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Abstract
Backgroud To predict the malignancy of 1–5 cm gastric gastrointestinal stromal tumors (GISTs) by machine learning 
(ML) on CT images using three models - Logistic Regression (LR), Decision Tree (DT) and Gradient Boosting Decision 
Tree (GBDT).

Methods 231 patients from Center 1 were randomly assigned into the training cohort (n = 161) and the internal 
validation cohort (n = 70) in a 7:3 ratio. The other 78 patients from Center 2 served as the external test cohort. Scikit-
learn software was used to build three classifiers. The performance of the three models were evaluated by sensitivity, 
specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) and area under the curve (AUC). 
Diagnostic differences between ML models and radiologists were compared in the external test cohort. Important 
features of LR and GBDT were analyzed and compared.

Results GBDT outperformed LR and DT with the largest AUC values (0.981 and 0.815) in the training and internal 
validation cohorts and the greatest accuracy (0.923, 0.833 and 0.844) across all three cohorts. However, LR was found 
to have the largest AUC value (0.910) in the external test cohort. DT yielded the worst accuracy (0.790 and 0.727) 
and AUC values (0.803 and 0.700) in both the internal validation cohort and the external test cohort. GBDT and LR 
performed better than radiologists. Long diameter was demonstrated to be the same and most important CT feature 
for GBDT and LR.

Conclusions ML classifiers, especially GBDT and LR with high accuracy and strong robustness, were considered to 
be promising in risk classification of 1–5 cm gastric GISTs based on CT. Long diameter was found the most important 
feature for risk stratification.
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Backgroud
Gastrointestinal stromal tumors (GISTs) are neoplasms 
that arise from Cajal cells of the gastrointestinal tract 
mesenchyme [1]. Nonetheless, they were reported grow-
ing throughout the whole digestive tract; stomach was 
the site with the highest incidence (50–60%) [2]. As a 
potentially malignant tumor, although less than 2  cm, 
about 10–30% of GISTs will develop into malignancy, 
and the risk of recurrence and metastasis is significantly 
increased [3].

The National Institutes of Health (NIH) classification 
system has been proposed to stratify the risk of GISTs. 
Currently, the modified NIH risk stratification criteria 
and the latest Chinese consensus guidelines (2017 Edi-
tion) of the Chinese Society of Clinical Oncology (CSCO) 
Expert Committee on GIST divide GISTs into very low, 
low, intermediate, and high risk groups according to 
tumor size, location, mitotic index, and whether the 
tumor ruptures [4, 5]. Very low and low risk GISTs gener-
ally have slow growth and a low incidence of recurrence 
and metastasis, whereas GISTs in intermediate and high 
risk stages have more invasive behavior [6]. Risk classifi-
cation also facilitates clinical treatment planning [7]. The 
2–5 cm GISTs with very low or low risk can be completely 
resected with endoscopic technology; however, a surgical 
operation is also necessary in intermediate or high risk 
ones [8, 9]. Another report suggested periodic follow-up 
by endoscopic ultrasound (EUS) for GISTs smaller than 
1  cm [10]. However, localized GISTs (larger than 1  cm) 
with intermediate to high risk warranted resection fol-
lowed by adjuvant treatment of the lesion with imatinib 
[10–12]. Only 2.2% of gastric GISTs with diameters less 
than 1 cm have been reported to be considered high-risk, 
while 1–2  cm GISTs had a malignant risk rate of 10.1% 
[13]. Most grading systems indicate that GISTs larger 
than 5 cm have a great tendency for high risk. Therefore, 
it is clinically meaningful to preoperatively identify high-
risk gastric GISTs of 1–5 cm in diameter.

Contrast-enhanced CT (CE-CT) scan can clearly show 
not only the anatomical structure of gastric mesenchymal 
tumors, but also the internal and peripheral information 
of the lesion, including tumor density, necrosis, ulcer-
ation, hemorrhage, blood vessels, as well as invasion of 
surrounding tissues, lymph node metastases, and distant 
metastases [14, 15].

Plenty of studies predicting the risk stratification of 
GISTs based on CT imaging have been reported [16–22]. 
Tumor size was found to be an independent risk factor, 
even the only one, for high-risk malignant GISTs [16, 
21]. Besides, other features such as percentage of tumor 
necrosis, growth pattern, intratumor angiogenesis, mar-
gins, and enhancement pattern were also demonstrated 
to be contributive to high-grade GISTs on CT images [17, 
19, 22].

Machine learning (ML) algorithm provides the pos-
sibility of mining valuable data that have significant and 
intricate connections among enormous data items. ML 
algorithms have been applied to disease identification, 
differential diagnosis and prognosis analysis with out-
standing performance and promising prospect [23–26]. 
Most previous studies have used univariate or multi-
variate logistic regression analysis aiming to predict 
the malignant potential of GIST. To our knowledge, no 
research has attempted to classify the risk of GISTs using 
ML classifier. What’s more, our report focuses on tumors 
up to 5  cm in the gastric site, which is different from 
studies including large-sized GISTs in different parts of 
the gastrointestinal tract. In this study, 309 patients’ CT 
images of gastric GISTs less than 5 cm were collected to 
assess the malignancy risk using three models - Logistic 
Regression (LR), Decision Tree (DT) and Gradient Boost-
ing Decision Tree (GBDT).

Methods
Patient selection
This retrospective study was approved by the ethics com-
mittee of Tongde Hospital of Zhejiang Province and the 
need for informed consent was waived (Approval No. 
2021-040). Patients with gastric GISTs from two cen-
ters (Center 1: Tongde Hospital of Zhejiang Province, 
Center 2: Zhejiang Hospital) from January, 2012 to Sep-
tember, 2022 were enrolled in this research. The criteria 
for inclusion were as follows: (a) patients with complete 
CT images (including unenhanced, arterial and portal 
venous phase images) within 15 days before surgery; (b) 
solitary and primary lesions; (c) lesions without neoadju-
vant treatment; (d) lesions larger than 1 cm and smaller 
than 5 cm in the long diameter. (e) patients with detailed 
clinical data (including age, gender, clinical symptoms 
and tumor markers). The inclusion and exclusion of 
patients are shown in Fig. 1. 231 patients from Center 1 
were randomly assigned into the training cohort (n = 161) 
and the internal validation cohort (n = 70) according a 7:3 
ratio. Another 78 patients from Center 2 were served as 
an external test cohort. Clinical characteristics including 
age, gender, symptoms and tumor markers were collected 
for each patient. All surgically resected lesions of GISTs 
were finally divided into a low-grade malignancy group 
and a high-grade malignancy group. The low-grade 
malignancy category consisted of GISTs with very low or 
low risk and the high-grade malignancy group included 
GISTs with intermediate or high risk. The NIH modified 
criteria in 2008 [4] were applied for risk stratification.

CT examination
All patients underwent abdominal CE-CT examination 
using two 64-slice spiral CT scanners (Siemens, Forch-
heim, Germany or Philips Medical Systems, Cleveland, 
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OH, USA). The parameters of CT imaging were set as 
follows: for Siemens, 120 kV tube voltage, 150–250 mA 
tube current, 0.5 s tube rotation time, 64 × 0.6 mm detec-
tor collimation, 350 × 350 mm field of view, 5 mm section 
thickness and 1-1.25  mm reconstruction interval; for 
Philips, 120 kV tube voltage, 200–250 mA tube current, 
0.5 s tube rotation time, 64 × 0.625 mm detector collima-
tion, 350 × 350 mm field of view, 5 mm section thickness 
and 1-1.5  mm reconstruction interval. Subsequently, 
arterial phase (delay 30–40  s) and the portal venous 
phase (delay 60–70 s) images were obtained after 2 mL/
kg of iodinated contrast medium was injected intrave-
nously at a rate of 3 ml/s.

Image analysis
Two radiologists (Reviewer 1 with 6 years and Reviewer 
2 with 13 years of experience in abdominal imaging) 
independently reviewed CT images and reached final 
conclusions by consensus without knowledge of the 
surgical and pathological information of every patient. 
The determined CT imaging features included (a) the 
CT attenuation values (Hounsfield units, HU) in unen-
hancement phase (CTU), (b) in arterial phase (CTA) and 
(c) in venous phase (CTV) of the tumor, (d) degree of 
enhancement in arterial phase (DEAP) and (e) in portal 
venous phase (DEPP), (f ) enhanced potentiality in arte-
rial phase (EPa) and (g) in portal venous phase (EPv), (h) 
long diameter (LD), (i) short diameter (SD), (j) the ratio 
of long diameter to short diameter (LD/SD), (k) contour 

Fig. 1 Flowchart shows inclusion and exclusion criteria for this study
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(round; oval; irregular), (l) necrosis (yes or no), (m) calci-
fication (yes or no), (n) surface ulceration (yes or no), (o) 
intratumoral angiogenesis (yes or no) and (p) peripheral 
enlarged lymph node (LN) (yes or no). The CT attenua-
tion value was measured by drawing the region of inter-
est (ROI) on the same axial slice of the tumor avoiding 
vessels, calcification, and the necrotic regions. DEAP 
or DEPP was obtained by subtracting CTU from CTA 
or CTV respectively. EPa or EPv was equal to DEAP or 
DEPP divided by CTU. Enlarged lymph node was consid-
ered present if the shortest axis diameter of lymph node 
was more than 10 mm. Some of the CT features referred 
to our previous report [27]. LD, SD, contour, necro-
sis, surface ulceration and intratumoral angiogenesis of 
tumors were the main aspects considered by radiologists 
when classifying tumors into low- or high-risk GISTs.

Machine learning
Scikit-learn software was used to build three classi-
fiers-DT, GBDT and LR. The detailed methodology 
is described on the website of official documentation 
(https://scikit-learn.org/), which has also been applied 
in our previous research [27]. The three datasets (train-
ing, internal validation and external test cohort) had no 
any intersection in our study. The training dataset aims 
to train the models, the internal validation cohort aims 
to adjust parameters and the external test cohort aims to 
evaluate the model performance. For each model, sen-
sitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV) and area under 
the curve (AUC) together with 95% confidence inter-
vals (95% CI) were respectively calculated to assess the 
performance of each classifier. We observed a signifi-
cant imbalance between the number of low-risk versus 
high-risk tumors in the three cohorts. The function of 
Class_Weight in scikit-learn soft was performed to solve 
the problem of unbalanced samples. In classification 
task, small sample categories (high-risk malignant) were 
assigned high weight and large sample categories (low-
risk malignant) assigned low weight.

Grid search strategy for selecting optimal parameters
In order to find the optimal parameters of three models, 
the grid search strategy in scikit-learn software was used. 
In the grid search process, 5-fold Cross-Validation (CV) 
was used to evaluate model performance. Meanwhile, the 
accuracy was used as an evaluation metric to maximize 
model performance. The detail of grid search method is 
described in the model selection module on the website 
of official documentation (https://scikit-learn.org/stable/
model_selection.html#model-selection).

Logistic regression (LR)
LR is the most conventional approach to measure the 
relationship between discrete response variables and sev-
eral covariates by estimating probabilities. It can be writ-
ten as: p = 1/(1 + e− z). z refers to logistic regression model. 
The response variable can take two values (0 as no and 1 
as yes) according to p smaller than 0.5 or not.

The final optimal parameters of LR were set as fol-
lows: C = 100, random_state = 12, penalty = ’l1’, solver = 
’liblinear’. Other parameter factors were set as default in 
sklearn software module.

Decision tree (DT)
DT, as a binary method, can be used to classify data 
by calculating their characteristics. Decision nodes, 
branches and leaves are the three main components of 
DT. DT starts with a node and extends to many branches 
and child nodes, finally to leaves. The criterion used in 
our model is the Gini’s Diversity Index, which is a mea-
sure of node impurity. The standard CART algorithm, 
implemented using sciki-learn library in Python, was 
applied to build decision tree.

The parameters set in the DT were: random_state = 0, 
max_features = 6, max_depth = 6, criterion = ’gini’. Other 
parameters were set as default in sklearn software 
module.

Gradient boosting decision tree (GBDT)
GBDT is an ensemble classifier based on bootstrap sam-
pling, which aims to improve the generalization abil-
ity and robustness by combining the prediction results 
of multiple base learners (i.e. weak decision trees). The 
weight is adjusted with iteration, so that the higher 
weight will be assigned to the data poorly classified. 
Totally 15 weak decision trees were created in GBDT 
model in this study (e.g. a tree is showed in Fig S1).

The following parameter factors were used for GBDT: 
learning_rate = 0.1, max_depth = 8, random_state = 0, 
min_samples_leaf = 2. Other parameters were also set as 
default in the sklearn software.

Performance comparison between radiologists and models
Diagnostic performance differences between the three 
ML models and the two radiologists were compared in 
the external test cohort. Before performance compari-
sons, intra-class correlation coefficients (ICCs) were cal-
culated to assess agreement between the two reviewers.

Feature variable analysis
GBDT and LR showed excellent diagnostic efficiency in 
predicting risk classification of gastric GISTs on account 
of the high accuracy and strong robustness. LR is well 
known for determining the beneficial features to sup-
port decision by linear analysis, since the result is easy to 

https://scikit-learn.org/
https://scikit-learn.org/stable/model_selection.html#model-selection
https://scikit-learn.org/stable/model_selection.html#model-selection
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explain. Firstly, significant CT features were determined 
by univariate analysis. Secondly, variable with P less than 
0.05 were as the input data to calculate the independent 
risk factors for high-risk malignant GISTs. In order to 
find out important features for high-grade malignant 
GISTs in GBDT, the function of Feature_Importance was 
performed. The description of feature importance is on 
the website: https://scikit-learn.org/stable/ modules/
ensemble.html#gradient-tree-boosting. According to the 
official documentation description, individual decision 
trees in the GBDT model intrinsically performed fea-
ture selection by selecting appropriate split points. This 
information can be used to measure the importance of 
each feature. The basic idea is: the more often a feature is 
used in the split points of a tree, the more important that 
feature is. Subsequently, the feature variables of LR and 
GBDT were compared.

Statistical analysis
P-P plots and Q-Q plots were used to assess normal 
distribution of data. Continuous distributed data were 
showed as mean ± SD, and categorical variables were 
expressed as n (%). Univariate analysis using t test or 
Mann-Whitney U test for continuous variables and Fish-
er’s exact test for categorical variables were performed 
to compare CT features between the low-grade malig-
nancy and high-grade malignancy groups. Variables with 
P < 0.05 were considered as significant features and were 
included in the LR multivariate analysis. The final fea-
tures with P < 0.05 from multivariate logistic regression 
model indicated the significant predictors of high risk 
GISTs. Statistical analyses were performed using SPSS 
version 22.0 (SPSS Inc., Chicago, IL, USA). A statisti-
cally significant difference was defined as two - sided P 
value < 0.05.

Results
Clinical characteristics of patients
231 patients (109 men and 122 women; mean age, 
59.47 ± 10.13 years) from Center 1 and 78 patients (41 
men and 37 women; mean age, 62.69 ± 10.78 years) from 
Center 2 were included in our series. The training cohort 
enrolled 161 patients with gastric GISTs consisting of 47 
high-risk tumors and 114 low-risk ones. 70 patients with 
GISTs (21 high-risk tumors and 49 low-risk ones) and 78 
patients with GISTs (16 high-risk tumors and 62 low-risk 
ones) constituted the internal validation cohort and the 
external test cohort, respectively.

Details of the clinical characteristics of three cohorts 
are shown in Table S1. Results of the univariate analysis 
indicated that patients in three databases had no signifi-
cant difference in variables of age, sex, clinical symptom 
and tumor marker between the low-grade malignancy 
and the high-grade malignancy groups (all P > 0.05). The 

clinical characteristics of patients had no contribution to 
the prediction of malignancy in gastric GISTs.

Univariate analysis of CT data
Results of univariate analysis of CT imaging features is 
exhibited in Table 1. LD, SD, contour, presence of necro-
sis and surface ulceration were showed to be significant 
features in distinguishing two groups in three cohorts. 
Size in high-grade malignancy GISTs was found larger 
than that of low-grade ones. Lesions with oval and irregu-
lar contours were seen more commonly in the high-grade 
malignancy group. Necrosis and surface ulceration were 
more likely to be found in the high-grade group. Intra-
tumoral angiogenesis was significantly different between 
the two groups in the training and external test cohorts, 
but not in the internal validation cohort, as shown in 
Fig. 2. No difference of the remaining CT imaging vari-
ables was found in all three cohorts.

Model evaluation
Results of diagnostic performance of LR, DT and GBDT 
are described in Table 2; Fig. 3. GBDT gained the largest 
sensitivity (0.986), specificity (0.770), accuracy (0.923), 
PPV (0.639), NPV (0.993) and AUC (0.981) among the 
three models in the training cohort. Due to the com-
promise between sensitivity and specificity, accuracy 
and AUC are considered as better diagnostic indicators. 
GBDT achieved the largest AUC (0.981 and 0.815) among 
all three classifiers in the training and internal validation 
cohorts. Nevertheless, we found that LR had the largest 
AUC (0.910), followed by GBDT (0.819) and DT (0.700) 
in the external test cohort. The lowest accuracy (0.790 
and 0.727) and AUC values (0.803 and 0.700) were gained 
in DT model both in the internal validation cohort and 
the external test cohort. GBDT and LR performed best 
among the three models and in three cohorts with high 
accuracy and strong robustness. Confusion matrixes of 
three models in the training cohort are showed in Fig. 4. 
Figure S2 and S3 exhibit confusion matrixes of three 
models in the internal validation cohort and external test 
cohort, respectively. We also tried to build the stepwise 
logistic regression models using all CT features or signifi-
cant features by univariate analysis in the training cohort. 
The accuracy and AUC together with 95%CI of stepwise 
logistic regression model using all CT features were 0.789 
and 0.770 (0.668–0.860), slightly less than those of LR 
model built with independent risk factor. In addition, 
stepwise logistic regression model leaving six signifi-
cant CT features by univariate analysis yielded 0.727 of 
accuracy and 0.732 (0.648–0.846) of AUC together with 
95%CI, less than those of LR model built in this study as 
well. Results are showed in Figure S4.

https://scikit-learn.org/stable/
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Performance comparison between radiologists and models
ICC of 0.83 indicated that the agreement between two 
radiologists was good. Table  3 displays the two review-
ers’ diagnostic performance in the external test cohort. 
GBDT and LR showed more favorable performances 
than two radiologists.

Feature variable analysis
LD, SD, contour, necrosis, surface ulceration and intratu-
moral angiogenesis were selected as significant features 
by univariate analysis to input into multivariate analysis. 
Table 4 shows that only LD is an independent risk factor 
for high-grade malignant GISTs (P < 0.001, OR = 1.066). 
Results of important characteristics rank in GBDT are 
reported in Fig. 5. LD ranked the most important feature 
among all CT features with importance score of 0.202, 
followed by SD (0.175), DEPP (0.115), CTU (0.088) and 
DEAP (0.064). The remaining features had low impor-
tance scores. LD was demonstrated as the only same and 
most important feature for LR and GBDT in terms of fea-
ture variable analysis.

Discussion
To our best knowledge, this is the first research on the 
prediction of malignancy in gastric GISTs by machine 
learning classifiers. In addition, our report focuses on 

GISTs tumors of 1–5  cm in the gastric, which is differ-
ent from studies that include large-size GISTs located 
in various sites of the gastrointestinal tract. This study 
has the largest sample size among relevant studies, so 
the reliability of the results can be guaranteed. Various 
qualitative and quantitative variables extracted from CT 
signs were inputted into LR, DT and GBDT models. The 
results of model evaluation were different but not incon-
sistent among the three cohorts. For the training cohort, 
GBDT had the greatest sensitivity, specificity, accuracy, 
PPV, NPV and AUC among the three models. What’s 
more, GBDT gained the largest AUC in the training and 
internal validation sets and performed best in all three 
cohorts in terms of accuracy, although the AUC was not 
as good as LR in the external test cohort. Furthermore, 
GBDT and LR showed better performance than the two 
radiologists. However, the performance of DT was not as 
outstanding as GBDT and LR. Therefore, GBDT and LR 
were suggested to be promising ML models for CT-based 
risk classification prediction of gastric GISTs due to the 
high accuracy and strong robustness.

GBDT, an ensemble method based on bootstrap sam-
pling, was demonstrated to be a favorable algorithm with 
high predictive efficiency, as reported in various previ-
ous researches [28–31]. The excellent performance of 
GBDT classifier is attributed to its ability to optimize 

Table 1 Univariate analysis of CT features of GISTs in the training cohort, internal validation cohort and external test cohort
CT features Training cohort

(n = 161)
Internal validation cohort
(n = 70)

External test cohort
(n = 78)

Low-grade 
malignancy
(n = 114)

High-grade 
malignancy
(n = 47)

P 
value

Low-grade 
malignancy
(n = 49)

High-grade 
malignancy
(n = 21)

P 
value

Low-grade 
malignancy(n = 62)

High-grade 
malignancy(n = 16)

P 
value

CTU(HU) 33.90 ± 8.58 33.86 ± 6.38 0.976 34.87 ± 7.38 35.14 ± 6.08 0.882 36.60 ± 8.75 35.49 ± 5.27 0.577

CTA(HU) 53.24 ± 12.51 55.39 ± 15.60 0.359 58.11 ± 15.27 62.88 ± 12.49 0.212 58.52 ± 14.84 56.78 ± 14.26 0.617

CTV(HU) 67.38 ± 15.84 68.84 ± 15.11 0.592 72.2 ± 19.76 75.54 ± 16.24 0.499 75.03 ± 18.20 70.06 ± 18.58 0.296

DEAP(HU) 19.33 ± 11.15 21.53 ± 13.55 0.289 23.24 ± 13.33 27.74 ± 10.58 0.175 21.92 ± 15.65 21.29 ± 13.46 0.856

DEPP(HU) 34.47 ± 16.42 34.97 ± 13.55 0.582 37.34 ± 18.07 40.40 ± 16.33 0.507 38.43 ± 18.79 34.58 ± 18.23 0.440

EPa 0.65 ± 0.67 0.65 ± 0.39 0.971 0.69 ± 0.41 0.81 ± 0.34 0.245 0.67 ± 0.57 0.61 ± 0.42 0.694

Epv 1.14 ± 1.22 1.07 ± 0.44 0.685 1.11 ± 0.61 1.20 ± 0.57 0.560 1.14 ± 0.72 1.00 ± 0.58 0.455

LD(mm) 24.78 ± 10.39 33.81 ± 12.94 0.000 22.39 ± 10.27 37.43 ± 11.01 0.000 26.32 ± 10.53 43.56 ± 7.11 0.000
SD(mm) 20.43 ± 9.62 28.19 ± 10.65 0.000 18.98 ± 8.53 31.33 ± 9.46 0.000 22.06 ± 9.70 37.50 ± 6.84 0.000
LD/SD 1.24 ± 0.26 1.20 ± 0.16 0.286 1.18 ± 0.16 1.20 ± 0.15 0.576 1.23 ± 0.21 1.17 ± 0.12 0.120

Contour 0.001 0.000 0.000
Round 60(52.63%) 14(29.79%) 26(53.06%) 6(28.57%) 27(43.55%) 2(12.50%)

Oval 38(33.33%) 15(31.91%) 19(38.78%) 3(14.29%) 24(38.71%) 4(25%)

Irregular 16(14.04%) 18(38.30%) 4(8.16%) 12(57.14%) 11(14.74%) 10(62.50%)

Necrosis 24(21.05%) 20(42.55%) 0.007 6(12.24%) 9(42.86%) 0.011 20(32.26%) 14(87.50%) 0.000
Calcification 12(10.53%) 4(8.51%) 0.921 7(14.29%) 1(4.77%) 0.461 10(16.13%) 3(18.75%) 1.000

Surface ulceration 10(8.77%) 10(21.28%) 0.037 1(2.04%) 8(38.10%) 0.000 5(8.06%) 5(31.25%) 0.043
Intratumoral 
angiogenesis

8(7.02%) 11(23.40%) 0.006 3(6.12%) 4(19.05%) 0.224 16(25.81%) 9(56.25%) 0.032

LN 0 1(2.13%) 0.295 0 1(4.77%) 0.300 0 1(6.25%) 0.208
CTU/CTA/CTV, the CT attenuation value in unenhancement phase/arterial phase/venous phase; DEAP/ DEPP, degree of enhancement in arterial phase/venous 
phase; EPa/EPv, enhanced potentiality in arterial phase/venous phase; LD, long diameter; SD, short diameter; LN, peripheral enlarged lymph nodes

P values written in bold indicate significant difference between low-grade malignancy and high-grade malignancy groups
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Table 2 Diagnostic performance analysis of LR, DT and GBDT models
Classifier Group Sensitivity (95%CI) Specificity (95%CI) Accuracy (95%CI) PPV NPV AUC (95%CI)
LR Training cohort 0.918(0.839–0.996) 0.492(0.400-0.584) 0.792(0.729–0.855) 0.426 0.933 0.815 (0.744–0.885)

Internal validation cohort 0.941(0.840-1.000) 0.437(0.312–0.576) 0.792(0.744–0.841) 0.417 0.955 0.815 (0.602–0.904)

External test cohort 0.852(0.678–0.999) 0.688(0.573–0.803) 0.818(0.732–0.964) 0.424 0.956 0.910 (0.810–0.978)

DT Training cohort 0.966(0.914–0.997) 0.639(0.551–0.727) 0.870(0.818–0.922) 0.525 0.979 0.883 (0.826–0.941)

Internal validation cohort 0.941(0.840–0.996) 0.429(0.290–0.568) 0.790(0.695–0.885) 0.414 0.944 0.803 (0.587–0.845)

External test cohort 0.787(0.586–0.988) 0.500(0.376–0.625) 0.727(0.628–0.826) 0.289 0.901 0.700 (0.545–0.856)

GBDT Training cohort 0.986(0.952–0.997) 0.770(0.693–0.847) 0.923(0.882–0.964) 0.639 0.993 0.981 (0.957-1.000)

Internal validation cohort 0.882(0.744-1.000) 0.714(0.588–0.841) 0.833(0.746–0.920) 0.570 0.934 0.815 (0.704–0.920)

External test cohort 0.918(0.784–0.999) 0.563(0.442–0.687) 0.844(0.764–0.925) 0.352 0.964 0.819 (0.686–0.952)
LR, Logistic regression; DT, Decision tree; GBDT, Gradient boosting decision tree; AUC, area under the curve; CI, confidence interval, NPV, negative predictive value; 
PPV, positive predictive value

Fig. 2 CT image of low-grade and high-grade malignant GISTs. (A-B). A low-grade malignant GIST in cardia in an elderly man. (A-B). Axial and sagittal CT 
scans in portal venous phase show a round mass with 2.5 cm of the long diameter (white arrows). The lesion has a homogeneous enhancement pattern 
without necrosis, calcification, and intratumoral angiogenesis in tumor. (C-D). A high-grade malignant GIST in gastric body in a middle-aged woman. Axial 
and coronal CT images in portal venous phase show an irregular neoplasm with 4.7 cm of the long diameter (white arrows). Intratumoral angiogenesis 
(black arrows) are seen in the lesion and the mass shows heterogeneous enhancement with necrotic portion (*) within the tumor
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Fig. 4 Confusion matrixes of LR (A), DT (B) and GBDT (C) models in the training cohort

 

Fig. 3 Receiver operating characteristic (ROC) curves of three models to predict the risk stratification of gastric GISTs. (A). ROC curve of three models in 
the training cohort. The largest area under the curve (AUC) was GBDT (0.981), followed by DT (0.883) and LR (0.815). (B). ROC curve of three models in the 
internal validation cohort. GBDT and LR had the equal AUC (0.815), and DT gained the smallest AUC (0.803). (C). ROC curve of three models in the external 
test cohort. LR gained the best AUC (0.910), followed by GBDT (0.819) and DT (0.700)
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the algorithm by increasing the weight of weak decision 
trees. As a classic ML algorithm for solving two-class 
classification problem, LR assumes that the data con-
form to the Bernoulli distribution, and then calculates 
the parameters through the maximum likelihood func-
tion method to achieve two classification. Additionally, 
probability prediction obtained from LR model can be 
preferentially utilized to better assist in decision making. 
However, LR has some limitations. First, logistic regres-
sion analysis, which is difficult to fit the true distribution 
of data, has only linear decision boundary. Second, it may 
weaken the performance of classification task due to the 
limitation of overfitting and multicollinearity. In terms 
of DT, a tree consisting of decision nodes, branches, 
and leaves, is generated using the training dataset, and 
the test dataset is classified or predicted. In this study, 
the ability of DT in predicting the risk grading of gastric 
GISTs may be weaker than LR and GBDT.

When it comes to feature variable selection, LD was 
found to be the only common CT feature between LR 
and GBDT that distinguished for high-grade malignant 
GISTs in this study. Several studies using multivariate 
logistic regression analysis revealed that the size of GISTs 
was the only independent risk factor for differentiation 
of the high-grade malignant GISTs [16, 21], so did the 
gastric GISTs with size shorter than 5  cm in our study. 
Kim et al. [21] reported that for GISTs ≤ 5 cm, it was not 
possible to identify malignant from benign by tumor size 
based on CT scan images, which contradicted with our 
results. It may be related to different grouping definitions 
and different tumor composition ratios. Mazzei et al. [32] 
found that the maximum diameter of GISTs with high 
mitotic index (> 5 mitoses) was larger than that of GISTs 
with low mitotic index (≤ 5 mitoses), suggesting that the 
larger the tumor was, the faster it grew and the the higher 
degree of malignancy it had. However, oval and irregular 
contours, the presence of necrosis, surface ulceration and 
intratumoral angiogenesis appeared more frequently in 
the high-grade malignancy group, similar to other stud-
ies [17, 19, 21, 22], however, these features were excluded 
from the selection of predictors in LR. GBDT algorithm 
could determine complicated and impalpable feature 
relationships to support decision-making that may not 
be detected in logistic regression analysis [33]. In this 
study, DEPP, CTU and DEAP were selected as important 
features despite not being significant different factors in 
univariate analysis. The important features that GBDT 
concentrated on appear to be unimportant features in 

Table 3 Results of radiologists’ diagnostic performance in the external test cohort
Sensitivity(95%CI) Specificity(95%CI) Accuracy(95%CI) PPV NPV AUC (95%CI)

Reviewer 1 0.625(0.388–0.862) 0.484(0.360–0.608) 0.645(0.539–0.751) 0.313 0.833 0.628 (0.561–0.785)

Reviewer 2 0.750(0.538–0.962) 0.565(0.442–0.688) 0.758(0.663–0.853) 0.308 0.897 0.764 (0.603–0.912)
AUC, area under the curve; CI, confidence interval, NPV, negative predictive value; PPV, positive predictive value

Table 4 Results of feature variable analysis in LR model
CT features β OR OR (95%CI) P value
LD 0.064 1.066 1.034–1.099 0.000

SD 0.550

Contour 0.288

Necrosis 0.658

Surface ulceration 0.404

Intratumoral angiogenesis 0.248
LD, long diameter; SD, short diameter; OR, odds ratio; CI, confidence interval

P values written in bold indicate significant difference

Fig. 5 Features importance rank in GBDT model. Five top important features were as follows: LD (importance score 0.202), SD (0.175), DEPP (0.115), CTU 
(0.088) and DEAP (0.064). The remaining features had low importance scores
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traditional statistical method, from which, high predic-
tive performance can be obtained.

Artificially determined CT imaging features were used 
as the input variables for the three ML models to pre-
dict the risk classification of gastric GISTs in this study, 
and great results were obtained, especially in GBDT and 
LR. Compared with the diagnostic ability of radiologists, 
ML achieved more promising results, which may have 
a guiding prospect for doctors in daily diagnostic work, 
especially for the junior ones. It may promisingly provide 
theoretical and practical support for texture analysis or 
deep learning since ML may play an important role in 
feature selection.

There are some limitations in our study. First, our sam-
ple size was small for ML. ML classifiers can highlight 
their advantages in the context of large data, amounts of 
predictor variables or complex relationship. Second, four 
risk grades were finally divided into two, so the results 
were unable to meet the requirement of each risk clas-
sification. Simple ML model cannot meet the needs of 
predicting four risk levels, but the convolutional neural 
network can, which puts the next step of research on 
the agenda. Third, only three simple ML models were 
implemented in our research, including the classic LR. 
We will try other more complex ML models to assess the 
risk stratification, such as random forest, support vector 
machine, k-nearest neighbors, etc. Fourth, radiomics, 
which transforms medical images into high-dimensional 
data by extracting tumor’s shape, intensity, and texture 
features, has recently shown great potential in aiding 
clinical decision making. Developing CT-based radiomics 
models for GIST risk stratifcation will be a future work.

Conclusions
In summary, GBDT and LR showed outstanding perfor-
mance with high accuracy and strong robustness in the 
risk assessment of gastric GISTs less than 5  cm on CT 
imaging. The long diameter of lesion was found to be the 
most important feature for risk stratification.
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