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Abstract 

Background Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease 
than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose 
tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients.

Methods The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomog-
raphy angiography (CCTA). CCTA derived fractional flow reserve  (FFRCT) ≤ 0.80 was defined as hemodynamically 
significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy 
maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful 
radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, 
fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram.

Results Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent 
predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training 
cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76–0.86; validation cohort: AUC = 0.83; 95%CI: 0.76–0.90] to predict 
haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high 
clinical value of the radiomics nomogram.

Conclusion The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynami-
cally significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening 
of high-risk patients.

Keywords Non-contrast CT, Pericoronary adipose tissue, Radiomics, Nomogram, CCTA derived fractional flow 
reserve, Haemodynamically significant coronary stenosis

†Can Chen and Meng Chen contributed equally to this work and should be 
considered co-first authors.

*Correspondence:
Su Hu
husu@suda.edu.cn
Chunhong Hu
sdhuchunhong@sina.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-023-01051-0&domain=pdf


Page 2 of 12Chen et al. BMC Medical Imaging           (2023) 23:99 

Introduction
Coronary artery disease (CAD) is the most important 
cardiovascular disease threatening human health [1]. 
Type 2 diabetes mellitus (T2DM) is significantly associ-
ated with increased risk of CAD, and morbidity and mor-
tality of patients with CAD is considerably higher in the 
presence of diabetes [2–6]. The treatment strategies for 
obstructive CAD vary depending on whether the lesion 
is hemodynamically significant. Therefore, early screen-
ing and prediction of high-risk CAD with haemodynami-
cally significant stenosis in T2DM patients can reduce 
the occurrence of major adverse cardiovascular events 
(MACE), which has important clinical value. Fractional 
flow reserve (FFR) is the gold standard for diagnosing 
hemodynamically significant coronary stenosis, while 
it is difficult to access due to high costs and potential 
risks, limiting its widespread use [7–10]. Coronary CT 
angiography (CCTA) derived fractional flow reserve 
 (FFRCT), has highly consistent assessment in myocardial 
ischemia compared with invasive FFR [11–13], without 
extra image acquisition and taking adenosine, showing 
great potential in the diagnosis of functional myocardial 
ischemia.

Inflammatory response of the coronary arteries has 
been shown to affect the formation and differentia-
tion of pericoronary adipose tissue (PCAT) by releasing 
cytokines to prevent the lipid accumulation, which can 
be indicated by fat attenuation index (FAI) [14]. Mean-
while, chronic atherosclerosis and vascular inflammation 
of coronary artery can trigger permanent changes in the 
perivascular space, including fibrosis and microvascular 
remodeling [15, 16], which can be captured by radiomics 
with high-throughput extraction of quantitative features 
[17].Recently, radiomic signatures of PCAT have been 
proved to have important value for predicting hemody-
namic significance of coronary stenosis [18–20], however 
above studies mainly focused on radiomics analysis based 
CCTA. The use of iodine contrast agents intravenously 
might lead to the risk of allergic reaction, renal impair-
ment and microcirculation disorders. Hence, this study 
aimed to develop a radiomics nomogram of PCAT based 
on non-contrast CT to predict haemodynamically signifi-
cant coronary stenosis in patients with T2DM.

Material and methods
Local institutional review board and the ethics commit-
tee approved this study, and the requirement to acquire 
informed consent was waived.

Patients
T2DM patients with suspected CAD who underwent 
non-contrast CT scan [coronary artery calcium score 

(CACS) scan] and CCTA from January 2020 to Sep-
tember 2022 were initially included in this study. The 
exclusion criteria were as follows: (1) patients without 
T2DM; (2) patients with previous history of CAD; (3) 
patients with history of cardiac or coronary surgery, 
including permanent pacemaker placement, cardiac 
valve replacement, percutaneous coronary interven-
tion (PCI) and coronary artery bypass grafting (CABG), 
etc.; (4) patients with serious life-threatening diseases; 
(5) anomalous origin of coronary artery, coronary mal-
formation or aneurysm; (6) poor image quality. Patients 
were excluded if any of above criteria was met. Clini-
cal characteristics were collected from the medical 
records. Finally, 215 patients with 514 vessels were 
included, and vessels were divided into the training and 
validation cohorts at a ratio of 7:3.

CT images acquisition protocol
All image acquisitions were performed using a 256 row 
CT scanner (Revolution CT, GE Healthcare, Milwau-
kee). Patients received oral beat-blockers when heart 
rate was over 70 beat/min. Before CT scan, each patient 
received sublingual nitroglycerin for vasodilation. non-
contrast CT scan and CCTA scan were performed for 
each patient. Scan parameters were shown in Table  1. 
Forty-five 45 milliliter of iodized contrast agent iodix-
anol (370  mg/ml, Iopromide, Bayer Healthcare) was 
administered at a flow rate of 5  ml/s, followed by a 
40 ml saline solution. 

Table 1 Scan parameters

FOV Field of view

Scan parameters

CT plan scan (calcium score scan)

 Tube voltage (KV) 100

 Tube current (mAs) 414 (350, 562)

 Slice thickness (mm) 0.625

 Slice gap (mm) 0.625

 FOV (cm) 21.2

 Estimated effective dose (mSv) 0.67 (0.54, 0.88)

CCTA scan

 Tube voltage (KV) 100

 Tube current (mAs) 599 (599, 599)

 Slice thickness (mm) 0.625

 Slice gap (mm) 0.625

 FOV (cm) 21.2

 Retrospective gating Yes

 Scan trigger mode Bolus tracking

 Estimated effective dose (mSv) 2.87 (2.68, 3.05)
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CACS and Diameter Stenosis (DS) assessment
To quantify coronary plaque calcification, the Agatston 
score was calculated for each vessel by using post-pro-
cessing workstation (Advantage Workstation, version 4.7, 
GE Healthcare, Milwaukee, USA). DS was divided into: 
0% no stenosis, 1–24% minimal stenosis, 25–49% mild 
stenosis, 50–69% moderate stenosis, 70–99% severe ste-
nosis and 100% occlusion on vessel-based analysis [21]. 
DS ≧ 50% was considered as obstructive CAD.

FFRCT analysis
All  FFRCT values were calculated with an automated 
software (“Shukun-FFR” software from Shukun [Beijing] 
Technology Co., Ltd). As described in the study [22], 
the coronary arteries segmentation model and the com-
putational fluid dynamics (CFD) simulation model were 
used in the "Shukun-FFR" software. The calculation pro-
cess was as follows: firstly, coronary artery from CCTA 
image was segmented with a modified V-Net to gener-
ate a coronary tree; then,  FFRCT values of all points in 
coronary arteries were calculated automatically by the 
final reduced-order CFD model computing the flow and 

pressure of blood.  FFRCT was measured at 2 cm distal to 
the stenosis in plaque artery, while the measuring posi-
tion was located at the end of the vessel in plaque-free 
artery (at least ≥ 1.5 mm in diameter). In the case of mul-
tiple stenoses in a single vessel, the distal end of the far-
thest lesion was measured.  FFRCT ≤ 0.80 was defined as 
haemodynamically significant coronary stenosis (Fig. 1).

PCAT segmentation
PCAT segmentation of the non-contrast CT images was 
performed using Perivascular Fat Analysis Tool software 
(v1.1.0.) As previously reported, we traced the proximal 
40  mm segments of the left anterior descending artery 
(LAD), left circumflex artery (LCX) and the proximal 
10–50 mm segments of the right coronary artery (RCA) 
[14]. Region of interest (ROI) was delineated manually by 
one experienced radiologist and supervised by another 
experienced radiologist. PCAT was defined as the adi-
pose tissue within a radial distance from the outer vessel 
wall equal to the diameter of the vessel, with the attenu-
ation between -190 to -30 HU [14]. PCAT could be seg-
mented automatically by the software.

Fig. 1 Example case. The left anterior descending artery contained mixed plaques with functional ischemia: 3-dimensional (volume rendering) (A, 
B), curved planar reconstruction (C) and coronary computed tomography angiography derived fractional flow reserve [the measurement location 
(yellow marker and white arrow): 2 cm distal to the stenosis in plaque artery]. (D)
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Feature extraction and selection
Radiomics features were extracted using the “Calcu-
late Radiomics” module in Perivascular Fat Analysis 
Tool software. 1691 radiomic features were extracted 
as follows: (1) first-order features; (2) size and 
shape features; (3) texture features. Texture features 
included Gray Level Co-occurrence Matrix (GLCM), 
Gray Level Dependence Matrix (GLDM), Gray Level 
Size Zone Matrix (GLSZM), Gray Level Run Length 
Matrix (GLRLM), Neighboring Gray Tone Difference 
Matrix (NGTDM). Wavelet transform images were 
generated by 8 different combinations of high and 
low frequency bands in 3 directions (x, y, z), provid-
ing high-dimensional multi-frequency information. 
Sigma values of Laplacian of Gaussian (LoG) filtered 
images were set to 1, 2, 3, 4 and 5  mm respectively. 
Nonlinear strength transformation of image voxel 
included square, square root, logarithm and exponen-
tial operations.

Minimum redundancy maximum relevance (mRMR) 
and least absolute shrinkage and selection operator 
(LASSO) were applied to reduce the dimensional-
ity of high-dimensional data and screen the radiom-
ics features. To obtain an optimal feature subset, a 
5-fold cross-validation was used to choose the optimal 
λ and features with non-zero coefficient were finally 
selected.

Fat Attenuation Index (FAI) achievement
After PCAT segmentation was finished on non-contrast 
CT images, FAI could be achieved simultaneously with 
radiomic feature extraction using Perivascular Fat Analy-
sis Tool software (Fig.  2). FAI was defined as the mean 
CT attenuation of PCAT [14].

Model construction and validation
A radiomics signature was built using the LASSO logistic 
regression model and a linear formula was used to calcu-
late the score value of the radiomics signature (Radscore). 
Based on the training cohort, univariate and multivari-
able logistic regression was conducted to select the inde-
pendent predictors among CACS, FAI and Radscore. 
These independent predictors were used to establish 
radiomics nomogram to predict haemodynamically sig-
nificant coronary stenosis.

The sensitivity, specificity, accuracy, positive predictive 
value (PPV), negative predictive value (NPV), receiver 
operating characteristic (ROC) curves were used to 
evaluate the predictive ability of the models. Areas under 
ROC curves (AUCs) among models were compared 
by DeLong test. Hosmer–Lemeshow test and calibra-
tion curve were used to analyze whether the difference 
between the predicted risk rate and observed probability 
was statistically significant. The net benefits of the model 
and its clinical utility were evaluated by decision curve 

Fig. 2 The workflow for FAI achievement and radiomics nomogram development
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analysis (DCA). The workflow of nomogram was shown 
in Fig. 2.

Statistical analysis
Statistical analyses were performed using SPSS Statis-
tics (version 26.0) and R software (R version 4.05 and 
R Studio version 4.0). P value < 0.05 was regarded to be 
statistically significant. Means, standard deviations, or 
the median and interquartile range (IQR) were used to 
express continuous variables depending on whether the 
data was normal distribution. Categorical variables were 
expressed as numbers (%). Independent sample t-test 
or Wilcoxon rank sum test was applied to compare the 
quantitative dates. Chi-square test was used for qualita-
tive variables. “glmnet” package was performed to imple-
ment the LASSO regression. “RMS” package was used 
to build multivariate logistic regression, nomogram, and 
calibration curves. “pROC” package was used to analyze 
ROC curves.

Results
Clinical characteristics
Totally, 514 vessels (training cohort: 360; validation 
cohort: 154) in 215 patients were included in this study. 
157 vessels stenoses (30.5%) were significant based on 
 FFRCT. There were significant differences between the 
 FFRCT > 0.8 group and  FFRCT ≤ 0.8 group in terms of 
CACS and lesion distributions. Patient and lesion charac-
teristics were shown in Tables 2 and 3.

Radiomics model construction and evaluation
After the features extracting, mRMR was performed 
to remove redundant features, and 20 features were 
retained. Based on the training cohort, a total of sixteen 
predictive features were selected by LASSO regression 
to build the radiomics signature (Fig. 3A-C). The formula 
was as follows:

Radscore = 0.022 * FirstOrder_Minimum + -0.211 * Exponential 
FirstOrder_exponential_Range + 0.05 * SquareGLCM_square_ 
DifferenceAverage + -0.223 * WaveletGLSZMwavelet-HLH_ 
LowGrayLevelZoneEmphasis + -0.253 * WaveletFirstOrder_ 
wavelet-LHH_Median + 0.102 * WaveletGLSZMwavelet-
HLH_SmallAreaHighGrayLevelEmphasis + -0.097 * Wavelet 
GLSZMwavelet-LHH_LowGrayLevelZoneEmphasis + 0.048  
* WaveletGLCM_wavelet-LHL_ClusterProminence + -0.089  
* WaveletFirstOrder_wavelet-HLH_Kurtosis + 0.325 * Square 
GLSZM_square_SizeZoneNonUniformityNormalized + 0.235  
* ExponentialGLRLM_exponential_RunLengthNonUniformity  
+ -0.088 * SquareNGTDM_square_Busyness + 0.169*Wavelet 
FirstOrder_wavelet-HHL_Mean + 0.18 * WaveletFirst 
Order_wavelet-HHH_10Percentile + 0.189 * WaveletFirst 
Order_wavelet-LHL_Maximum + 0.111 * LaplacianGLSZM_
log-sigma-1–0-mm-3D_SizeZoneNonUniformity + -0.859. 
The Radscore distribution in both cohorts were shown in 
Fig.  4. The optimum cutoff value of Radscore in training 
cohort was -0.78.

Radscore showed good performance (training: 
AUC = 0.80; 95% CI: 0.75–0.85; validation: AUC = 0.82; 
95% CI: 0.75–0.90) to predict haemodynamically signifi-
cant coronary stenosis (Fig. 5A-B). Radscore yielded sig-
nificantly higher AUC than FAI in training (AUC 0.80 vs 
0.54, P < 0.001) and validation cohorts (AUC 0.82 vs 0.57, 
P < 0.001).

Radiomics nomogram construction
According to univariate and multivariable regression, 
CACS and Radscore were identified as the independ-
ent predictors for haemodynamically significant coro-
nary stenosis in the training cohort (Table  4). Then, 
Radiomics nomogram was constructed correspond-
ingly (Fig.  6A). The radiomics nomogram showed 
excellent performance on prediction for haemody-
namically significant coronary stenosis (AUC, 0.81; 

Table 2 Patient characteristics

IQR Interquartile range, BMI Body mass index, CAD Coronary artery disease

Characteristics Overall (n = 215)

Age (years), median (IQR) 62 (55–68)

BMI (kg/m2) median (IQR) 24.2 (22.3–26.0)

Female, n (%) 123 (57.2%)

Risk factors, n (%)

 Hypertension, n (%) 157 (73.0%)

 Hyperlipidemia, n (%) 81 (37.7%)

 Smoking, n (%) 50 (23.3%)

 Drinking, n (%) 41 (19.1%)

 Family history of CAD, n (%) 9 (4.2%)

Table 3 Lesion characteristics in no-contrast CT

FFR Fractional flow reserve, IQR Interquartile range, CACS Coronary artery 
calcium score, LAD Left anterior descending artery, RCA  Right coronary artery, 
LCX Left circumflex artery, FAI Fat attenuation index, HU Hounsfield units, SD 
Standard deviation

Characteristics FFR > 0.8 (n = 357) FFR ≤ 0.8 (n = 157) P value

FFRCT, median (IQR) 0.92 (0.88–0.96) 0.72 (0.66–0.77)  < 0.001

CACS, Agatston 
units, (IQR)

0(0–25.43) 89.48(1.93–197.63)  < 0.001

Lesion distributions, 
n (%)

 < 0.001

 LAD 112 (31.4) 93 (59.2)

 RCA 153 (42.9) 54 (34.4)

 LCX 92 (25.7) 10 (6.4)

FAI (Hu), mean ± SD -85.77 ± 6.45 -84.59 ± 6.88 0.062
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95%CI, 0.76–0.86), which was confirmed in the valida-
tion cohort (AUC, 0.83; 95%CI, 0.76–0.90) (Fig. 5A-B). 
Hosmer–Lemeshow test (P > 0.1) and the calibration 
curve showed good calibration performance between 
the predicted and observed results in the training and 
validation cohorts (Fig.  6B-C). Clinical usefulness was 
evaluated by DCA (Fig. 6D). Radiomics nomogram and 
Radscore basically had higher clinical application value 
than CACS when risk threshold was between 0.1 and 
0.8.

FAI in different DS categories
The FAI values in different DS categories were shown in 
Table 5. There was no statistical difference in FAI among 
the six categories (P = 0.524). The FAI was no statistically 
different between obstructive CAD and non-obstruc-
tive CAD (FAI -85.39 ± 6.83 HU vs -85.42 ± 6.50 HU, 
P = 0.962).

Comparison of CACS, Radscore and radiomics nomogram
The predictive performances for haemodynamically sig-
nificant coronary stenosis among CACS, Radscore and 
radiomics nomogram were shown in Table 6 and Fig. 5.

In the validation cohort, Radscore achieved sig-
nificantly higher AUC than CACS (AUC 0.82 vs 0.73, 
P = 0.035). Radiomics nomogram also achieved sig-
nificantly higher AUC than CACS (AUC 0.83 vs 0.73, 
P = 0.011), while there was no statistical difference 
between radiomics nomogram and Radscore (AUC 0.83 
vs 0.82, P = 0.320).

Discussion
In this study, a non-contrast CT-based radiomics nom-
ogram of PCAT by integrating radiomics features and 
CACS was established and validated. Our results demon-
strated the radiomics nomogram had excellent predictive 
performance for haemodynamically significant coronary 

Fig. 3 Feature selection process. The y axis represented LASSO coefficient profiles of the radiomics features and the lower x-axis indicated the log 
lambda (λ) (A). Sixteen radiomic features were selected to calculate radiomics score (B). The regression coefficients in the selected radiomics 
features (C)



Page 7 of 12Chen et al. BMC Medical Imaging           (2023) 23:99  

stenosis and could be a promising noninvasive method to 
optimize risk stratification and guide treatment strategies 
in T2DM patients.

It is of especially crucial to find new and efficient 
methods to predict high-risk CAD with myocardial 

ischemia both in time and extent, on account of that 
CAD in T2DM patients is often asymptomatic and 
undiagnosed until acute myocardial infarction occurs 
[23] and early detection of high-risk CAD can pro-
vide an opportunity for early intervention and prevent 

Fig. 4 Distribution of the Radscore in the training and validation cohorts indicated that Radscore had an excellent ability to predict 
haemodynamically significant coronary stenosis in patients with type 2 diabetes. Coronary arteries without functional ischemia (blue); Coronary 
arteries with functional ischemia (yellow)

Fig. 5 AUCs of CACS, Radscore and radiomics nomogram for predicting haemodynamically significant coronary stenosis in patients with type 2 
diabetes in each cohort. AUC, area under receiver operating characteristic curve
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MACE. FFRCT is widely used for prediction of func-
tion myocardial ischemia, influence on treatment 
decision making and prognostic evaluation of clini-
cal outcome, however the technology is not suitable 
for screening of high-risk CAD especially for asymp-
tomatic because of relative low incidence, low MACE 
rate, high cost, adverse side effects and high radiation 
exposure [24, 25]. Our study provides a novel non-
invasive, practical and economical tool for predict-
ing haemodynamically significant coronary stenosis 
in patients with T2DM, with low radiation dose and 
iodine avoiding, especially suitable for silent CAD. In 
our study, the radiomics nomogram achieved accurate 
prediction with AUC of 0.83 in the validation cohort. 
The median estimated effective dose of no-contrast 
CT in the present study is 0.67 mSv, which is consist-
ent with our goal to screen high-risk CAD with a rela-
tive lower radiation dose, iodine avoiding and costs 
reduction.

Plaque development and lumen stenosis are caused 
by vascular inflammation, inducing endothelial dys-
function and impaired vasodilation, which may 
reduce the distal flow reserve and result in functional 
ischemia [26, 27]. Previous research demonstrated that 
FAI could identify coronary inflammation by captur-
ing changes in perivascular fat attenuation, and also 
had value in predicting hemodynamic significance of 
coronary stenosis with AUC of 0.83 [28, 29]. How-
ever, in this study, the predictive performance of FAI 
was insufficient to identify haemodynamically signifi-
cant coronary stenosis. It was controversial whether 
FAI can identify haemodynamically significant coro-
nary stenosis, and the present study was consistent 
with previous studies with AUC from 0.55–0.67 [18, 
28–30]. There might be related with following reasons: 
first, different CT acquisition parameters had influ-
ence on FAI values; second, we traced the proximal 
40  mm segments of LAD and LCX and the proximal 
10–50 mm segment of RCA, while other studies traced 

the specific stenosis in CCTA [29]; third, the FAI anal-
ysis in above studies was based on CCTA, while we 
measured FAI on non-contract CT; forth, FAI might be 
changed by treatments [16].

Haemodynamically significant coronary stenosis 
caused by vascular inflammation [26, 27], might lead 
to alterations in the microenvironment and tissue 
components within the PCAT. Radiomics can extract 
thousands of quantitative imaging features from medi-
cal image data, and construct prediction models by 
selecting the most valuable features [17]. In our study, 
the Radscore was an independent predictor for func-
tional ischemia. It was derived from the sixteen most 
contributive radiomic features extracted from PACT, 
including seven first-order features and nine texture 
features, without shaped features. Only one feature was 
extracted from the original images, nine features from 
wavelet, one feature from LoG filtered images and five 
from nonlinear strength transformation. First-order 
features reflect the intensity features containing gray 
histogram information of PCAT, and the texture fea-
tures reflect the heterogeneity of PCAT. From the radi-
omics model, we found that, the PCAT of the positive 
 FFRCT case showed high heterogeneity (ExponentialGL-
RLM_exponential_RunLengthNonUniformity, Squar-
eGLSZM_square_SizeZoneNonUniformityNormalized 
and LaplacianGLSZM_log − sigma − 1 − 0 − mm − 3D_
SizeZoneNonUniformity), and a small proportion of 
lower gray-level values (WaveletGLSZMwavelet − HLH_
LowGrayLevelZoneEmphasis and WaveletGLSZM-
wavelet − LHH_LowGrayLevelZoneEmphasis). These 
features mainly reflected the confusion, complexity and 
variability of PCAT and were potentially captured by 
PCAT radiomics features instead of PCAT attenuation. 
Radiomics signature is not only reflect the acute inflam-
mation, but also describes fibrosis and vascularity in adi-
pose tissue induced by chronic coronary inflammation 
[16]. Moreover, fat radiomics signature reveals persis-
tently structural changes in PVAT and a corresponding 

Table 4 Univariate and multivariate logistic regression identified significantly independent factors in the training cohort to construct 
radiomics nomogram

OR Odds ratio, CI Confidence interval, FAI Fat attenuation index, CACS Coronary artery calcium score

Indicators Univariate analysis Multivariable analysis

OR 95% CI P value OR 95% CI P value

Lower Upper Lower Upper

CACS 1.01 1.01 1.01  < 0.001 1.00 1.00 1.01 0.023

FAI 1.02 0.99 1.06 0.241 - - - -

Radscore 3.46 2.58 4.65  < 0.001 2.84 2.04 3.96  < 0.001
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Fig. 6 The nomogram was constructed with the Radscore and CACS (A). Calibration curves of the radiomics nomogram in the training (B) 
and validation (C) cohorts. Decision curves indicated that radiomics nomogram and Radscore basically had higher clinical application value 
than CACS when risk threshold between 0.1 and 0.8 (D)
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residual risk not confounded by medications taking or 
other acute processes. Hence, Radscore performed bet-
ter than FAI to identify haemodynamically significant 
coronary stenosis in patients with T2DM.

Hyperglycemia, insulin resistance and excess fatty 
acids in T2DM enhance oxidative stress, destroy pro-
tein kinase C signaling and increase advanced glycation 
end products which result in vascular inflammation, 
vasoconstriction and atherogenesis [31, 32]. Complex 
mechanism leads to release of osteoprogenitor cells 
form the bone marrow into the circulation, promot-
ing coronary intimal calcification [33, 34]. Consistent 
with above studies [28], coronary artery calcification 
in the present study was shown to be an independent 
predictor for haemodynamically significant coronary 
stenosis in T2DM. Radiomics analysis has higher pre-
dictive ability than CACS and is particularly important 
to screen high-risk patients without severe coronary 
calcification in early T2DM patients.

However, there are several limitations in this study. 
First, image acquisition was acquired from the same CT 
manufacturer in order to ensure the image uniformity, 
which needed to verify the generalization of the pre-
sent findings in other manufacturers further. Second, 
a multi-center study with a larger sample count should 
be performed for further research, since this single-
center retrospective study lacked external validation. 
Third, the sample size was insufficient, not allowing 
for subgroup study, especially for patients in “gray-
zone lesions”. Fourth, part of LCXs were not analyzed 

because of anatomic variation and difficult delineation. 
Fifth, the models demonstrated higher predictive value 
in the validation cohort than in the training cohort. The 
reason for this result may be that the data set was not 
large enough, even though the training and test sets 
were randomly assigned, the distribution of the train-
ing and test sets were somewhat uneven. Another pos-
sible reason was that there might be underfitting in the 
training cohort and led to the lowering predictive value 
of the training cohort.

Conclusion
In conclusion, a radiomics nomogram of PCAT based on 
non-contrast CT has excellent performance for discrimi-
nating coronary functional ischemia, which may poten-
tially  become a noninvasive and economical method for 
predicting and screening high-risk CAD in patients with 
T2DM.

Abbreviations
CT  Computed tomography
PCAT   Pericoronary adipose tissue
FFR  Fractional flow reserve
T2DM  Type 2 diabetes mellitus
CCTA   Coronary computed tomography angiography
FAI  Fat attenuation index
LASSO  The least absolute shrinkage and selection operator
mRMR  The minimum redundancy maximum relevance
CACS  Coronary artery calcium score
AUC   Area under receiver operating characteristic curve
DCA  Decision curve analysis
CAD  Coronary artery disease
MACE  Major adverse cardiac events
DS  Diameter stenosis
CCS  Calcium score scan
PCI  Percutaneous coronary intervention
CABG  Coronary artery bypass grafting
AS  Agatston score
CFD  Computational fluid dynamics
RCA   Right coronary artery
LAD  Left anterior descending artery
LCX  Left circumflex artery
ROI  Region of interest
GLDM  Gray Level Dependence Matrix
GLCM  Gray Level Co-occurrence Matrix
GLRLM  Gray Level Run Length Matrix
GLSZM  Gray Level Size Zone Matrix

Table 5 The correlation between FAI and CAD-RADS

FAI Fat attenuation index, HU Hounsfield units

Diameter stenosis FAI (HU) P value

0% -85.24 ± 6.84 0.524

1–24% -85.38 ± 5.81

25–49% -85.71 ± 6.37

50–69% -86.27 ± 6.17

70–99% -84.68 ± 7.00

100% -82.82 ± 11.22

Table 6 The performance of CACS, Radscore and radiomics nomogram

CACS Coronary artery calcium score, AUC  Area under receiver operating characteristic curve, PPV Positive predictive value, NPV Negative predictive value

Models Cohorts AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

CACS Training cohort 0.75(0.69–0.80) 69.4% 73.5% 67.5% 52.1% 84.1%

Validation cohort 0.73(0.64–0.82) 71.4% 62.5% 74.6% 46.3% 85.0%

Radscore Training cohort 0.80(0.75–0.85) 75.8% 71.8% 77.8% 60.9% 85.1%

Validation cohort 0.82(0.75–0.90) 75.3% 75.0% 75.4% 51.7% 89.6%

Radiomics nomogram Training cohort 0.81(0.76–0.86) 75.0% 76.1% 74.5% 58.9% 86.6%

Validation cohort 0.83(0.76–0.90) 76.0% 75.0% 76.3% 52.6% 89.7%
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NGTDM  Neighboring Gray Tone Difference Matrix
LoG  Laplacian of Gaussian
ROC  Receiver operating characteristic
IQR  Interquartile range
FOV  Field of view
HU  Hounsfield units
BMI  Body mass index
SD  Standard Deviation
PPV  Positive predictive value
NPV  Negative predictive value
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