
Fischer et al. BMC Medical Imaging          (2023) 23:104  
https://doi.org/10.1186/s12880-023-01056-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Imaging

Identification of radiomic biomarkers in a set 
of four skeletal muscle groups on Dixon MRI 
of the NAKO MR study
Marc Fischer1, Thomas Küstner2*, Sofia Pappa3, Thoralf Niendorf4, Tobias Pischon4, Thomas Kröncke5,6, 
Stefanie Bette5, Sara Schramm7, Börge Schmidt7, Johannes Haubold8, Felix Nensa8, Tobias Nonnenmacher9, 
Viktoria Palm9, Fabian Bamberg10, Lena Kiefer11, Fritz Schick3 and Bin Yang1 

Abstract 

In this work, we propose a processing pipeline for the extraction and identification of meaningful radiomics biomark-
ers in skeletal muscle tissue as displayed using Dixon-weighted MRI. Diverse and robust radiomics features can be 
identified that may be of aid in the accurate quantification e.g. varying degrees of sarcopenia in respective muscles 
of large cohorts. As such, the approach comprises the texture feature extraction from raw data based on well estab-
lished approaches, such as a nnU-Net neural network and the Pyradiomics toolbox, a subsequent selection according 
to adequate conditions for the muscle tissue of the general population, and an importance-based ranking to fur-
ther narrow the amount of meaningful features with respect to auxiliary targets. The performance was investigated 
with respect to the included auxiliary targets, namely age, body mass index (BMI), and fat fraction (FF). Four skeletal 
muscles with different fiber architecture were included: the mm. glutaei, m. psoas, as well as the extensors and adduc-
tors of the thigh. The selection allowed for a reduction from 1015 available texture features to 65 for age, 53 for BMI, 
and 36 for FF from the available fat/water contrast images considering all muscles jointly. Further, the dependence 
of the importance rankings calculated for the auxiliary targets on validation sets (in a cross-validation scheme) 
was investigated by boxplots. In addition, significant differences between subgroups of respective auxiliary targets 
as well as between both sexes were shown to be present within the ten lowest ranked features by means of Kruskal-
Wallis H-tests and Mann-Whitney U-tests. The prediction performance for the selected features and the rank-
ing scheme were verified on validation sets by a random forest based multi-class classification, with strong area 
under the curve (AUC) values of the receiver operator characteristic (ROC) of 73.03 ± 0.70 % and 73.63 ± 0.70 % 
for the water and fat images in age, 80.68 ± 0.30 % and 88.03 ± 0.89 % in BMI, as well as 98.36 ± 0.03 % and 98.52 ± 
0.09 % in FF.
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Introduction
Radiomics has been an integral part in bringing omics 
to medical imaging data. Radiomics can be considered 
part of the holistic imiomics concept [1], which has the 
goal to leverage available imaging information alongside 
non-imaging data. By identification of extracted features 
from imaging data, quantifying phenotypic characteris-
tics becomes possible, which allows to unveil correlations 
between raw data, relevant subgroups and their clinical 
outcome. These include the vast range of oncology appli-
cations [2], including chemotherapy response prediction 
[3], lung cancer screening [4], breast cancer differentia-
tion [5] or osteoporosis [6]. The radiomics tools can also 
be used in conjunction with classical measures such as 
the fat infiltration [7] or muscle volumes [8].

Recently, sarcopenia was investigated [9–11] by aid of 
such radiomic features. Sarcopenia is a degenerative ill-
ness resulting in the loss of muscle mass (atrophy) and 
strength especially prevalent with increasing age or 
restricted mobility [12]. Modern imaging technologies 
allow for the visualization of respective (muscle) tissue 
and its degeneration in different ways [13, 14]. Thus, an 
accurate quantification based on radiomic (texture) fea-
tures that gather information of the muscles, which may 
be difficult to identify from inspection of the gray val-
ues alone, alongside morphological (shape) character-
istics becomes possible for specific muscles with recent 
(radiomics and segmentation) tools. These features may 
enable quantifying underlying deviations from the norm 
present within respective muscles. Subsequently, quan-
tified deviations could be made usable as indicators in 
subsequent radiological analyses [14]. As such, varying 
degrees of severity of sarcopenia could be analyzed in 
large population-based cohorts as well as specific mus-
cles of individual patients. Thus, analyzing the raw imag-
ing data in an automated way becomes a mandatory and 
necessary step that allows for a statistical characterisa-
tion and gives way to personalized precision medicine.

Further, the robustness and reliability of such stand-
ardized texture features [15–19] were investigated and 
consensus proposals on their inclusion into clinical tri-
als were developed [20]. Several MRI protocols have 
been investigated thoroughly, with respect to their 
nature of inhomogeneities, texture differences and 
relative signal intensities [21–26] and their prognostic 
value [27]. In this regard, there have also been efforts 
in providing intensity standardization for quantitative 
imaging [28].

Besides these applications and considerations, sev-
eral methodical advancements regarding the selection 
process of important texture features have been evalu-
ated in [29] for lung cancer tumors in CT images. Sugai 
et al. relied on the PyRadiomics toolbox [30] to calculate 

and extract standardized quantitative features based on 
imaging raw data. Subsequently features were selected 
via different selection methods (test-retest on a specific 
longitudinal dataset or correlation analysis). Remain-
ing features where used in a lasso cox regression model 
in a five-fold cross-validation setting to obtain radiomic 
model estimators. Kim et  al. [11] investigated the use 
of several different machine learning methods (supp-
port vector machines, random forests, extreme gradient 
boosting) to assess the usability of PyRadiomics texture 
features for the detection of sarcopenia in CT images. 
In addition, the combination with recent deep learn-
ing tools, such as GAN-based super-resolution [31] or 
entirely deep-learning-based radiomics pipelines [32] 
were explored.

In recent years, large population-based cohorts, 
such as the German National Cohort (GNC) [33] have 
been established with the goal to enable researchers to 
identify meaningful characteristics from non-invasive 
radiological imaging data. While most of the work 
considered under the umbrella of radiomics has been 
focused on different tumor types, we want to apply the 
same principles to MRI data of pre-dominantly healthy 
muscle tissue. This study is designed as a precursor for 
the identification of radiomic features with the long-
term aim to identify a prognostic marker for the pro-
gression of sarcopenia. To this end, we

• propose a general processing pipeline to identify 
robust radiomics features for muscle tissue in large 
MRI cohorts comprised of 10672 eligible subjects,

• show that a diverse set of selected features can be 
ranked and thereby ordered based on their relative 
importance,

• analyze important features for sarcopenia by means 
of their statistical differences between subgroups 
based on available auxiliary information such as age 
and sex.

This pipeline is implemented and studied to serve as as 
a base for future investigation in the differentiability of 
texture features to detect varying degrees of sarcope-
nia. Thus, we want to identify diverse and robust fea-
tures based on auxiliary information. The pipeline itself 
consists of two parts: a feature generation, and a feature 
selection. In the generation step, an automated muscle 
segmentation is followed by a feature extraction. The 
extraction incorporates the aforementioned established 
PyRadiomics toolbox [30]. In the feature selection part, 
several selection criteria as well as a suitable ranking 
scheme are integrated. Relevant processing steps from 
the literature are implemented into the pipeline to ena-
ble radiomic analyses.
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Methods
The proposed processing pipeline generates and selects 
radiomics features from MR imaging data. The used 
two-point Dixon MR data is described in Medical data 
section. The pipeline itself consists of two parts; the first 
part (Feature generation section) is comprised of an 
automated segmentation of muscular tissue groups and 
a subsequent extraction of textural and auxiliary infor-
mation: age, body mass index (BMI), fat fraction (FF). 
In turn, the auxiliary information serves as surrogate 
targets in the second part (Feature selection section), in 
which a multi-step selection is performed to gain prom-
ising features. Thereby, we generate radiomics features 
of multiple muscle regions, allowing for further analy-
ses of their characteristics and to identify potential bio-
markers. In this work, we include four different muscle 
groups: the gluteus, the psoas as well as the extensors 
and the adductors of the thigh. We analyze these mus-
cles by comparison across different subgroups, namely 
the subject’s age, their BMI (weight/height2), and the FF 
of each respective muscle (proportion of the acquired 
signal derived from Dixon water and fat images). In 
addition, statistical differences between those subgroups 
reflected in selected features were investigated. Here, we 
introduce a ranking scheme to identify the most impor-
tant features by relying on multiple validation folds and 
targets. The proposed framework will be made publicly 
available: https:// github. com/ lab- midas/ muscle_ textu re.

Medical data
We focus our investigation on the whole-body 
T1-weighted dual echo gradient echo (GRE) MRI 
sequence (two-point Dixon) of the GNC (matrix size 
240  x 320, resolution 1.2mm × 1.2mm , slice thickness 
3mm, echo times 1.23/2.46ms, repetition time 4.36, flip 
angle 9◦ , band width 680Hz/pixel) acquired on 3T clini-
cal MRI scanners (Magnetom Skyra, Siemens Health-
ineers, Erlangen, Germany) [34]. 11026 subjects were 
made available to us (baseline) with the total number 
of subjects expected to include 30000 imaging datasets 
[35]. The participants were between the age of 20 and 69 
years and selected at random from the general German 
population. For the 11026 subjects, imaging data and 
anthropometric information (age, gender, weight, height) 
were available and were considered for the generation 
and selection of radiomics features. In the end, 10672 
subjects, 5484 (51.39%) male and 5188 (48.61%) female, 
were suitable to be processed in the texture feature gen-
eration and selection. In Feature generation section fur-
ther details on the auxiliary targets and the exclusion of 
ineligible subjects are provided. The water and fat images 
(contrasts) of the two-point Dixon scans were both con-
sidered for feature generation.

Radiomics pipeline
The goal of the implemented radiomics pipeline is to pro-
vide a reproducible selection of robust radiomics features 
for the data. We achieve this by several generation and 
selection steps, before performing a final selection of a 
limited amount of features based on a proposed ranking 
scheme. The pipeline operates on the individual mus-
cles and comprises an automatic segmentation, the fea-
ture extraction, several feature selections and the feature 
importance ranking. The ranking scheme can be applied 
to individual muscles or jointly to all available muscle 
groups together. The whole pipeline from generation over 
selection and importance calculation is introduced in the 
following sub-chapters and illustrated in Fig. 1.

Feature generation

Neural Network Segmentation To extract relevant 
muscle groups, a deep learning network - the nnUnet 
[36] - was implemented as a robust method to handle 
different image sizes and provide sufficient automated 
segmentation performance. The process is described 
in more detail in [37]. For ease of application, two net-
works have been trained. One for the gluteus and psoas 
compartments, and one for the anterior (extensors) and 
posterior (adductors) muscle compartments. Each net-
work predicts four categories due to a further separation 
of each muscle group into the left and right side of the 
muscle group. A multi-stage training scheme has been 
used, wherein 20 datasets where initially labeled manu-
ally by L.K. (5 years of experience in musculoskeletal 
imaging). A first network, trained on the initial labels, 
was used to predict masks on 50 further datasets. In 
turn, all predictions were manually corrected and used 
for a subsequent training on the joint set of 70 annotated 
imaging volumes. All four contrasts (water, fat, in- and 
opposed-phase) were passed as input to the neural net-
work. The final network performed predictions on the 
available 11026 datasets.

Mask Post‑processing To ensure robust feature genera-
tion, masks were post-processed (after their prediction) 
by a dedicated connected component labeling heuristic, 
which removes small isolated misclassifications auto-
matically. Misclassifications have been defined as regions 
with a relative voxel amount of < 2.5% compared to the 
largest connected region. Larger but disjoint regions may 
indicate isolated but valid mask components that have to 
be visually inspected within a manual consistency check. 
In addition, a morphological erosion filter was applied 
to the masks prior to the texture feature extraction, 
to ensure that boundary regions of the muscles which 
may include partial tissue compartments of varying 

https://github.com/lab-midas/muscle_texture
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characteristics in intensity, texture or homogeneity, are 
not included in subsequent calculations.

Manual consistency check A manual consistency check 
of all predicted segmentation masks alongside the imaging 

data was performed. This ensures no severely wrongful 
segmentation mask prediction was included in the fea-
ture extraction or corrupted imaging raw data was used. 
As such, an overlay plot of the predicted masks on the 
water image was generated for each subject (see Fig.  2). 

Fig. 1 Proposed radiomics pipeline. a Radiomics feature generation pipeline. I: Deep learning based segmentation, II: Connected component 
labeling removing isolated mask elements, III: Manual consistency check of segmentation masks, IV: Mask erosion to remove boundary elements, 
V: Texture feature extraction of each muscle group, VI: Shape feature extraction of each muscle group, VII: fat fraction calculation based on water 
and fat contrast per muscle mask. b Radiomics feature selection pipeline with five-fold cross-valdiation for steps II-V. I: Cluster representative 
identification based on correlation values, II: Discarding features with low mean left and right muscle correlation values, III: Variance inflation factor 
calculation and iterative feature removal, IV: Heuristic Boruta selection to estimate feature importance with respect to surrogate targets body mass 
index (BMI), age and fat fraction (FF), V: Permutation importance calculation across folds for identification of ranking of selected features. Numbers 
on the arrows indicate the remaining amount of texture features after each selection step
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In this overview all four muscle groups (left and right) are 
illustrated along three orthogonal views (sagittal, coro-
nal, axial). The content is depicted in two different ways: a 
maximum intensity projection (MIP) of the masked mus-
cle regions (in the upper row) and cross sections along the 
geometric mean of the muscle volumes indicated in yellow 
(with other segmentation groups in turquoise) in the lower 
rows. This enables a simple visual inspection and identifica-
tion of mask errors, the presence of fat-water swaps of the 
specific Dixon sequence or wrongful header (and thereby 
orientation) information. The visual check was performed 
based on the aforementioned plots by L.K.. Hereby, a total 
number of 344 subjects were discarded in the manual con-
sistency check; 78 were excluded due to fat water swaps 
and 266 have been discarded due to erroneous segmenta-
tion mask predictions (including wrong mask orientations 
due to incorrect header information), leading to 10682 
remaining subjects.

Texture Feature Extraction In this work, the python 
package Pyradiomics [30] was employed to perform 
the extraction of various texture features. Pyradiomics 
provides a solid and well-tested basis of robustly imple-
mented features for our subsequent selection. The tool 
was integrated in our radiomics pipeline (see Fig.  1). 

The segmentation masks generated in the preceed-
ing step were used to select the water and fat contrasts 
of the two-point Dixon-weighted MR sequence. We 
extracted features for each muscle region for the water 
as well as fat image. Hereby first order statistics, gray 
level cooccurence matrix (glcm), gray level run length 
matrix (glrlm), gray level size zone matrix (glszm), 
neighboring gray tone difference matrix (ngtdm), gray 
level dependence matrix (gldm) were created. Differ-
ent from studies as in [11], we also include common 
shape features (e.g. volume, area, sphericity, compact-
ness, and elongation) alongside the texture features due 
to the availability of generated muscle masks. Border 
regions that may contain unwanted texture variations 
due to partial volume effects resulting in voxel bleeding 
or information from neighboring content, are excluded 
by a morphological erosion filter. Images were normal-
ized prior to the feature extraction and bilinear resam-
pled to a consistent resolution of 3mm × 3mm × 3mm . 
Besides original features, variations of the image con-
tent by application of Laplacian of Gaussian (LoG) and 
Wavelet transformations were included, resulting in 
an overall number of 4060 available texture features 
per muscle group per side for each individual subject. 
In 10 subjects features couldn’t be generated due to 
an underlying corruption of the respective raw data. 

Fig. 2 Overlay plot used for manual consistency check of predicted segmentation masks. All muscle groups for the left and right side are 
presented alongside the water contrast. The upper three rows show maximum intensity projections (MIP) along all three axes (sagittal, coronal, 
axial) with masked areas highlighted. In the lower three rows cross sections along all three axes are shown with yellow masks indicating the label 
of interest and turquoise masks representing all other present labels
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Leaving 10672 subjects for the subsequent feature 
selection process.

Auxiliary Targets Besides the feature extraction, we 
used image meta information to provide surrogate tar-
gets for the subsequent selection (in the absence of clini-
cal outcome data). The auxiliary information includes the 
age, the BMI as well as the FF as indicators of the body 
type and composition. The age was extracted from avail-
able meta information, the BMI was calculated based on 
the height and weight in the meta information and the 
FF was calculated based on imaging information in com-
bination with mask predictions. The FF was calculated 
for each individual muscle (per side) based on the water 
and fat image intensities of the selected sequence in the 
region of interest: FF = ifat/(iwater + ifat) with intensity 
values i at the voxel in the relevant segmentation mask 
of each muscle. The mean ± standard deviation (median) 
was 51.85± 11.40 (53.00) years for age and 26.81± 4.71 
(26.14) kg/m2 for the BMI. The FF for each muscle group 
was 23.45± 5.26 (23.08)% for the psoas, 27.86± 6.56 
(27.04)% for the gluteus, 12.11± 3.30 (11.58)% for the 
extensors and 19.94 ± 5.13 (19.39)% for the adductors. 
For the subgroups, we set bin widths of histograms as 
illustrated in Fig. 3. Each auxiliary target with values fall-
ing below or exceeding the shown range were added to 
the first or last bin respectively. The auxiliary targets are 
further explored in Subgroup differences section.

Feature selection
To identify relevant and meaningful texture features, 
several selection steps were implemented (see Fig.  1b), 
which ensured that selected features adhere to certain 
conditions. The conditions aimed to capture important 
correlations as well as differences between subjects or 
subgroups. In radiomics pipelines, texture features need 

not only to be extracted robustly, but also be selected in a 
consistent fashion. Thus, in Step I cluster-representatives 
for several highly correlated features were selected. This 
is required since the regions of interest of the predomi-
nantly healthy muscle tissue are more regular in texture 
compared to e.g. cancerous tissue for which radiomics 
features are employed usually. This resemblance between 
features is illustrated by the averaged intra-muscle corre-
lations between first order statistic features of the water 
contrast in the color-coded Fig. 4. The illustrated correla-
tions were averaged between both sexes and all muscles 
before the clustering, so that identical texture feature 
representatives are used across all investigated cases. 
In the figure, high intra-muscle correlation values were 
present, indicating large collinearity between several 
features. The dendrogram on the edges of the correla-
tion matrix shows a hierarchical clustering based on the 
distance to respective cluster centroids. Distances below 
a threshold < 0.1 lead to an inclusion in the respective 
cluster and to an exclusion for values above. Representa-
tives were taken in alphabetical order with priority given 
to original (unchanged) features over transformed LoG 
features and then wavelet feature variants. The clustering 
was further limited to features of the same sub-category 
(e.g. first order, glcm, glrlm, and more) to keep a rich set 
of variations.

Subsequent steps of the feature selection (Fig.  1b), II 
- V) were performed in a cross-validation strategy with 
five disjoint folds of subjects. This scheme was employed 
since auxiliary information was used as selection criteria 
which can lead to different outcomes for subject-specific 
data characteristics. Hereby, four folds were considered 
as the training data and the remaining fold data was con-
sidered as the validation data. This process was repeated 
for each possible validation fold. For the given datasets, 
the training data contained 8536 subjects and the valida-
tion data contained 2134 subjects.

Fig. 3 Histograms of investigated subgroups for individual targets a age, b body mass index (BMI), and c fat fraction (FF). Subjects exceeding 
the bounds are added to the first or last bin
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In Step  II, features with a weak mean intra-feature 
correlation < 0.7 between the left and the right masked 
region in a muscle of a training subject were discarded. 
The reasoning behind this selection was that a low intra-
feature correlation value indicates poor reproducibility 
e.g. due to the susceptibility to noise, texture inhomoge-
neieties or the impact of present imaging artifacts.

In Step III, the amount of features was further reduced 
by a variance inflation factor (VIF) calculation [38]. The 
VIF is a ratio of variances (related to the coefficient of 
determination R2 ) that provides a measure for the lin-
ear relationship between multiple parameters (multi-
collinearity). Based on a leave-one-out linear regression, 
features with the highest inflation factor were removed 
iteratively if the VIF was above > 10 which is commonly 
regarded as indicating high multi-collinearity [38]. Ignor-
ing the remaining multi-collinearity can lead to adverse 
effects in epidemiological studies [39]. Hence, this step 
is intended to reduce the remaining collinearity which 
may otherwise negatively impact subsequent importance 
calculations and thereby the selection of texture fea-
tures with meaningful inter-subject variability. To keep a 
diverse set of features, the variance inflation calculation 
was again performed for each feature sub-category, such 
as first order or glcm, separately.

In Step IV, a Boruta feature selection heuristic [40] was 
employed. This method has been shown to be an excel-
lent choice for the selection of omics data in combination 
with random forests [41]. It estimates the feature impor-
tance with respect to the employed auxiliary information 
(age, BMI, FF). Hereby, a random regression forest was 
applied and trained, in which random permutations of 
features are compared with true extracted features. The 
random forest contained 100 trees with a squared error 
split criterion and a maximum tree depth of 5. A heuris-
tic was used in which extracted features are considered 
eligible only if they are more discriminative than the arti-
ficially generated alterations. Otherwise, the respective 
features were discarded. The selected features vary based 
on the chosen auxiliary target.

In Step  V, a final feature importance for the post-
selection ranking was calculated of the remaining fea-
tures. Again, a random regression forest was used to 
calculate a permutation importance [42]. In this case, 
a similar random forest, with 100 trees, a squared error 
split criterion, and a maximum tree depth of 8, was 
used. We note, that the post-selection importance was 
identified on the validation data of the respective fold 
instead of the training data (as done in prior selection 
steps). This importance was in turn used for the fol-
lowing ranking scheme to identify overall meaningful 

Fig. 4 Exemplary intra-muscle feature correlations for extracted first-order radiomics features of the Dixon water contrast. High intra-muscle 
correlation values are present, indicating large collinearity between several features. A dendrogram on the left and top border shows a hierarchical 
clustering based on cluster distances to respective centroids
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features and their order. For a respective fold the pro-
posed ranking scheme follows the formula

with Nrepeats describing the number of random permu-
tations to determine the feature importance, Nfeatures 
depicting the number of selected features in Step  IV, 
and Ntargets describing the number of auxiliary informa-
tion targets (if the ranking is averaged across all targets). 
ranki,j,k,l represents the rank of the relative post-selection 
importance of feature j for the given target k and fold i. 
The rank is normalized between 0 (first) and 1 (last). Fea-
tures that were not selected in the selection process for 
one of the auxiliary targets but were present for at least 
one target, were ranked last, i.e., with a value of 1.

Statistical evaluation
The post-selection ranking importance is given as mean 
± standard deviation of all folds. To confirm the statisti-
cal significance of differences between subgroups, non-
parametric analyses of variance were performed due to 
the non-normal distribution of range bound extracted 
features. Thus, a Kruskal-Wallis H-test is applied to 
identify significant differences between the subgroups. 
This test provides a one-way analysis of variance 
(ANOVA) on ranks and determines if samples from the 
different subgroups originate from the same distribution. 
We apply a Bonferroni correction, due to the concur-
rent investigation of the first ten features in the follow-
ing, leading to a significant p-value threshold of 0.005. In 
addition, we performed a Mann-Whitney U test, for dif-
ferences between each respective male and female sub-
group (e.g. age 30-39 male vs 30-39 female). It is another 
test on ranks that indicates if two independent groups 
are significantly different from each other. Depending on 
the number of subgroups a Bonferroni corrected p-value 
was used (0.008 for six subgroups, 0.007 for seven sub-
groups). In addition, to give an estimate of the multi-
class classification performance based on the selected 
features, we trained a classification random forest with 
500 trees, an entropy split criterion, and a maximum tree 
depth of 10. Different from the post-selection impor-
tance, this tree was trained on the training data (four 
folds) and applied to the left-out (validation) fold with 
respect to the introduced auxiliary target subgroups.

Results
Feature selection
Figure  1 indicates the amount of unique features that 
remained after each selection step for features from the 

rankfoldi ,featurej =
1

Nrepeats · Ntargets

Nrepeats∑

k

Ntargets∑

l

ranki,j,k ,l

|Nfeatures,i,l |

generation pipeline for a joint selection on all available 
muscle groups. The values depicted show mean [lower 
bound, upper bound] of features selected across all folds. 
524 out of the 1015 unique features from the water as 
well as the fat contrast remained after the cluster-repre-
sentative selection (Step I). For the cross-validated steps 
(Step II‑IV) 306 [302, 309] features remained after the 
intra-class correlation calculation (Step II) and 70.2 [68, 
72] features were available after the VIF selection (Step 
III). For the Boruta heuristic (Step IV) 65.2 [62, 68] fea-
tures for age, 53.0 [47, 59] features for BMI, and 36.4 [33, 
39] features for FF were deemed eligible. We also report 
the amount of selected features for separate modalities 
(with shape features included in both cases) by mean 
[lower bound, upper bound] (unique features across all 
folds). For the water contrast 34.6 [32, 37] (45) features 
for age, 31.0 [29, 36] (40) features for BMI, and 13.8 
[12, 16] (18) features for FF were present for the subse-
quent post-selection calculation. For the fat contrast 44.2 
[41, 47] (58) features for age, 30.6 [21, 40] (52) for BMI, 
and 25.2 [21, 28] (36) features for FF remained. Further 
amounts for individual muscles are given in Table  1. In 
most cases, the number of unique features seen across all 
folds was higher for the features of the fat contrast than 
for the water contrast. We note that minor variations, 
such as different wavelet filter combinations, can inflate 
the amount of unique features.

Feature importance ranking
Based on the selected features, we calculated the impor-
tance ranking across all folds. Exemplary rankings 
thereof averaged across all targets for the first ten fea-
tures of the water as well as the fat contrast are visual-
ized via boxplots in Fig. 5. Green triangles indicate the 
mean rank and red lines the median value. Large differ-
ences between mean and median values indicate differ-
ent ranks for different targets and can further vary due 
to separate ranking results for each fold. For the water 
contrast, the mean ranking showed a clear distinction 
between the ranking score of certain features including 
the top performing features. We see a plethora of dif-
ferent features from different subgroups such as first 
order, shape, gldm, glrlm and their wavelet and log-
sigma variants scoring low overall ranks. For example, 
for the second water contrast features, we see a shape 
feature, namely the original_shape_elonga-
tion which is highly dependent on the muscle shape 
and can thus vary greatly for different muscles. Con-
sidering all muscles, it scores nonetheless with a low 
rank. For the fat contrast the ranking becomes noisier 
indicated by larger bounding boxes and in some cases 
strong differences between the mean and median rank 
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as seen e.g. for original_ngtdm_strength and 
original_firstorder_energy.

For illustration, we added a voxel-wise representa-
tion of the first ranking feature original_gldm_
largedependencehighgraylevelemphasis for 
all investigated muscles across a coronal and two axial 
views in Fig. 6. We note, that in contrast to this visualiza-
tion, the processed texture features used for the ranking 
are based on mean values, which are aggregated across 
respective masked regions for each muscle.

We report the ranking for individual muscles of the 
water contrast averaged on all three targets in Fig.  7. 
Hereby variants (original, LoG, wavelet) of the gldm_
largedependencehighgraylevelemphasis 
and glszm_largeareahighgraylevelemphasis 
scored low on all four muscle groups, indicating that these 
features are important to identify at least one of the auxil-
iary targets (age, BMI or the FF). The shape elongation is 
less important for each individual muscle, as it does not 
aid in differentiating characteristics within the same mus-
cle group compared to the presence of multiple muscles 
(thereby indirectly allowing for a better estimation of the 
FF). Again, we see the original as well as LoG and wavelet 
features across varying different subgroups. The gluteus, 
psoas and the extensors showed tight boxplots with close 
mean and median values leading to robust rankings. The 
ranking for the adductors showed two good performing 
features for the lowest ranks and higher variability for 
subsequent features. We note, that this muscle group was 
partially cut off in some cases (due to the FOV placement 
of the imaging data), which may lead to lower prediction 
accuracy and thereby higher mask coverage errors.

To further illustrate the resulting ranking, we depict 
the ranking averaged across all muscles for individ-
ual targets by means of boxplots in Fig. 8. In all cases a 
well-structured ranking with distinctive relative feature 
importances was produced. Across all three targets, the 

ranking varied drastically with an almost linear trend 
of the mean rank in all three cases compared to over-
all rankings. There was also a higher difference in the 
mean rank between the first and tenth feature compared 
to the overall rankings as well as the averaged rankings 
per muscle. Also different from the previous examples, 
for each auxiliary target there is a texture feature which 
achieves a mean rank < 0.01 . This indicates that one fea-
ture scores best very consistently. For the age target the 
gldm_largedependencehighgraylevelempha-
sis feature remains the most important feature. For BMI 
a wavelet variant of the firstorder_minimum and for 
FF a wavelet variant of the glrlm_graylevelnonu-
niformitynormalized achieved the lowest rank.

Subgroup differences
With the ranking based on the feature importance of 
selected features, we can illustrate subgroup differences 
of the top performing features. We depict the distribu-
tion of some exemplary texture feature values for male 
and female subgroups below. Hereby, boxplots separated 
by males and females for each auxiliary targets are pre-
sented based on the feature values for the lowest ranked 
and thereby best performing features included in Feature 
importance ranking section. These include the best fea-
ture of the ranking averaged across all muscles and all tar-
gets on the water contrast (Fig. 9), as well as the feature 
of the ranking averaged across all muscles and all targets 
on the fat contrast (Fig.  10), the features of the ranking 
for each target averaged across all muscles on the water 
contrast (Fig. 11), and the features for the ranking of each 
target and each muscle on the water contrast (Fig.  12). 
To get a broader picture of the top performing features, 
further quantitative results of the Kruskal-Wallis H-test 
between subgroups of the ten lowest ranking features and 
p-values of the Mann-Whitney U-test between respective 
male and female subgroup bins are reported in Tables 2 
and 3. Hereby features, according to the ranking identi-
fied for all targets as well as individual targets across all 
muscles have been considered. The figures and respective 
table entries are explored in the subsequent paragraphs.

In Fig.  9, we see the first ranking feature gldm_
largedependencehighgraylevelemphasis 
across all muscles and all targets on the water contrast for 
male and female subgroups. The main body of the boxes 
indicates the first (lower bound) and third quartile (upper 
bound). Values of neighboring subgroups can overlap 
substantially. However, the mean (green triangles) and 
median (red lines) show monotonic trends of its values. 
These trends are present for male and female subjects as 
well as for different targets. The Kruskal-Wallis p-value 
for the original_gldm_largedependencehigh-
graylevelemphasis feature consistently showed a 

Table 1 Varying amounts of selected texture features across all 
folds for the water and fat contrast and different auxiliary targets. 
Amounts are given by mean [lowest amount, highest amount] 
(amount of unique features)

contrast muscle age BMI FF

water all 34.6 [32, 37] (45) 31.0 [29, 36] (40) 13.8 [12, 16] (18)

gluteus 37.6 [35, 39] (49) 37.8 [37, 39] (50) 24.2 [21, 27] (38)

psoas 26.4 [25, 28] (35) 24.8 [22, 26] (34) 21.2 [19, 25] (34)

extensors 33.6 [29, 35] (48) 28.6 [26, 33] (40) 31.6 [28, 37] (48)

adductors 39.6 [33, 44] (61) 23.0 [20, 28] (48) 33.8 [28, 42] (61)

fat all 44.2 [41, 47] (58) 30.6 [21, 40] (52) 25.2 [21, 28] (36)

gluteus 45.4 [42, 48] (60) 45.6 [41, 49] (58) 39.4 [35, 43] (56)

psoas 32.0 [31, 33] (39) 31.6 [30, 33] (39) 22.6 [19, 25] (27)

extensors 31.4 [29, 33] (51) 30.4 [25, 34] (52) 42.6 [38, 51] (70)

adductors 34.6 [32, 37] (60) 37.0 [30, 41] (64) 36.0 [29, 41] (57)
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p-value < 0.001 indicating statistically significant differ-
ences between subgroups for all available auxiliary tar-
gets. In addition, all of the lowest ranked ten features 
of the water contrast identified in the selection pipeline 
including the final ranking, exceeded a p-value of 0.005 
for males (see Table 2). For females, only one of the ten 
features (original_shape_elongation) did not 
show significant changes between age subgroups with a 
maximum p-value of 0.034 (being above the corrected 
threshold of 0.005). Note that all other nine texture fea-
tures remained below the significance threshold of 0.005 

for females. For the Mann-Whitney-U test, most sub-
group comparisons showed a p-value < 0.001, showing 
significant differences between male and female texture 
feature values for features identified for the water con-
trast and all targets. Prominently, there are exceptions, 
where the p-value exceeds the significance thresholds. 
These outliers are especially for the first and last sub-
group bins (where subjects in the long tails of the distri-
butions are aggregated) with highest p-values of 0.059 for 
age, 0.465 for BMI and 0.003 for the FF. Respective fea-
tures (indicated by the their rank from 1 to 10) and the 

Fig. 5 Boxplots of rankings based on permutation importance across targets with values between 0 (first) and 1 (last) for all targets combined in a 
water and b fat contrast
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number of the histogram bins associated with the highest 
p-value are reported in Table 3.

In Fig. 10 we see the respective texture feature values 
for the wavelet-lhl variant of the gldm_largede-
pendencehighgraylevelemphasis feature on 
the fat contrast. It follows similar trends as the first 
ranked variant of the water contrast, yet the decrease 
for all targets across bins is less linear. Notably, there 
is a large difference between median and mean values 
for males indicating a distribution skewed to higher 
values. This is also present, albeit in a less promi-
nent fashion, for females. Nonetheless, clear differ-
ences between each subgroup can be seen again with 
a Kruskal-Wallis p-value < 0.001 for the shown feature 
values for males and females alike. As illustrated in 
Table  2, this held also true for the ten lowest ranked 
texture features of the fat contrast for the BMI and 
FF target. For age, the p-value is again 0.034 since the 
shape_elongation feature is contrast independent and 
was thereby also present in the ranking for the fat con-
trast. p-values of the lowest ten ranked features in the 
Mann-Whitney U test between male and female sub-
groups are higher compared to the water contrast, 
with values of 0.380 for age, 0.498 for BMI and 0.440 
for FF exceeding the significance thresholds of 0.008, 
0.007, and 0.008 respectively.

In Fig.  11 we show the first ranked feature for indi-
vidual targets; for age the feature remains gldm_
largedependencehighgraylevelemphasis, for 
the BMI we depict the wavelet-lll variant of the first-
order_minimum and for the fat fraction we show the 
wavelet-llh variant of the glrlm_graylevelnonu-
niformitynormalized. In all cases, the features 
show similar trends independent of their vastly differ-
ent range of values. For BMI, the means decreases for 
male and female subjects alike. All ten lowest ranked 
texture features remained below a p-value of 0.001 for 

the Kruskal-Wallis test. For BMI, the significant p-value 
of 0.007 for the Mann-Whitney U test was exceeded for 
the first subgroup ( p = 0.465 ). The other subgroups all 
showed significant differences between male and female 
subjects. Highest p-values are again noted in Table 2 and 
3 for both contrasts.

Lastly, in Fig. 12 we illustrate boxplots for all individual 
muscle groups and their respective first ranked feature 
(for each individual target and joint male and female sub-
jects) in each row. The columns again include the different 
auxiliary targets. Subgroup differences varied more com-
pared to the aforementioned boxplots with monotonic 
decreases as well as increases of the mean and median fea-
ture values. Scales of the subgroups can also vary greatly, 
as can be seen for the FF of the extensors. Three variants 
of the largeareahighgraylevelemphasis were 
present (original for the psoas, wavelet variants for the 
gluteus and the extensors) indicating the robustness and 
sensitivity of this feature with respect to the auxiliary tar-
gets. In addition, first-order features such as energy and 
the 10th percentile were able to distinguish well between 
subgroups of the BMI target.

Prediction performance on subgroups
To evaluate the performance of selected features as well 
as the proposed ranking scheme, we calculated receiver 
operator charactersitic (ROC) curves and their derived 
area under the curve (AUC) scores. The ROC curve 
is a means to illustrate the ratio between true and false 
positive rates for a binary classifier. It depicts lines that 
indicate the ability to detect true positives when vary-
ing the threshold of false positives. The AUC is the area 
under the respective line and provides a scalar value for 
its overall performance. We employ it for the multi-class 
classification performance on the introduced age, BMI, 
and FF subgroups. Hereby, the classification random for-
est predictions are considered in a One-vs-Rest (OvR) 

Fig. 6 Exemplary visualization of voxel-wise texture feature original_gldm_largedependencehighgraylevelemphasis in one 
subject for a a coronal view in all muscle groups, b axial views in gluteus and psoas, and c axial views through adductors and extensors
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setting (where one class is considered the positive and 
the remaining classes as negatives) and averaged to calcu-
late ROC curves. Exemplary curves for the joint selection 
on all muscles for both contrasts are illustrated in Fig. 13. 
Based on a feature selection with individual muscles, 
Fig.  14 shows prediction curves for all auxiliary targets 
for the water contrast. In both figures, the training as well 
as validation performance are depicted by a separate line 
for each fold. The figures also include a further selection 
of the 10 lowest ranked features (validation - 10) based 
on the calculated post-selection importance. The corre-
sponding AUC values for all depicted curves, as well as 
further cases based on the fat contrast, are reported in 
Table 4. In addition, we provide mean accuracy values for 
the correct prediction of the specific subgroup in Table 5.

In all cases a moderate performance decrease can be 
observed between the performance of the ROC curves 
and AUC scores on training data and on the unseen vali-
dation data. Despite varying amounts and selections of 
features across different folds, only minor variations in 
the prediction performance were seen between them. 
The performance, was similar for features based on the 
water and fat contrast alike. Thus, similar true posi-
tive rates are achieved for respective false positive rates 
on both contrasts. In addition, the ranking scheme fur-
ther reduces the amount of selected features with only a 
minor performance drop in AUC scores. In most cases 
the derived mean AUC values were slightly higher when 
relying on fat texture features than water texture features. 
For the auxiliary targets, age was most difficult to predict, 
seen by more flat curves and lower AUC values, with FF 

being the easiest to estimate. The ROC curves also varied 
the most for FF between different muscles. When using 
all muscles, the training performance in AUC was lower 
compared to forests using features specifically selected 
for individual muscle groups. Nonetheless, the perfor-
mance decrease on the validation sets were less drastic. 
For the mean multi-class accuracy performance, similar 
trends to the ROC curves and AUC scores are observed. 
We see that a large performance difference is present 
between estimating FF, BMI and age subgroups, with 
the latter being significantly more difficult given solely 
the selected features. As expected, predicting the right 
subgroup on the validation subset again shows a lower 
performance compared to the training set. In general, dif-
ferences, e.g. between the selection of features based on 
all muscles and a specific muscle as can be seen for age 
and BMI, are more pronounced, compared to the respec-
tive AUC scores. In all cases the accuracy lies well above 
the accuracy of classifying the subgroup of the respective 
muscle by chance (of 16.67% for six and 14.29% for seven 
subgroups).

Discussion
Radiomics are an important means to analyzing large 
cohort data quantitatively. Recently, radiomics have 
been applied to extract and leverage quantitative CT 
[17, 43], or MRI [44] texture features to analyze imag-
ing data at large scales. It has also been shown to 
be extensible to multi-parametric studies [45] or be 
applicable for the classification of dental artifacts 
[46]. Motivated by these achievements, we proposed 

Fig. 7 Boxplots of feature rankings based on permutation importance in water contrast images for a glutues, b psoas, c extensors and d adductors
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Fig. 8 Boxplots of feature rankings based on permutation importance in contrast water for individual targets a) age, b) body mass index (BMI), 
and c) fat fraction (FF)
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a feature extraction and selection pipeline from raw 
data to radiomics features of muscle tissue depicted in 
a two-point Dixon MRI sequence. Despite focusing on 
predominantly healthy tissue instead of tumors as in 

most aforementioned studies, we showed that selected 
features of the GNC cohort data [33] adhere to impor-
tant conditions while retaining significant differences 
between subgroups of auxiliary information (targets). 

Fig. 9 Texture feature values on water contrast of lowest ranked feature original_gldm_largedependencehighgraylevelemphasis 
for individual targets age (left column), body mass index (BMI) (middle column) and fat fraction (FF) (right column) separated by sex (top row: male, 
bottom row: female)

Fig. 10 Texture feature values on fat contrast of lowest ranked feature wavelet-lhl_gldm_
largedependencehighgraylevelemphasis for individual targets age (left column), body mass index (BMI) (middle column) and fat 
fraction (FF) (right column) separated by sex (top row: male, bottom row: female)
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The workflow provides a distinctive ranking of texture 
features based on multiple or individual targets. We 
investigated differences of the selected features with 
respect to available auxiliary targets, including age, BMI 
and a muscle dependent FF. We illustrated and reported 
statistical differences between binned subgroups as 
well as differences between texture feature values of 
male and female subjects. Future investigations will be 
focused on applying the pipeline to MRI cohorts where 
patients with varying degree of sarcopenia have been 
quantified and labeled (categorized) to study differ-
ences in selected radiomic features and their value as 
biomarkers. For example, features that enabled a strong 
predictive quality for the FF (or BMI) may be of aid in 
reflecting changes in the fat infiltration in muscles and 
thereby indicate early onsets of sarcopenia.

Sarcopenia and the associated muscle weakness is 
very often responsible for the need for assistance of 
the affected patients. It affects a large proportion of the 
elderly population. It is known that sarcopenia occurs 
much more frequently and in earlier stages of life in the 
presence of internal diseases such as rheumatoid arthri-
tis, metabolic disorders such as diabetes and malignant 
diseases. Imaging may provide new impulses for the dif-
ferentiation of various forms of sarcopenia and for the 
monitoring of treatment measures.

The processing pipeline itself relies on several gen-
eration and selection steps, each of which could be 

replaced by alternative algorithms or heuristics. At this 
point, the focus of this work lies on the establishment 
of one variant of such a pipeline for large cohort data. 
We did not investigate e.g. alternative selection and pre-
diction models that have been established for radiomics 
features [29], or other machine learning models such as 
a support vector machine or extreme gradient boosting 
[11] for CT images. The pipeline could also be extended 
to incorporate multi-scale information [45] to incorpo-
rate tissue characteristics at different scales. While per-
formance differences can occur due to the alterations 
of methods in the pipeline, we focused on the ability to 
select features based on the given auxiliary targets as a 
whole and showed that the remaining features adhere 
to our defined conditions and retained distinctive 
information.

In our experiments, the diverse selection of the low-
est ranked features, which includes features from differ-
ent established feature subgroups (first order, glcm, and 
more) as well as different variants (original, LoG, wave-
let), indicates that there are multiple promising feature 
candidates available for potential downstream tasks like 
further analysis of muscle tissues. The selection is also 
sensitive to the imaging contrast used for feature extrac-
tion. The selection is sensitive to variations in the folds 
as well as the auxiliary target and the included muscle 
groups. This can cause different amounts of selected 
features. Nonetheless, the range of amounts after all 

Fig. 11 Lowest ranked texture feature values on water contrast based on individual targets; original_gldm_
largedependencehighgraylevelemphasis for age (left column), wavelet-lll_firstorder_minimum for body mass index (BMI) (middle 
column) and wavelet-llh_glrlm_graylevelnonuniformitynormalized for fat fraction (FF) (right column) in male (top row) 
and female (bottom row) subjects
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selection steps were close to their mean amounts. In 
addition, the selection sets share a large amount of com-
mon features as can be seen by the amounts of unique 
features across all folds in close relation to the low-
est amount in most cases. Notably, the gluteal muscles 
seemed to incorporate the most complex texture pat-
terns and variations as can be seen by the higher mean 
amount of selected features relative to other muscles for 
age and BMI.

Further, we identified features that score a low rank 
consistently with regards to multiple auxiliary targets. 
Based on the cross-validation procedure a repeatable 
and robust selection was further promoted. This pro-
vides us with a limited set of candidates for further 
investigations that can be tested for a regression or 
classification performance on non-imaging variables. 
For our overall post-selection radiomics feature rank-
ing, we saw that the water contrast provided a more 

Fig. 12 Lowest ranked texture feature values on water contrast for each muscle based on an individual targets age (left column), body mass index 
(BMI) (middle column) and fat fraction (FF) (right column) in both male and female subjects combined; first row gluteus, second row psoas, third 
row adductors, fourth row extensors
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Table 2 Highest p-values of the Kruskal-Wallis H-test between subgroups of the ten first ranked features. Lowest p-values are 
consistently < 0.001

contrast target p-value

age BMI FF

male female male female male female

water all < 0.001 0.034 < 0.001 < 0.001 < 0.001 < 0.001

individual < 0.001 0.034 < 0.001 < 0.001 < 0.001 < 0.001

fat all < 0.001 0.034 < 0.001 < 0.001 < 0.001 < 0.001

individual < 0.001 0.034 < 0.001 < 0.001 < 0.001 < 0.001

Table 3 Highest p-values of the Mann-Whitney U-test between male and female subjects of identical subgroups of the ten first 
ranked features. Lowest p-values are consistently < 0.001

contrast target age BMI FF

p-value feature bin p-value feature bin p-value feature bin

water all 0.059 8 1 0.465 3 1 0.003 1 6

individual 0.059 3 1 0.465 1 1 0.003 2 6

fat all 0.380 6 6 0.498 8 1 0.440 4 6

individual 0.380 10 6 0.470 4 6 0.440 2 6

Fig. 13 Receiver operator characteristic (ROC) curves for micro-aggregated one-vs-rest (OvR) multi-class classification on all muscle groups 
for the defined auxiliary target subgroups. Curves are illustrated for the training folds in blue (training) and the respective remaining validation folds 
in orange (validation) as well as for the ten lowest ranked texture features on the validation folds in green (validation - 10)



Page 18 of 23Fischer et al. BMC Medical Imaging          (2023) 23:104 

Fig. 14 Receiver operator characteristic (ROC) curves for micro-aggregated one-vs-rest (OvR) multi-class classification on the water 
contrast for individual muscle groups for the defined auxiliary target subgroups. Curves are illustrated for the training folds in blue (training) 
and the respective remaining validation folds in orange (validation) as well as for the ten lowest ranked texture features on the validation folds 
in green (validation - 10)
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orderly ranking with close mean and median values 
and narrow boxplots. This indicates that the selected 
features provide the ability to be more distinguishable 
with respect to all auxiliary targets and for all muscle 
groups (on average) compared to features of the fat 
contrast. The fat texture features still provide a strong 
ranking with prominent differences, but the ranking 
order may vary more greatly between selected mus-
cles and selected auxiliary targets. We also saw, that 
the ranking produced robust results for three of the 
four muscle groups with a clear order with respect to 

the performance of the features averaged across three 
auxiliary targets. A robust ranking for all subjects of 
all folds could also be established for the age, BMI and 
FF. Thus, depending on the muscle group, or the auxil-
iary target or an overall objective, the ranking allows to 
identify texture features that depict the included char-
acteristic best.

The subgroup analysis showed that boxplots of the top 
performing features contain statistical significant dif-
ferences. Despite large overlaps between neighboring 
subgroups, which is expected for the pre-dominantly 

Table 4 Area under the curve (AUC) of the receiver operator characteristic (ROC) curves for micro-aggregated one-vs-rest (OvR) 
multi-class classification of the defined auxiliary target subgroups. Performance metric was evaluated on the validation sets of each 
respective fold. Values are given by mean ± standard deviation across all folds for training (train), validation (val) as well as for the top 
10 ranking features according to the respective ranking scores (train 10, val 10)

contrast muscle train train 10 val val 10

age

water all 80.30± 0.33% 78.53± 0.14% 73.03± 0.70% 72.24± 0.55%

gluteus 91.41± 0.34% 88.37± 0.21% 76.43± 0.50% 74.90± 0.81%

psoas 91.46± 0.09% 89.29± 0.28% 78.54± 0.67% 77.60± 0.53%

extensors 91.10± 0.28% 89.02± 0.10% 76.94± 0.73% 76.34± 0.65%

adductors 91.44± 0.36% 88.58± 0.28% 76.09± 0.94% 74.93± 0.88%

fat all 80.45± 0.20% 78.06± 0.17% 73.63± 0.70% 72.32± 0.74%

gluteus 91.50± 0.36% 88.84± 0.27% 76.70± 0.58% 75.79± 0.62%

psoas 91.45± 0.16% 89.57± 0.16% 79.79± 0.47% 79.37± 0.45%

extensors 91.04± 0.10% 89.73± 0.16% 78.49± 0.63% 78.17± 0.82%

adductors 91.17± 0.16% 87.79± 0.22% 76.47± 0.98% 74.82± 0.78%

BMI

water all 86.80± 0.21% 85.05± 0.11% 80.68± 0.30% 79.87± 0.09%

gluteus 94.54± 0.21% 92.72± 0.14% 84.63± 0.46% 93.92± 0.31%

psoas 92.47± 0.09% 91.17± 0.21% 79.14± 0.66% 78.99± 0.73%

extensors 94.78± 0.26% 93.00± 0.06% 82.26± 0.43% 81.39± 0.41%

adductors 95.91± 0.18% 95.10± 0.22% 88.31± 0.28% 88.37± 0.18%

fat all 91.89± 0.46% 90.02± 2.02% 88.03± 0.89% 86.42± 2.32%

gluteus 96.78± 0.05% 95.97± 0.03% 90.13± 0.37% 90.48± 0.31%

psoas 96.49± 0.05% 95.83± 0.06% 88.84± 0.28% 89.93± 0.18%

extensors 97.12± 0.08% 96.37± 0.07% 91.00± 0.50% 91.34± 0.35%

adductors 96.66± 0.38% 94.97± 0.29% 89.38± 1.05% 88.37± 0.59%

FF

water all 98.91± 0.03% 98.90± 0.00% 98.36± 0.03% 98.36± 0.04%

gluteus 99.07± 0.07% 98.61± 0.48% 97.12± 0.33% 96.80± 0.95%

psoas 98.18± 0.05% 97.85± 0.03% 95.83± 0.14% 95.66± 0.13%

extensors 99.99± 0.00% 99.98± 0.00% 99.96± 0.00% 99.96± 0.00%

adductors 99.65± 0.04% 99.47± 0.02% 98.86± 0.05% 98.77± 0.08%

fat all 99.13± 0.02% 98.73± 0.03% 98.52± 0.09% 98.11± 0.05%

gluteus 99.74± 0.02% 99.35± 0.02% 98.40± 0.05% 97.95± 0.06%

psoas 99.18± 0.02% 99.06± 0.04% 97.62± 0.07% 97.70± 0.06%

extensors 99.99± 0.00% 99.98± 0.00% 99.97± 0.00% 99.96± 0.00%

adductors 99.62± 0.04% 99.38± 0.01% 98.82± 0.08% 98.56± 0.11%
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healthy muscle tissue, clear trends were visible in the 
mean and median values. This was also the case if tex-
ture features were selected for individual muscles and 
their respective targets. Due to the selection process 
these trends were visible for male and female subgroups 
alike, making the features applicable independent from 
the sex of the subject. The vast majority of the lowest 
ranked features showed statistically significant differ-
ences between their subgroups for the joint processing 
of male and female subjects. Differences between cor-
responding male and female subjects were also present. 

However, not all differences were statistically significant 
in this case, which was more prevalent for features of 
the fat contrast. This variety allows for a further task 
dependent selection of features that are more or less 
sensitive to the respective gender differences. In addi-
tion, it was shown that a classification random forest 
predicting the respective subgroup bins was able to 
achieve strong AUC scores and moderate to high accu-
racy values on validation data based on selected fea-
tures. This was the case for both contrasts as well as all 
three auxiliary targets.

Table 5 Mean multi-class classification accuracy on the defined auxiliary target subgroups. Performance metric was evaluated on the 
validation sets of each respective fold. Values are given by mean ± standard deviation across all folds for training (train), validation (val) 
as well as for the top 10 ranking features according to the respective ranking scores (train 10, val 10)

contrast muscle train train 10 val val 10

age

water all 46.69± 0.83% 42.71± 0.43% 30.61± 1.05% 29.11± 1.01%

gluteus 68.99± 1.09% 62.34± 1.17% 35.01± 079% 32.78± 1.09%

psoas 68.28± 0.17% 62.85± 0.44% 38.59± 1.43% 37.01± 1.47%

extensors 68.40± 0.49% 63.20± 0.43% 36.01± 0.88% 34.90± 0.97%

adductors 68.33± 0.79% 62.03± 0.72% 35.08± 1.32% 34.04± 1.01%

fat all 45.49± 0.67% 39.94± 0.68% 30.30± 0.81% 27.73± 0.96%

gluteus 68.37± 0.56% 61.69± 0.45% 34.71± 1.00% 34.12± 0.93%

psoas 67.09± 0.63% 61.58± 0.72% 39.40± 1.33% 38.30± 1.48%

extensors 66.71± 0.19% 63.43± 0.19% 37.28± 1.04% 37.17± 1.30%

adductors 67.14± 0.63% 59.29± 0.78% 35.02± 1.20% 33.08± 0.96%

BMI

water all 53.15± 0.62% 47.88± 0.35% 35.92± 0.40% 34.96± 0.37%

gluteus 72.63± 0.54% 65.84± 0.37% 42.87± 0.97% 41.40± 0.32%

psoas 69.68± 0.36% 65.60± 0.84% 34.37± 1.00% 34.37± 1.00%

extensors 75.55± 0.80% 69.31± 0.34% 38.35± 0.99% 37.27± 0.92%

adductors 75.36± 0.88% 71.13± 0.89% 48.97± 0.94% 48.84± 0.81%

fat all 61.90± 0.81% 56.18± 3.75% 48.96± 2.26% 45.81± 3.66%

gluteus 77.09± 0.21% 72.37± 0.21% 53.02± 1.32% 53.75± 1.01%

psoas 78.01± 0.30% 72.47± 0.14% 50.77± 0.91% 52.68± 0.65%

extensors 78.88± 0.67% 73.59± 0.26% 55.17± 1.55% 56.02± 1.59%

adductors 77.53± 1.39% 69.88± 1.04% 50.81± 2.76% 48.84± 1.39%

FF

water all 86.89± 0.28% 86.72± 0.07% 83.62± 0.36% 83.52± 0.30%

gluteus 87.79± 0.49% 84.86± 2.31% 78.17± 1.46% 77.19± 3.77%

psoas 82.90± 0.29% 81.01± 0.35% 73.36± 0.64% 72.85± 0.58%

extensors 98.64± 0.19% 98.25± 0.16% 97.64± 0.19% 97.32± 0.11%

adductors 92.89± 0.47% 90.92± 0.26% 86.48± 0.28% 85.60± 0.63%

fat all 88.21± 0.15% 85.55± 0.25% 84.28± 0.53% 82.04± 0.22%

gluteus 94.03± 0.28% 89.76± 0.25% 84.10± 0.52% 81.86± 0.61%

psoas 88.67± 0.15% 87.76± 0.23% 80.37± 0.60% 80.99± 0.33%

extensors 98.78± 0.10% 98.41± 0.12% 98.03± 0.17% 97.71± 0.09%

adductors 92.62± 0.38% 90.25± 0.03% 86.10± 0.61% 84.26± 0.81%
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We acknowledge several limitations in this study. 
The texture feature extraction and selection as well 
as subsequent analyses in this work focused on aver-
aged voxel-wise features across each individual muscle 
volume. The investigations could be extended to more 
granular aggregation schemes with a focus on group-
specific sub-regions. Additionally, the texture feature 
extraction parameters could be varied, to further ana-
lyze its impact on the repeatability and robustness of 
the result feature ranking. Investigations could also be 
performed with respect to the origin of the variability 
present in the ranking results for some features for cer-
tain muscles and auxiliary targets. Furthermore, analy-
sis with respect to suitable tasks or conditions, such as 
sarcopenia, are planned to evaluate the robustness and 
variations of identified features with respect to selected 
cases and their externally measured non-imaging-based 
targets.

Conclusion
In this preliminary study we showed that a pipeline 
for the extraction, selection and ranking of robust and 
distinctive radiomics features of muscle tissue from 
Dixon-weighted whole-body MR imaging raw data can 
be established for the analysis in large cohort studies. 
Future work remains to investigate the applicability 
of the identified features for the analysis of intricate 
degenerative characteristics in different muscle tissues.
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