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Abstract 

Background Cardiovascular diseases remain the world’s primary cause of death. The identification and treatment 
of patients at risk of cardiovascular events thus are as important as ever. Adipose tissue is a classic risk factor for cardio-
vascular diseases, has been linked to systemic inflammation, and is suspected to contribute to vascular calcification. 
To further investigate this issue, the use of texture analysis of adipose tissue using radiomics features could prove 
a feasible option.

Methods In this retrospective single-center study, 55 patients (mean age 56, 34 male, 21 female) were scanned 
on a first-generation photon-counting CT. On axial unenhanced images, periaortic adipose tissue surrounding 
the thoracic descending aorta was segmented manually. For feature extraction, patients were divided into three 
groups, depending on coronary artery calcification (Agatston Score 0, Agatston Score 1–99, Agatston Score ≥ 100). 
106 features were extracted using pyradiomics. R statistics was used for statistical analysis, calculating mean 
and standard deviation with Pearson correlation coefficient for feature correlation. Random Forest classification 
was carried out for feature selection and Boxplots and heatmaps were used for visualization. Additionally, monovari-
able logistic regression predicting an Agatston Score > 0 was performed, selected features were tested for multicollin-
earity and a 10-fold cross-validation investigated the stability of the leading feature.

Results Two higher-order radiomics features, namely “glcm_ClusterProminence” and “glcm_ClusterTendency” were 
found to differ between patients without coronary artery calcification and those with coronary artery calcification 
(Agatston Score ≥ 100) through Random Forest classification. As the leading differentiating feature “glcm_Cluster-
Prominence” was identified.

Conclusion Changes in periaortic adipose tissue texture seem to correlate with coronary artery calcium score, sup-
porting a possible influence of inflammatory or fibrotic activity in perivascular adipose tissue. Radiomics features may 
potentially aid as corresponding biomarkers in the future.
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Background
As cardiovascular diseases (CVD) are still the world’s 
leading cause of death [1], identifying and treating 
patients at risk of ischemic events remains a vital task of 
modern medicine. Coronary artery calcification (CAC) 
is an important risk factor for CVD, which is why the 
coronary artery calcium score (CACS) has proven to be 
a reliable marker for risk stratification of corresponding 
patients [2]. In daily practice, the Agatston Score is used 
for estimating the extent of CAC differentiated to main 
coronary arteries [3]. Depending on the severity of cal-
cifications and hence the Agatston Score, the probability 
for the development of an obstructive coronary artery 
disease event can be estimated, outlining a cut-off value 
of 100 as a reference point for the occurrence of most 
coronary events such as myocardial infarction and death 
[4].

Another important influence are various adipose tis-
sues, which have traditionally been linked to multiple 
other cardiovascular risk factors [5]. In several studies, 
these were found to contribute to systemic inflammation 
[6] and were correlated to atherosclerosis [6–8]. Espe-
cially intrathoracic, periaortic (PAAT), and epicardial 
adipose tissue (EAT) were linked to vascular calcification 
[6–8], suggesting possible local toxic effects on the vascu-
lature [8].

In most studies, adipose tissue was examined mainly in 
terms of volume [5–9] and density [10–12], hence there is 
little data on tissue characteristics, especially from PAAT 
and EAT. A possible way to address this issue could be 
the use of texture analysis.

Radiomics is a rapidly evolving field of medical imag-
ing, analyzing pixel-based information within the image 
beyond the natural limitations of the examiner’s eye. 
These so-called features are quantitative metrics regard-
ing various characteristics of the region/volume of inter-
est (ROI/VOI) such as shape and texture and may, either 
alone or in correlation with further patient data, help to 
solve diagnostic challenges or even serve as prognostic 
biomarkers [13]. Radiomics features are mineable, mean-
ing with a sufficiently large database, new features may 
be discovered as potential markers or patterns of certain 
lesions or diseases [14].

While radiomics is already well established in oncology 
research [13, 15], the use of radiomics in cardiac imaging, 
and therefore its application regarding EAT and PAAT is 
still in its early stages [16]. Thus, the amount of data on 
radiomics features in cardiovascular imaging is still rela-
tively small. However, initial studies on the use of radi-
omics in this area suggest possible benefits [17].

For higher accuracy in radiomics features, a silicon-
based photon-counting computed tomography (PCCT) 
offers an alternative to conventional energy-integrating 

computed tomography (EICT) due to improved spatial 
resolution [18]. PCCT is a ground-breaking technology 
that has been shown to improve the quality of computed 
tomography (CT) imaging and allows a higher contrast-
to-noise ratio and a higher spatial resolution [19]. This 
novel technology has the chance to overcome the limita-
tions of texture analysis by increased spatial resolution 
and may pave the way for a sufficient analysis of PAAT.

Hence, this study aims to investigate a possible cor-
relation between the extent of CAC and PAAT texture 
features on PCCT images and possibly find a potential 
biomarker for the diffuse inflammatory reaction of PAAT 
leading to coronary artery sclerosis.

Methods
Study design
For this retrospective single-center study patients with 
suspected or known coronary artery disease (CAD) and 
clinically indicated electrocardiography (ECG)-gated 
cardiac CT were enrolled between December 2021 and 
March 2022. Patients were excluded in case of severe 
image artifacts, i.e. motion artifacts (n = 3), or in case of 
previous cardiac stent implantation (n = 5). The patient 
population was screened for metal artifacts arising from 
i.e. dorsal spinal fusion (n = 0) or pacemaker device (n = 0) 
and for potential mass or visible tissue inhomogeneities 
affecting the PAAT (n = 0). The study had an institutional 
review board and local ethics committee approval (ID 
2021–659, Ethikkomission II, Heidelberg University).

Patient collective and cardiac CT imaging protocol
Based on inclusion and exclusion criteria, a total of 55 
patients (34 male, 21 female, mean age 56  years, range: 
20–80 years) were enrolled in this study. All included 55 
patients were scanned on a first-generation whole-body 
dual-source PCCT system (NAEOTOM Alpha; Siemens 
Healthcare GmbH, Forchheim, Germany). For exami-
nation, a prospective ECG-gated sequential mode with 
a tube voltage of 120  kV and automatic dose modula-
tion with a CARE keV BQ setting of 64 was used. Effec-
tive gantry rotation time was 0.25  s. In correlation to 
heart rate and in absence of contraindications, patients 
received  5–10 mg of metoprolol  intravenously to lower 
heart rates sufficiently. Additionally, patients received, 
in absence of contraindication, 0.4–0.8 mg nitroglycerin. 
For evaluation of CAC, all patients underwent a non-
contrast-enhanced cardiac CT. This scan was followed by 
a contrast-enhanced scan of the coronary arteries using 
80  ml of iodine contrast (Imeron 400, Bracco Imaging 
Deutschland GmbH, Konstanz, Germany) and 20  ml 
saline chaser (NaCl 0,9%) with a weight-based flow rate 
of 4–5 ml/sec via antecubital venous access.
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Cardiac CT imaging analysis
Axial non-enhanced images were reconstructed with 
a slice thickness of 2  mm (increment 2  mm) using a 
soft vascular kernel (Bv40). This data was anonymized, 
exported, and stored in digital imaging and communi-
cation in medicine (DICOM) file format. DICOM files 
were converted to Neuroimaging Informatics Technol-
ogy Initiative (NIFTI) file format for utilization with a 
dedicated segmentation tool (3D Slicer, Version 4.11) 
[20]. PAAT surrounding the descending thoracic aorta 
was segmented manually with a threshold of -195/-45 
Hounsfield units (HU) [21] by a medical student and 
reviewed by a board-certified radiologist with 9  years 
of clinical experience in cardiovascular imaging. The 
segmentation included a rectangle of adipose tissue 
defined by the esophagus as the ventral border and 
the costovertebral angle as the dorsal border as rec-
ommended by Turkem et al. [22], shown in Fig. 1. The 
cranial border for segmentation was set at the pulmo-
nary trunk and extended over 8 cm downward. Addi-
tionally, signal-to-noise ratio (SNR) was calculated 
for EAT by defining a specific ROI next to the right 
coronary artery (RCA). Mean HU was divided through 
standard deviation (SD) within the ROI.

Calcium scoring was performed by a radiologist with 
9 years of experience in cardiac imaging on axial non-
enhanced scans with 3 mm slice thickness and a quan-
titative Qr36 kernel using dedicated software (syngo.
via, Siemens Healthcare GmbH, Forchheim, Germany) 
for the calculation of the Agatston Score. Afterward, 
the study population was split up into three different 
groups depending on the severity of CAC: patients 
with no sign of CAC (Agatston Score 0), patients with 
Agatston Scores between 1—99, and patients with 
Agatston Scores ≥ 100. The cut-off value of 100 was 
chosen in line with the literature, as this is associated 
with a significant increase in the development of coro-
nary events [4, 23].

Radiomics feature extraction and statistical analysis
Features for the PAAT regions of interest were further 
extracted using a dedicated imaging biomarker stand-
ardization initiative definition (IBSI)-based python pack-
age (pyradiomics, version 3.0.1.) [24]. For each patient 
enrolled in this study first-order features and second-
order features, namely grey level co-occurrence matrix 
(glcm), grey level dependence matrix (gldm), grey level 
size zone matrix (glszm), grey level run length matrix 
(glrlm), and neighbouring grey tone difference matrix 
(ngtdm) were extracted.

All statistical analyses were performed in R [25] and 
RStudio (version 1.3.1093, Boston, MA, USA) [26]. For 
all quantitative parameters mean and SD were calculated, 
categorical variables were summarized as percentages. 
Normalization of all radiomics features was achieved 
using z-score:

with µ being the mean and σ the feature SD. Pearson 
correlation coefficients were used for the correlation of 
feature calculation. Features were visualized in boxplots 
and heatmaps using the ComplexHeatmap Package in 
R. Hierarchical clustering was performed within each 
Agatston Score Group. A permutation-based Random 
Forest (RF) classifier was applied with the Boruta pack-
age for R for feature selection by the calculation of fea-
ture importance. For group comparisons, student’s t-test 
was performed, and for multiple-group comparisons, 
ANOVA was performed. Additionally, monovariable 
logistic regression predicting an Agatston Score > 0 was 
performed. Furthermore, relevant features were investi-
gated for multicollinearity, and a 10-fold cross-validation 
was performed for the leading feature.

Results
Patient and image characteristics
The patient’s characteristics depending on the severity of 
CAC are summarized in Table 1.

z = ((X − µ))/σ,

Fig. 1 Segmentation of the periaortic thoracic adipose tissue (PAAT) was performed on axial view with a slice thickness of 2 mm (green area, left 
side) building a segmentation tube around the descending aorta (green area, coronal view, right side)
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For all patients, SNR was calculated as described in the 
material and method section, mean SNR for the EAT of 
our patient group was 3.82.

For all patients, the mean HU value of the whole seg-
mentation was determined (Agatston Score 0: -97,97 HU, 
Agatston Score 1–99: -101,69 HU, Agatston Score ≥ 100: 
-100,38 HU). Additionally, the volume of the PAAT in 
all three patient populations was quantified as outlined 
in Table  2. Clinical data were retrospectively evaluated, 
hence only in 25 out of 55 patients cardiovascular risk 
factors could be determined (Table 2).

Cluster analysis
Hierarchical clustering of the radiomics features 
extracted from the PAAT of every patient was performed 
after standardization, as well as clustering within each 
Agatston Score group. These results were demonstrated 
in a heatmap (Fig. 2).

Feature selection
Important features for differentiation based on the 
PAAT texture were selected by Boruta feature selec-
tion: RF-based feature selection was performed on the 
Agatston Score groups Agatston 0 and Agatston ≥ 100. 
In the process, out of 106 features, two second-order 
features, namely “original_glcm_ClusterTendency” and 

“original_glcm_ClusterProminence”, were identified as 
features associated with a difference in Agatston Score 
(Fig. 3).

Internal validation
For internal validation, the aforementioned features were 
additionally investigated in the group of Agatston Score 
1–99. The corresponding radiomics features are shown as 
boxplots in Fig. 4 and summarized in Table 3.

Supporting the expected change of texture in PAAT 
with an increasing Agatston Score, the Agatston Score 
1–99 group was placed in between the two other groups, 
resulting in the respective mean values (Agatston Score 
0/1–99/ ≥ 100) of 92.77/79.23/77.05 for “original_glcm_
ClusterProminence” (p = 0.019) and 5.72/5.33/5.24 for 
“original_glcm_ClusterTendency” (p = 0.078).

Internal cross‑validation and assessment for multicollinearity
To investigate the association of the variables “original_
glcm_ClusterProminence” and “original_glcm_Cluster-
Tendency” with an increased Agatston Score, additional 
monovariable, logistic regressions predicting an Agatston 
Score of > 0 were performed. The corresponding results 
are shown in Table 4.

To assess for multicollinearity, Variance Inflation Fac-
tor (VIF) was calculated and resulted in a value of 7.9269, 

Table 1 Patient collective overview. Mean and (SD) given for continuous variables

Overall Patients Agatston 0 Agatston 1–99 Agatston ≥ 100 p-value

n 55 23 19 13

Age (mean(SD)) 56.17 (13.24) 47.30 (13.98) 61.79 (10.21) 60.46 (8.96)  < 0.001

Sex (%)
 Male 34 (61.81%) 13 (56.5%) 10 (52.6%) 11 (84.6%) 0.148

 Female 21 (38.18%) 10 (43.5%) 9 (47.4%) 2 (15.4%)

Agatston Score (mean(SD)) 169.87 (457.66) 0 (0) 24.56 (20.78) 676.12 (797.49)  < 0.001

Table 2 Conventional and clinical patients’ parameters. Mean and (SD) given for continuous variables

Overall Patients Agatston 0 Agatston 1–99 Agatston ≥ 100 p-value

n 55 23 19 13
Agatston Score (mean (SD)) 169.87 (457.66) 0 (0) 24.56 (20.78) 676.12 (797.49)  < 0.001

PAAT mean density (in HU Value (SD)) -99.83 (26.13) -97.97 (5.54) -101.69 (5.20) -100.38 (6.06) 0.098

PAAT mean volume (in  mm3 (SD)) 78968.48 (45,572.69) 64832.28 (47194.59) 89429.63 (45965.33) 87601.91 (38535.90) 0.031

Patients with known cardiovascular 
risk factors

25 8 10 7  < 0.001

Hypertension (n) 19 5 9 5  < 0.001

Diabetes (n) 1 1 0 0 -

Dyslipidemia (n) 4 3 1 0 0.83

Nicotine abuse (n) 6 1 2 2 0.117
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Fig. 2 Unsupervised cluster heatmap of aggregated radiomics features of periaortic adipose tissue (PAAT)

Fig. 3 Random Forest (RF) feature selection in the 36 patients of the validation set (differentiating features marked in green)
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indicating multicollinearity. The association of both vari-
ables is visualized in Fig. 5.

As a result, the variable “original_glcm_ClusterPromi-
nence” was selected for the final model. A ten-fold cross-
validation of the logistic regression was performed to 
investigate its stability. This resulted in a Root Mean 
Squared Error (RMSE) of 0.4528, a R-squared value of 
0.3677, and a mean absolute error of 0.4220.

Discussion
This study is the first to investigate the possi-
ble connection between CAC and PAAT texture 
changes using radiomics features on PCCT. Two 
features, “original_glcm_ClusterTendency” and 

“original_glcm_ClusterProminence”, were found to dif-
fer between different levels of CAC (Agatston Score 
0/1–99/ ≥ 100). Due to the multicollinearity of the 
two features, “original_glcm_ClusterProminence” was 
selected as the leading feature, offering a potential radi-
omics signature for inflammatory or fibrotic changes in 
PAAT. “ClusterProminence” can be used as a marker for 
skewness and asymmetry of gray level co-occurrence 
matrix features. In analyses, a higher value implies more 
asymmetry about the mean [27]. Our study showed sig-
nificantly higher values of “ClusterProminence” in the 
patient group without CAC (Agatston Score 0), indi-
cating a higher asymmetry of grey values in PAAT. A 
possible explanation could be that diffuse fibrotic or 
inflammatory changes lead to a more homogenous struc-
ture, although this cannot be proven through this study. 
However, as adipose tissue and its inflammatory reac-
tions have been linked to vascular calcification [6] and 
possible local effects [8], these preliminary findings may 
support the possible correlation between PAAT texture 
and the calcification of coronary arteries.

The correlation between adipose tissue density and 
cardiovascular risk factors or atherosclerosis is disputed. 
While there are findings on lower CT attenuation in vis-
ceral and subcutaneous fat correlating with lower risks 
of atherosclerosis [11], there are also findings suggesting 
lower density in abdominal fat to correlate with greater 

Fig. 4 Distribution of “original_glcm_ClusterProminance” and “original_glcm_ClusterTendency” features within the dataset (orange = Agatston 
Score ≥ 100, green = Agatston Score 1–99, blue = Agatston Score 0)

Table 3 Differentiating higher order radiomics features. Mean 
and (SD) given for continuous variables

Agatston 0 Agatston 1–99 Agatston ≥ 100 p-value

original_
glcm_Clus-
terPromi-
nence

92.77(22.86) 79.23(13.14) 77.05 (0.53) 0.019

original_
glcm_Clus-
terTend-
ency

5.72 (0.84) 5.33 (0.46) 5.24 (0.53) 0.078

Table 4 Logistic regression for prediction of Agatston Score > 0

Model 1 Model 2 Combined Model

Predictor p Predictor p Predictor p

Intercept 4.39025 0.0065 6.0384 0.0263 1.55465 0.66

original_glcm_ClusterProminence -0.04741 0.0097 -0.08217 0.0656

original_glcm_ClusterTendency -1.0339 0.0332 1.05091 0.3846
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cardiometabolic risks [28]. The data of this study cannot 
follow either of these findings, as we were unable to find a 
significant difference in PAAT density between the three 
groups.

In 2010 Lehman et  al. investigated a possible connec-
tion between PAAT, metabolic risk factors, and vascu-
lar calcification by quantifying PAAT and found it to be 
associated with CAC as well as aortic calcification [7]. 
Efe et  al. investigated the relationship between PAAT 
and pericardial adipose tissue with CAD in 2014, based 
on PAAT and pericardial adipose tissue volume meas-
urements. Patients were divided into two groups for 
PAAT (PAAT < / ≥ 24.3  cm3) and pericardial adipose tis-
sue (< / ≥ 157.7cm3) respectively. In both groupings, the 
groups with higher PAAT/ pericardial adipose tissue 
volume had a significantly higher prevalence of CAD. 
[29]. Coming to a similar conclusion, Zhu et al. investi-
gated the association of PAAT and visceral adipose tis-
sue with coronary artery atherosclerosis in 2021, using 
a volume-based approach. They found PAAT volume to 

be significantly associated with CAD and coronary artery 
atherosclerosis [30]. In line with these results, the PAAT 
volume in this study’s population did also differ signifi-
cantly (p = 0.031) between the group with an Agatston 
Score of 0 and the groups with an Agatston Score ≥ 1. 
However, there was no significant difference in PAAT 
volume between the two groups with Agatston Score 
1–99 (mean 89429.63  mm3) and Agatston Score ≥ 100 
(mean 87601.91  mm3) and hence no linear correlation 
between CAC severity and PAAT volume could be found. 
The feature "original_glcm_ClusterProminence" did show 
a significant difference between all three groups, declin-
ing with increasing Agatston Score. This may imply that 
radiomics features could potentially aid in differentiat-
ing between the severities of CAC when a volume-based 
approach reaches its limitations.

In 2011 Yun et al. found adipose tissue to strongly cor-
relate with systemic inflammation and cardiovascular 
risk factors when investigating a connection between 
pericardial fat, thoracic PAAT, and cardiovascular risk 

Fig. 5 Association of variables “original_glcm_ClusterProminence” and “original_glcm_ClusterTendency”
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factors, as well as their value in terms of CAC. Addition-
ally, they found pericardial fat to exert a role in CAC [6]. 
This supports the findings of Rosito et al. in 2008 when 
they found intrathoracic and pericardial fat to be associ-
ated with vascular calcification [8].

The possible connection between PAAT and vascular 
calcification was further supported by the findings of 
Tharmaseelan et  al. in 2022. They investigated the cor-
relation between abdominal PAAT and local aortic cal-
cification by dividing 30 patients into two groups (aortic 
calcification present/absent) and extracting radiom-
ics features of the abdominal PAAT. They found several 
abdominal PAAT radiomics texture features to be sig-
nificantly associated with local aortic calcification [31], 
even though the significant features in their study differ 
from our results. A possible explanation could be that in 
contrast to investigating abdominal PAAT depending on 
local aortic calcifications, our study goes one step fur-
ther and outlines a possible influence of thoracic PAAT 
not on local aortic calcifications but on CAC, indicating a 
possible more diffuse and not only local inflammatory or 
fibrotic process.

The results of this study must be interpreted in con-
sideration of the following limitations. The presented 
study is retrospective and was performed at a single 
center with a limited number of patients, due to strict 
selection criteria and the limited number of patients 
who were scanned with the newly established PCCT. 
However, the use of a PCCT led to increased image 
quality and possibly more precise texture analysis. 
Furthermore, one severe limitation is that only insuffi-
cient clinical data were available for this study, as many 
patients were scanned in an outpatient setting as well 
as due to the retrospective nature of this study. This 
has to be addressed in further studies in the future. The 
cardiovascular risk factor “hypertension” differed sig-
nificantly between the three patient groups, as did the 
general distribution of recorded cardiovascular risk 
factors, resulting in potentially contributing confound-
ers. However, this was present mostly in the Agatston 
Score group 1–99 with a decrease in the patient group 
Agatston Score ≥ 100. This does not reflect the statis-
tical analysis of the radiomics features, as the features 
present a straight falling intensity with rising CAC. 
Moreover, the gender distribution within the group of 
Agatston Score ≥ 100 is uneven, with 86% male patients, 
as well as the age distribution between the different 
Agatston Score groups, so a more balanced age and 
gender distribution will be needed in further investiga-
tions, preferring a prospective multicenter approach in 
the future with a larger patient population with suffi-
cient clinical data. Lastly, as pointed out by Ayx et al., 
these results may not be fully comparable to any similar 

observations on EICT scanners, as their data suggest 
differences in radiomics feature values, especially in 
higher-order features such as the aforementioned ones, 
between EICT and PCCT scanners [32]. An additional 
study comparing PAAT in patients scanned on EICT 
and PCCT must follow in the future to address these 
severe limitations. Furthermore, radiomics analysis of 
PAAT should be performed using different reconstruc-
tion algorithms to address the limited reproducibility in 
our preliminary study.

Conclusion
In conclusion, this study is the first to investigate and 
outline a possible correlation between PAAT tex-
ture and coronary artery sclerosis. This may allow the 
hypothesis of possible texture changes through inflam-
matory or fibrotic processes in perivascular adipose tis-
sue influencing the process of arteriosclerosis, as well 
as suggesting that radiomics features may potentially 
serve as biomarkers for such respective changes.
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