292(0.163–0.420) 1.000(1.000–1.000) 0.812(0.809–
0.816)

0.370(0.242–
0.499)

MNB model
Training 
set

0.508 0.371(0.211–0.532) 0.901(0.840–0.962) 0.591(0.385–0.796) 0.788(0.710–0.867) 0.611(0.607–
0.615)

0.754(0.679–
0.829)

Testing set 0.508 0.429(0.169–0.688) 0.900(0.807–0.993) 0.600(0.296–0.904) 0.818(0.704–0.932) 0.745(0.740–
0.750)

0.778(0.667–
0.889)

SVM model
Training 
set

0.094 0.829(0.704–0.953) 0.824(0.746–0.902) 0.644(0.505–0.784) 0.926(0.869–0.983) 0.830(0.827–
0.832)

0.825(0.759–
0.892)

Testing set 0.094 0.929(0.794-1.000) 0.100(0.007–0.193) 0.265(0.142–0.389) 0.800(0.449-1.000) 0.696(0.690–
0.703)

0.315(0.191–
0.439)

Decision Tree model
Training 
set

0.668 0.886(0.780–0.991) 0.440(0.338–0.542) 0.378(0.273–0.483) 0.909(0.824–0.994) 0.691(0.688–
0.694)

0.563(0.477–
0.650)

Testing set 0.668 0.643(0.392–0.894) 0.775(0.646–0.904) 0.500(0.269–0.731) 0.861(0.748–0.974) 0.724(0.719–
0.729)

0.741(0.624–
0.858)

Random Forest model
Training 
set

0.251 0.829(0.704–0.953) 0.758(0.670–0.846) 0.569(0.433–0.705) 0.920(0.859–0.981) 0.875(0.873–
0.877)

0.778(0.705–
0.850)

Testing set 0.251 0.643(0.392–0.894) 0.650(0.502–0.798) 0.391(0.192–0.591) 0.839(0.709–0.968) 0.684(0.678–
0.690)

0.648(0.521–
0.776)

GBDT model
Training 
set

0.273 0.971(0.916-1.000) 0.978(0.948-1.000) 0.944(0.870-1.000) 0.989(0.967-1.000) 0.997(0.997–
0.997)

0.976(0.950-
1.000)

Testing set 0.273 0.429(0.169–0.688) 0.750(0.616–0.884) 0.375(0.138–0.612) 0.789(0.660–0.919) 0.651(0.645–
0.657)

0.667(0.541–
0.792)

Note: PPV, positive predictive value; NPV, negative predictive value; AUC, receiver operating characteristics curve area under the curve; XGBoost, eXtreme Gradient 
Boosting; MNB, Multinomial Naive Bayes; SVM, Support Vector Machine; GBDT, Gradient Boosting Decision Tree

Fig. 2 Feature selection using the least absolute shrinkage and selection operator (LASSO) regression. (a) changes in mean squared error during LASSO 
regression screening; (b) Changes in the coefficient profiles during LASSO regression screening
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Table 4 Comparison of the prediction performance of the Multinomial Naive Bayes (MNB) model using different features
Models Cutoff Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy (95%CI)
Radiomic features + clinical features model

Training set 0.508 0.371(0.211–0.532) 0.901(0.840–0.962) 0.591(0.385–0.796) 0.788(0.710–0.867) 0.611(0.607–0.615) 0.754(0.679–0.829)

Testing set 0.508 0.429(0.169–0.688) 0.900(0.807–0.993) 0.600(0.296–0.904) 0.818(0.704–0.932) 0.745(0.740–0.750) 0.778(0.667–0.889)

Clinical features model

Training set 0.116 0.514(0.349–0.680) 0.736(0.646–0.827) 0.429(0.279–0.578) 0.798(0.712–0.884) 0.641(0.637–0.644) 0.675(0.593–0.756)

Testing set 0.116 0.500(0.238–0.762) 0.800(0.676–0.924) 0.467(0.214–0.719) 0.821(0.700-0.941) 0.698(0.692–0.704) 0.722(0.603–0.842)

Radiomic features model

Training set 0.200 0.657(0.500-0.814) 0.440(0.338–0.542) 0.311(0.205–0.416) 0.769(0.655–0.884) 0.523(0.520–0.527) 0.500(0.413–0.587)

Testing set 0.200 0.929(0.794-1.000) 0.350(0.202–0.498) 0.333(0.185–0.481) 0.933(0.807-1.000) 0.632(0.627–0.637) 0.500(0.367–0.633)
Note: PPV, positive predictive value; NPV, negative predictive value; AUC, receiver operating characteristics curve area under the curve

Fig. 3 The receiver operator characteristic (ROC) curves and calibrate curve of the Multinomial Naive Bayes (MNB) model in the training set and testing 
set. (a) ROC curves and calibrate curve in the training set; (b) ROC curves and calibrate curve in the testing set
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Discussion
In this study, we used the radiomic features of MRI 
images combined with clinical features of patients to pre-
dict lymph node metastasis in patients with cervical can-
cer. We compared the prediction performance of seven 
machine learning models, among which the MNB model 
had the best prediction effects in the testing set with 
an AUC of 0.745. Furthermore, the MNB model with a 
combination of radiomic and clinical features had better 
prediction effects than the model with single radiomic 
features and clinical features.

Predictive models based on radiomic features have 
been widely used to predict the prognosis of many dis-
eases [26–28]. The radiomic feature model provides a 
non-invasive evaluation method for patient prognosis 
assessment [29]. Compared to traditional invasive evalu-
ation methods such as biopsy, the radiomic feature mod-
els can reduce patient harm and avoid excessive biopsies 
on patients [30]. Many factors affect the prediction effec-
tiveness of the radiomic feature model, such as the type 
of image (ultrasound images, CT images, MRI images), 
the ROI classification, and the method of model con-
struction [31]. Jin et al. constructed a logistic regression 
model for predicting lymph node metastasis in patients 
with cervical cancer using the radiomics features of ultra-
sound images, and the AUC of the model was 0.77 [14]. 
Chen et al. used clinical features combined with radiomic 
features of CT images to establish a ridge logistics regres-
sion model for predicting lymph node metastasis, and 
the AUC of the model was 0.75 [22]. More studies have 
used the radiomic features of MRI images to construct 
predictive models for lymph node metastasis in patients 
with cervical cancer [15, 17, 32]. MRI is useful for detect-
ing lymph node metastasis, especially when the tumor 
size is greater than 4 cm (accuracy 84%) [33]. However, 
MRI images may miss normal-sized lymph node metas-
tasis and cannot reliably distinguish inflammatory lymph 
node enlargement from cancer-infiltrating lymph nodes. 
The radiomic analysis may be able to compensate for this 
limitation of images alone. This study used the radiomic 
features of MRI images combined with clinical features 
to develop a model for predicting lymph node metastasis 
in patients with cervical cancer. In contrast to previous 
studies, the current study compared the predictive effects 
of seven different models. In radiomic analysis, the pre-
dictive performance of different machine learning mod-
els is different.

Our study screened 3 clinical features and 5 radiomic 
features for modeling. In clinical features, eosinophils 
have been reported to be associated with lymph node 
metastasis in patients with tumors [34]. Red blood cell 
volume distribution width reflects the size variability 
of circulating erythrocytes related to chronic inflam-
mation, which is an important influencing factor in the 

progression of various cancer diseases [35]. Preopera-
tive serum squamous carcinoma antigen levels have also 
been found to be potentially useful predictors of early 
lymph node metastasis in squamous cervical cancer 
[36]. Among our radiomic features, 2 were from T1WI 
images and 3 were from T2WI images. T2WI can pro-
vide information on tumor morphology and stroma 
information, and T1W can reflect tumor microenviron-
ment and aggressiveness by showing microvascular den-
sity and perfusion [37]. The original_firstorder_Range 
feature is the range of gray values in the ROI, reflect-
ing the heterogeneity within the tumor. The original_
ngtdm_Complexity, original_glcm_InverseVariance, and 
original_glszm_SmallAreaHighGrayLevelEmphasis fea-
tures are all texture features of the image, and texture 
can quantify information that is difficult to be perceived 
simply by vision, such as texture patterns or tissue distri-
bution within the tumor [38]. The original_ngtdm_Com-
plexity indicates the complexity of the image, i.e., the 
image is non-uniform and there are many rapid changes 
in gray level intensity. The original_glcm_InverseVari-
ance feature is a measure of image homogeneity. The 
original_glszm_SmallAreaHighGrayLevelEmphasis fea-
ture represents the proportion of the joint distribution 
of small-sized areas with high gray values in the image, 
which reflects the gray level changes within peritumoral 
regions. These radiomic features reflect changes in the 
tumor and peritumor area.

Among these models, both the XGBoost model and 
the GBDT model showed good prediction performance 
in the training set, and their AUCs were more than 0.9. 
However, these models including the XGBoost model, 
the GBDT model, the SVM model, the Logistic Regres-
sion model, and the Random forest model had significant 
differences in performance on the training set and testing 
set. This may suggest an overfitting of these models. The 
prediction performance of the MNB model was robust 
in both the training set and testing set, and the AUC in 
the testing set was 0.745. Furthermore, we compared the 
predictive performance of the models using radiomic fea-
tures, clinical features, and radiomic features combined 
with clinical features, respectively. The results demon-
strated that the model with radiomic features combined 
with clinical features had a better prediction effect. Previ-
ous studies have shown that radiomic features combined 
with patient or tumor characteristics can improve medi-
cal decisions through clinical decision support systems, 
thereby improving diagnostic, prognostic, and predic-
tive accuracies, and facilitating therapeutic research [30, 
39]. The prediction performance of the current model 
has not been significantly improved compared to previ-
ous studies. The main direction of future study is to fur-
ther improve the predictive performance of the model 
because the AUC of the model was about 0.75 in both the 
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current and previous studies. Furthermore, future studies 
may need to focus on the metastasis of smaller-diameter 
lymph nodes.

This study used the radiomic features of MRI images 
and the clinical features of patients to construct a model 
for predicting lymph node metastasis in patients with 
cervical cancer. We compared the prediction perfor-
mance of seven machine learning models. This study 
may provide a reference for the selection of different 
machine learning prediction models. There were several 
limitations in our study. First, the sample size of patients 
recruited in this single-center retrospective study was 
small, and a larger sample size from multiple centers is 
needed to confirm the predictive effect of our model. 
Second, serological biomarkers associated with cervical 
cancer, such as carbohydrate antigen 125 (CA125), carbo-
hydrate antigen 153 (CA153), carbohydrate antigen 199 
(CA199) and carcinoembryonic antigen (CEA), were not 
used to build predictive models due to too much missing 
data. Third, although the model performed well in inter-
nal validation, external validation of the model was also 
required. Fourth, prospective study design and rigorous 
study procedures in future studies are needed based on 
the Radiomics Quality Score of Lambin et al. [39].

Conclusions
This study used the radiomic features of MRI images 
combined with the clinical features of patients to predict 
lymph node metastasis in patients with cervical cancer. 
Seven machine learning methods were used to build 
models to identify the best modeling method. The MNB 
model showed the most robust predictive performance, 
which might be used as a non-invasive tool for the pre-
operative assessment of lymph node metastasis. Future 
studies may need to further improve the predictive per-
formance of the model.

List of abbreviations
FIGO  International Federation of Gynecology and Obstetrics
DICOM  Digital Imaging and Communications in Medicine
ROI  Region of interest
LASSO  Least absolute shrinkage and selection operator
MNB  Multinomial Naive Bayes
SVM  Support Vector Machine
GBDT  Gradient Boosting Decision Tree
ROC  Receiver operating characteristics
AUC  Area under the curve
PPV  Positive predictive value
NPV  Negative predictive value

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12880-023-01059-6.

Supplementary Material 1

Acknowledgements
Not applicable.

Authors’ contributions
SL and YZ designed the study. SL wrote the manuscript. YZ, CW and JS 
collected, analyzed and interpreted the data. YZ critically reviewed, edited and 
approved the manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

Data Availability
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board of The First 
Affiliated Hospital of Bengbu Medical College (approval number: 2022KY039), 
and informed consent was obtained from the patients. All methods 
were carried out in accordance with relevant guidelines and regulations 
(declaration of Helsinki).

Consent for publication
Not applicable.

Received: 18 January 2023 / Accepted: 19 July 2023

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 

Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortal-
ity Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71:209–49.

2. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Uterine 
neoplasms, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology. J 
Natl Compr Cancer Network: JNCCN. 2018;16:170–99.

3. Wenzel HHB, Olthof EP, Bekkers RLM, Boere IA, Lemmens V, Nijman HW, et al. 
Primary or adjuvant chemoradiotherapy for cervical cancer with intraopera-
tive lymph node metastasis - A review. Cancer Treat Rev. 2022;102:102311.

4. Biewenga P, van der Velden J, Mol BW, Stalpers LJ, Schilthuis MS, van der 
Steeg JW, et al. Prognostic model for survival in patients with early stage 
cervical cancer. Cancer. 2011;117:768–76.

5. Gien LT, Covens A. Lymph node assessment in cervical cancer: prognostic 
and therapeutic implications. J Surg Oncol. 2009;99:242–7.

6. Ferrandina G, Pedone Anchora L, Gallotta V, Fagotti A, Vizza E, Chiantera V, 
et al. Can we define the risk of Lymph Node Metastasis in Early-Stage Cervi-
cal Cancer Patients? A Large-Scale, Retrospective Study. Ann Surg Oncol. 
2017;24:2311–8.

7. Macdonald MC, Tidy JA. Can we be less radical with surgery for early cervical 
Cancer? Curr Oncol Rep. 2016;18:16.

8. Diaz JP, Gemignani ML, Pandit-Taskar N, Park KJ, Murray MP, Chi DS, et al. 
Sentinel lymph node biopsy in the management of early-stage cervical 
carcinoma. Gynecol Oncol. 2011;120:347–52.

9. Lécuru F, Mathevet P, Querleu D, Leblanc E, Morice P, Daraï E, et al. Bilateral 
negative sentinel nodes accurately predict absence of lymph node metas-
tasis in early cervical cancer: results of the SENTICOL study. J Clin oncology: 
official J Am Soc Clin Oncol. 2011;29:1686–91.

10. Cross MJ. Different criteria for radioactive sentinel lymph nodes has different 
impact on sentinel node biopsy in breast cancer patients. J Surg Oncol. 
2007;95:616–7.

11. Matsuura Y, Kawagoe T, Toki N, Tanaka M, Kashimura M. Long-standing com-
plications after treatment for cancer of the uterine cervix–clinical significance 
of medical examination at 5 years after treatment. Int J Gynecol cancer: 
official J Int Gynecol Cancer Soc. 2006;16:294–7.

https://doi.org/10.1186/s12880-023-01059-6
https://doi.org/10.1186/s12880-023-01059-6


Page 10 of 10Liu et al. BMC Medical Imaging          (2023) 23:101 

12. Yusufaly TI, Zou J, Nelson TJ, Williamson CW, Simon A, Singhal M, et al. 
Improved prognosis of treatment failure in Cervical Cancer with Nontumor 
PET/CT Radiomics. Journal of nuclear medicine: official publication. Soc 
Nuclear Med. 2022;63:1087–93.

13. Fang J, Zhang B, Wang S, Jin Y, Wang F, Ding Y, et al. Association of MRI-
derived radiomic biomarker with disease-free survival in patients with early-
stage cervical cancer. Theranostics. 2020;10:2284–92.

14. Jin X, Ai Y, Zhang J, Zhu H, Jin J, Teng Y, et al. Noninvasive prediction of lymph 
node status for patients with early-stage cervical cancer based on radiomics 
features from ultrasound images. Eur Radiol. 2020;30:4117–24.

15. Song J, Hu Q, Ma Z, Zhao M, Chen T, Shi H. Feasibility of T(2)WI-MRI-based 
radiomics nomogram for predicting normal-sized pelvic lymph node metas-
tasis in cervical cancer patients. Eur Radiol. 2021;31:6938–48.

16. Wu Q, Wang S, Chen X, Wang Y, Dong L, Liu Z, et al. Radiomics analysis of 
magnetic resonance imaging improves diagnostic performance of lymph 
node metastasis in patients with cervical cancer. Radiotherapy and oncology: 
journal of the European Society for Therapeutic Radiology and Oncology. 
2019;138:141–8.

17. Kan Y, Dong D, Zhang Y, Jiang W, Zhao N, Han L, et al. Radiomic signature as 
a predictive factor for lymph node metastasis in early-stage cervical cancer. J 
Magn Reson imaging: JMRI. 2019;49:304–10.

18. Zhang Z, Li X, Sun H. Development of machine learning models integrating 
PET/CT radiomic and immunohistochemical pathomic features for treatment 
strategy choice of cervical cancer with negative pelvic lymph node by medi-
ating COX-2 expression. Front Physiol. 2022;13:994304.

19. Xiao M, Ma F, Li Y, Li Y, Li M, Zhang G, et al. Multiparametric MRI-Based 
Radiomics Nomogram for Predicting Lymph Node Metastasis in Early-Stage 
Cervical Cancer. J Magn Reson Imaging. 2020;52:885–96.

20. Liu Y, Fan H, Dong D, Liu P, He B, Meng L, et al. Computed tomography-based 
radiomic model at node level for the prediction of normal-sized lymph node 
metastasis in cervical cancer. Translational Oncol. 2021;14:101113.

21. Dong T, Yang C, Cui B, Zhang T, Sun X, Song K, et al. Development and valida-
tion of a deep learning Radiomics Model Predicting Lymph Node Status in 
Operable Cervical Cancer. Front Oncol. 2020;10:464.

22. Chen J, He B, Dong D, Liu P, Duan H, Li W, et al. Noninvasive CT radiomic 
model for preoperative prediction of lymph node metastasis in early cervical 
carcinoma. Br J Radiol. 2020;93:20190558.

23. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et 
al. Computational Radiomics System to Decode the Radiographic pheno-
type. Cancer Res. 2017;77:e104–e7.

24. Shamrat FJM, Azam S, Karim A, Ahmed K, Bui FM, De Boer F. High-precision 
multiclass classification of lung disease through customized MobileNetV2 
from chest X-ray images. Comput Biol Med. 2023;155:106646.

25. Shamrat FJM, Akter S, Azam S, Karim A, Ghosh P, Tasnim Z, et al. AlzheimerNet: 
an effective deep learning based proposition for Alzheimer’s Disease Stages 
classification from functional brain changes in magnetic resonance images. 
IEEE Access. 2023;11:16376–95.

26. Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C 
et al. Computed tomography-based radiomics decodes prognostic and 
molecular differences in interstitial lung disease related to systemic sclerosis. 
Eur Respir J. 2022; 59.

27. Li G, Li L, Li Y, Qian Z, Wu F, He Y, et al. An MRI radiomics approach to 
predict survival and tumour-infiltrating macrophages in gliomas. Brain. 
2022;145:1151–61.

28. Sun C, Tian X, Liu Z, Li W, Li P, Chen J, et al. Radiomic analysis for pretreatment 
prediction of response to neoadjuvant chemotherapy in locally advanced 
cervical cancer: a multicentre study. EBioMedicine. 2019;46:160–9.

29. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton 
P et al. Radiomics: extracting more information from medical images using 
advanced feature analysis. European journal of cancer (Oxford, England: 
1990). 2012; 48: 441-6.

30. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, et al. Promises 
and challenges for the implementation of computational medical imaging 
(radiomics) in oncology. Annals of oncology: official journal of the European 
Society for Medical Oncology. 2017;28:1191–206.

31. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of 
Radiomics in Precision diagnosis and treatment of Oncology: Opportunities 
and Challenges. Theranostics. 2019;9:1303–22.

32. Wang T, Gao T, Yang J, Yan X, Wang Y, Zhou X, et al. Preoperative prediction of 
pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics 
nomogram developed based on T2-weighted MRI and diffusion-weighted 
imaging. Eur J Radiol. 2019;114:128–35.

33. Kim SH, Lee HJ, Kim YW. Correlation between tumor size and surveillance of 
lymph node metastasis for IB and IIA cervical cancer by magnetic resonance 
images. Eur J Radiol. 2012;81:1945–50.

34. Oliveira DT, Biassi TP, Faustino SE, Carvalho AL, Landman G, Kowalski LP. 
Eosinophils may predict occult lymph node metastasis in early oral cancer. 
Clin Oral Invest. 2012;16:1523–8.

35. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution 
width: a simple parameter with multiple clinical applications. Crit Rev Clin 
Lab Sci. 2015;52:86–105.

36. Xu D, Wang D, Wang S, Tian Y, Long Z, Ren X. Correlation between squamous 
cell Carcinoma Antigen Level and the Clinicopathological features of 
early-stage cervical squamous cell carcinoma and the predictive value of 
squamous cell Carcinoma Antigen Combined with computed Tomography 
scan for Lymph Node Metastasis. Int J Gynecol Cancer. 2017;27:1935–42.

37. Ellingsen C, Walenta S, Hompland T, Mueller-Klieser W, Rofstad EK. The 
Microenvironment of Cervical Carcinoma Xenografts: Associations with 
Lymph Node Metastasis and its Assessment by DCE-MRI. Translational Oncol. 
2013;6:607–17.

38. Di Cataldo S, Ficarra E. Mining textural knowledge in biological images: appli-
cations, methods and trends. Comput Struct Biotechnol J. 2016;15:56–67.

39. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren 
J, et al. Radiomics: the bridge between medical imaging and personalized 
medicine. Nat reviews Clin Oncol. 2017;14:749–62.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Prediction of lymph node status in patients with early-stage cervical cancer based on radiomic features of magnetic resonance imaging (MRI) images
	Abstract
	Background
	Methods
	Study population
	MRI image acquisition
	Radiomics feature extraction
	Feature selection
	Construction, validation, and performance of machine learning model
	Statistical analysis

	Results
	Clinical characteristics of patients
	Prediction performance of models
	Performance comparison of models using different features

	Discussion
	Conclusions
	References


