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Abstract
Background  There is a recognized need for additional approaches to improve the accuracy of extrathyroidal 
extension (ETE) diagnosis in papillary thyroid carcinoma (PTC) before surgery. Up to now, multimodal ultrasound has 
been widely applied in disease diagnosis. We investigated the value of radiomic features extracted from multimodal 
ultrasound in the preoperative prediction of ETE.

Methods  We retrospectively pathologically confirmed PTC lesions in 235 patients from January 2019 to April 2022 
in our hospital, including 45 ETE lesions and 205 non-ETE lesions. MaZda software was employed to obtain radiomics 
parameters in multimodal sonography. The most valuable radiomics features were selected by the Fisher coefficient, 
mutual information, probability of classification error and average correlation coefficient methods (F + MI + PA) in 
combination with the least absolute shrinkage and selection operator (LASSO) method. Finally, the multimodal 
model was developed by incorporating the clinical records and radiomics features through fivefold cross-validation 
with a linear support vector machine algorithm. The predictive performance was evaluated by sensitivity, specificity, 
accuracy, F1 scores and the area under the receiver operating characteristic curve (AUC) in the training and test sets.

Results  A total of 5972 radiomics features were extracted from multimodal sonography, and the 13 most valuable 
radiomics features were selected from the training set using the F + MI + PA method combined with LASSO regression. 
The multimodal prediction model yielded AUCs of 0.911 (95% CI 0.866–0.957) and 0.716 (95% CI 0.522–0.910) in the 
cross-validation and test sets, respectively. The multimodal model and radiomics model showed good discrimination 
between ETE and non-ETE lesions.

Conclusion  Radiomics features based on multimodal ultrasonography could play a promising role in detecting ETE 
before surgery.
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Introduction
Extrathyroidal extension (ETE) reflects the spread of a 
primary thyroid tumour beyond the thyroid gland cap-
sule. It appears in 5–45% of papillary thyroid carcinomas 
(PTCs) according to previous research [1]. Depending on 
the extent of invasion, ETE is subclassified as gross ETE 
(gETE) and minimal ETE (mETE). gETE is regarded as a 
macroscopic event that was initially suspected or identi-
fied by intraoperative, radiologic, or clinical examination 
and is associated with disease recurrence and survival. 
mETE is defined as microscopically detected invasion 
into perithyroidal soft tissue [2]. However, the impor-
tance of mETE remains a much-debated topic over the 
years. However, the 8th American Joint Committee on 
Cancer (AJCC) no longer includes mETE as the protocol 
to define T3 for tumour staging of PTC [3]. Some stud-
ies have shown that mETE in patients with PTC presents 
aggressive biological behaviour and is closely related to 
the risk of recurrence and metastasis [4, 5].

Ultrasound (US) is the first choice for the diagnosis of 
thyroid cancer and suspicious cervical lymphadenopathy. 
When physicians evaluate the risk of malignancy through 
sonographic patterns, evidence of ETE is also the point 
of examination according to the 2015 American Thyroid 
Association (ATA) Management Guidelines [6]. Previous 
work has only focused on the visible characteristics of US 
while ignoring the limitations of human visual resolution. 
It has been reported that US estimation of minimal ETE 
is less sensitive (30.1%) [7]. Thus, there is a recognized 
need for additional approaches to improve the accuracy 
of ETE diagnosis on US examinations before surgery. 
Radiomics allows the rapid quantitative extraction of 
countless high-throughput features from digital images 
and is widely used to solve medical problems, such as 
predicting malignant disease and lymph metastasis [8]. 
Recent research on US estimation of ETE has been car-
ried out with radiomics based on B-mode images. This 
approach has enabled more precise prediction of ETE [9].

Extensive research has shown that multimodal US, 
including B-mode US (BMUS), colour Doppler flow 
imaging (CDFI), shear-wave elastography (SWE), superb 
microvascular imaging (SMI) and contrast-enhanced 
US (CEUS), has been frequently applied to differentiate 
benign and malignant lesions in the thyroid, breast and 
liver [10–12]. Hard malignancy as measured with elasto-
graphic results was significantly associated with patho-
logical extrathyroidal extension [13]. Quantitative CEUS 
analysis showed that the time from peak to one-half has 
good diagnostic value in detecting ETE [14]. To date, far 
too little attention has been given to predicting ETE by 
multimodal US radiomics. In this research, we aim to 

develop and validate a state-of-the-art radiomics model 
based on clinical records and multimodal US for predict-
ing ETE in PTC patients. Our findings should contribute 
to the field of noninvasive assessment of ETE and clinical 
decisions about PTC.

Methods
The study was approved by the Ethical Committee of 
the Beijing Tiantan Hospital of Capital Medical Uni-
versity and complied with the Declaration of Helsinki. 
All patients signed informed consent before the CEUS 
examination.

Patients
This retrospective trial assessed consecutive individuals 
with thyroid nodules first diagnosed from January 2019 
to April 2022 at Beijing Tiantan Hospital. All patients 
were examined by multimodal US and subsequently 
administered thyroid surgery, subtotal or total thyroidec-
tomy, within a month following the US examination.

The inclusion criteria were as follows: (1) age >= 18 
years; (2) primary PTC confirmed after surgery; and (3) 
multimodal US performed one month before surgery. 
The exclusion criteria were as follows: (1) preoperative 
anticancer therapy (radiotherapy, chemotherapy, etc.); 
(2) no association of pathological results with US imaging 
findings; (3) poor US quality; and (4) insufficient patho-
logical samples for the assessment of ETE.

Based on a previous study [9], with an ETE prevalence 
of 20%, a sensitivity of 70%, and a specificity of 80%, the 
necessary sample size was calculated to be 47 ETE cases 
and 188 non-ETE cases to detect such a difference at a 
two-sided α level of 0.05 with 80% power. We used all 
available data to maximize the power and generalizability 
of our results.

Clinical and laboratory information
The following clinical and laboratory variables were ret-
rospectively considered: age, sex, tumour location and 
thyroid function laboratory test results. All data were 
recorded before the operation. Thyroid function tests, 
including thyroglobulin (Tg), thyroid peroxidase antibody 
(TPOAb), and thyroglobulin antibody (TgAb), were per-
formed in our hospital within one month before surgery 
[15]. The laboratory results were classified as low/nor-
mal/high based on comparison with the normal range, 
and missing data were imputed using the median value.

Ultrasound examination
Two sonologists with more than 5 years of experience 
in thyroid US performed examinations in this study. 
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For each tumour, BMUS, SWE, SMI and CEUS images 
were acquired on an Aplio 900 or Aplio 500 US system 
(Toshiba, Tokyo, Japan) with a linear array transducer 
i18LX5 probe. BMUS scans were first performed to find 
the optimal scanning plane. Then, CDFI, SMI, SWE and 
CEUS examinations were performed. For CEUS imaging, 
5 mL of the sulphur hexafluoride microbubble contrast 
agent SonoVue (Bracco SpA, Milan, Italy) was injected 
into the median cubital vein of patients. Data acquisition 
was started after injection and lasted for at least 120  s. 
After that, sonologists performed a neck ultrasound to 
report whether suspicious cervical lymph nodes existed. 
Images from BMUS, CDFI, SMI, SWE and CEUS were 
exported in BMP format for further analysis. The frame 
at the peak intensity in the CEUS video was used to anal-
yse the enhancement pattern.

Image interpretation and analysis
The multimodal US characteristics of nodules were 
evaluated during real-time and multiview scanning 
before surgery. According to Lamartina L et al. [7] and 
Zhang Y et al. [16], the BMUS signs of ETE diagno-
sis were classified as follows: the angle of contact with 
the thyroid capsule (absent capsule contact, 0; acute, 
< 90°; straight or obtuse, = or > 90°), the degree of con-
tact (< 25%, 25–50% or > 50% circumference of thyroid 
nodule contact with the capsule), bulging (nodule that 
deforms thyroid contour and bulges out), and capsule 
echogenic loss. The CDFI and SMI characteristics of sus-
picious ETE were vascularity extending beyond the cap-
sule. The CEUS characteristics of suspicious ETE were 

classified as follows: (1) discontinuous capsular enhance-
ment (the enhancement of the anterior and/or posterior 
hyperechoic thyroid capsular was discontinued) and (2) 
enhancement extending beyond the capsule (enhance-
ment extended out of the capsule). The ultrasonographic 
representation for the diagnosis of extrathyroidal exten-
sion on US is shown in Fig. 1. The 2015 ATA guidelines 
were used to guide reporting cervical lymph node metas-
tasis on US (US-LNM) [6].

Radiomics feature extraction
MaZda software (version 4.6, the Institute of Electronics, 
Technical University of Lodz, http://www.eletel.p.lodz.
pl/programy/mazda/) was used to extracted radiomics 
features from each lesion [17]. We applied image nor-
malization to µ ± 3δ (µ: mean grey-level value, δ: stan-
dard deviation) to decrease intensity bias from different 
images [18, 19]. Radiomics features were automatically 
extracted from the region of interest (ROI) on the US 
image of the largest cross-section with MaZda software, 
including shape features and six common texture fea-
ture groups (histogram, absolute gradient, grey-level 
co-occurrence matrix, run length matrix, autoregres-
sive model, and wavelet transform). Shape features were 
extracted from the actual ROI, which was manually 
delineated along the border of each tumour on the BMUS 
images. Considering that the periphery of the tumour 
also contained helpful information, other texture features 
were extracted from the disk structure dilated from the 
original segmented ROIs (the dilated ROI had a diameter 
approximately 10% larger than the contour of the lesion) 

Fig. 1  Ultrasonography for diagnosis of extrathyroidal extension
(A) The lesion is not in contact with the capsule. According to the classification criteria, the contact angle with the thyroid capsule is 0°. (B) The lesion 
formed an acute angle with the thyroid capsule. (C) The lesion formed a straight angle with the thyroid capsule. (D) Thyroid capsule deformation for the 
bulging nodule. (E) The arrow indicates that the CDFI vascularity of suspicious extrathyroidal extension nodules extended beyond the thyroid capsule. (F) 
The arrows pointing at contrast-enhanced ultrasound imaging showed discontinuous enhancement of the anterior thyroid capsule
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[20]. The reference point to create all the dilated ROIs 
was the gravity centre of the original ROI [21]. Because 
the CDFI and SWE images are three channels (RGB), we 
performed the colour analysis module function to extract 
features from each channel separately. The overall study 
process is shown in Fig. 2.

Intraobserver and interobserver agreement
Given the importance of radiological signature reproduc-
ibility, 20 samples were randomly selected to measure 
the interobserver agreement. The multimodal radiomics 
features of these samples were extracted by two inde-
pendent radiologists (Guang Yang and Yukang Zhang) 
who had at least five years of experience performing US 
examinations and were blinded to patients’ clinicopatho-
logical records. The first radiologist delineated the ROIs 
of these samples again after two weeks. Then, the delin-
eation of the remaining images was completed by the first 
radiologist.

Dimensionality reduction and radiomics feature selection
To avoid the problem of dimensionality and reduce 
the bias in feature modelling, 30 optimal features were 
selected from shape features for BMUS, and 150 texture 
features were selected from texture features for BMUS, 
CDFI, SWE, SMI,  and CEUS based on the Fisher coef-
ficient, mutual information, probability of classifica-
tion error and average correlation coefficient methods 
(F + MI + PA). After the normalization of radiomics data, 
least absolute shrinkage and selection operator (LASSO) 
regression was performed for dimensionality reduction. 

The selected features were used to further develop pre-
diction models.

Development and validation of ETE-predictive models
We randomly selected 74% of the samples as the training 
set, and the remaining 26% constituted the test set. The 
models were trained separately in the training dataset 
and were likewise validated independently in the testing 
dataset. Candidate variables included demographics, lab-
oratory tests, selected radiomics features and observed 
multimodal characteristics that were risk factors for 
ETE (P < 0.05). To uncover the incremental value of the 
radiomics signatures to the risk for ETE estimation, 
both radiomics models and clinical models were devel-
oped. The multimodal model incorporated radiomics 
features and clinical risk factors based on a support vec-
tor machine with a linear kernel (linear SVM). A fivefold 
cross-validation protocol with randomly split training 
data was used to adjust the optimal weight parameters, 
and the accuracy for each fold was estimated to prevent 
overfitting. The performance of the models was evalu-
ated and compared with respect to sensitivity, specific-
ity, accuracy, and F1 scores. Receiver operating curves 
(ROCs) and precision-recall curves (PR curves) were 
plotted and quantified with the area under the curve 
(AUC) to evaluate the discriminatory performance 
between different models in the cross-validation and test 
cohorts.

Fig. 2  The overall study process
The most representative image of each tumour on the thyroid multimodal ultrasound image was selected. Radiomics features, including shape, histo-
gram, absolute gradient, grey-level co-occurrence matrix, run length matrix, autoregressive model, and wavelet transform, were extracted. Radiomics 
features were generated using the Fisher coefficient, mutual information, probability of classification error and average correlation coefficient methods 
(F + MI + PA) and LASSO. These selected features were used to train the linear SVM in fivefold cross-validation and test in an test set. Univariate analysis 
was performed to determine the association between the clinical variables and ETE. Another SVM classifier was built using radiomics features plus clinical 
variables and observed ultrasound characteristics. SVM: support vector machine
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Pathology
All patients underwent hemithyroidectomy or total thy-
roidectomy. Tissue slices from all patients were indepen-
dently reviewed by our institutional pathologist (with 
more than 15 years of experience) to confirm whether 
the tumour had ETE, which was defined as a tumour 
extending through the capsule only. mETE was defined as 
microscopic invasion of adjacent connective tissue, and 
gETE was defined as gross invasion involving perithyroi-
dal strap muscles or beyond subcutaneous soft tissues, 
larynx, trachea, oesophagus, or recurrent laryngeal nerve 
[22].

Statistical analysis
Statistical analysis was conducted with SPSS 26.0 (SPSS, 
Chicago, United States) and MedCalc version 20.0.22 
(MedCalc Software, Mariakerke, Belgium). Categorical 
variables were compared by the χ2 test. Continuous vari-
ables were compared by the Mann‒Whitney U test for 
abnormally distributed variables and t test for normally 
distributed variables. The level of significant difference 
reported was two-tailed, and p values of less than 0.05 
were considered statistically significant. The inter/intra-
class correlation coefficient (ICC) was used to evaluate 
interobserver and intraobserver agreement. ICC values 
were considered excellent for ICC ≥ 0.75, satisfactory for 
ICC 0.4 ≤ ICC < 0.75, and poor for ICC < 0.4. Z score nor-
malization data processing was performed using R soft-
ware version 3.4.1 with the caret package, and the glmnet 
package was used for LASSO regression. The classifica-
tion learner toolbox in MATLAB R2021b (MathWorks, 
Natick, MA) was used to build linear SVM models for 
predicting ETE status. The discrimination metrics of 
established models, including AUC, classification accu-
racy, sensitivity, specificity and F1 scores, were calculated 
using MedCalc.

Results
Clinicopathological characteristics
Among the 1009 thyroid patients examined by mul-
timodal US, 235 patients with 250 suspicious thyroid 
lesions on multimodal ultrasonography who underwent 
surgery between 01 January 2019 and 30 April 2022 were 
included (shown in Fig.  3). The 250 lesions were ran-
domly allocated across two sets, namely, a training set 
and a test set, containing 184 lesions (40 males and 144 
females; median age 41.0 years) and 66 lesions (15 males 
and 51 females; median age 41.5 years), respectively. The 
clinicopathological characteristics of the training and test 
sets are shown in Table  1. Positive ETE accounted for 
17.9% (33/184) and 18.2% (12/66) of cases in the train-
ing and test sets, respectively. There was no significant 
difference between the two cohorts in the presence of 
ETE (P = 0.964). In addition, there were no significant 

differences between the two cohorts in other clinicopath-
ological characteristics. These results justified the use of 
the training and test cohorts.

Clinical and multimodal US characteristics
The multimodal US characteristics of the study popula-
tion are presented in Table  2. Univariate analysis was 
used to identify potential variables associated with ETE. 
The Tg level, maximum size, US-LNM, degree of contact 
with the capsule, angle of contact, bulging, capsule echo-
genic loss on BMUS, SMI vascularity extending beyond 
the capsule and discontinuous capsular enhancement 
were associated with ETE in PTCs (P < 0.05).

ETE prediction
Based on the training cohort, a total of 5972 radiomics 
features were extracted from multimodal sonography. 
These features were reduced to 180 using F + MI + PA, 
and LASSO regression was used to select the predictors 
with the greatest potential (Fig.  4). One shape feature, 
two BMUS features, three SMI features, three SWE fea-
tures and four CEUS features were selected to further 
develop prediction models. The proportion of texture 
features derived from CEUS was the highest (30.8%). All 
13 radiomics features showed highly significant differ-
ences between ETE and non-ETE masses with a t test 
(P < 0.05, Table  3). The radiomic score calculation for-
mula was as follows:

Rad-score = -1.842561-0.03930704 × Shape-
GeoX + 0.23981317 × BMUS-S (5,5) InvDf-
Mom + 0.29167245 × BMUS-GrKurtosis + 0.08002657 
× CEUS-Vertl_GLevNonU + 0.14981715 × CEUS-
Vertl_RLNonUni − 0.03253232 × CEUS-WavEnHL_
s4-0.56894438 × CEUS-Perc.99% − 0.15750629 
× SWE-H_S (0,1) SumOfSqs + 0.03310617 × 
SWE-Teta1 + 0.26388574 × SWE-R_Horzl_
GLevNonU + 0.02669084 × SMI-Vertl_GLevNonU 
− 0.23046584 × SMI-WavEnHH_s5 + 0.12426557 × 
SMI-WavEnHL_s6.

The interobserver reproducibility and intraobserver 
reproducibility of feature extraction are shown in Table 4. 
All the ICC values were reported to be excellent or sat-
isfactory. Therefore, all the selected radiomics features 
were input into the radiomics model.

Figure 5 shows ROC curves for the radiomics model in 
distinguishing ETE from non-ETE masses in the cross-
validation and test cohorts. The multimodal predic-
tion model yielded AUCs of 0.911 (95% CI 0.866–0.957) 
and 0.716 (95% CI 0.522–0.910) in the cross-validation 
(Fig. 5A) and test (Fig. 5B) sets, respectively. The clinical 
decision curve of the multimodal and clinical model is 
depicted in Fig. 6A and B. Table 5 shows the diagnostic 
performance of the three models. The sensitivity, speci-
ficity, accuracy, AUC and F1 score of the clinical SVM 
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model were 12.1%, 96.7%, 81.5%, 0.700, and 0.472 in the 
cross-validation set and 8.3%, 96.3%, 80.3%, 0.676, and 
0.421 in the test set. The sensitivity, specificity and accu-
racy, AUC and F1 scores of the radiomics SVM model 
were 57.6%, 94.7%, 88.0%, 0.908, and 0.691 in the cross-
validation set and 58.3%, 94.4%, 87.9%, 0.698, and 0.636 in 
the test set. Using combined clinical data and radiomics 
parameters, we developed a multimodal SVM model, 
which yielded 54.5%, 94.0%, 87.0%, 0.911, and 0.691 in 
the cross-validation set and 50.0%, 92.6%, 84.8%, 0.716, 
and 0.571 in the test set, respectively. In the cross-vali-
dation cohort, there was a significant difference between 

the AUC of the multimodal model and the clinical model. 
However, there was no significant AUC difference among 
the three models in the test set (shown in Table S1).

Discussion
ETE suggests the aggressive behaviour of thyroid can-
cer. Previous studies have shown insufficient sensitivity 
and accuracy in ETE assessment before surgery. Another 
question is that the US evaluation seems more subjec-
tive and relies on expert opinion, which may cause poor 
interobserver agreement in capsule invasion diagnosis 
[23]. It is very urgent to utilize modern techniques to 

Fig. 3  Study flowchart
US: ultrasound; PTC: papillary thyroid carcinoma; ETE: extrathyroidal extension
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improve ETE diagnostic accuracy in preoperative thyroid 
US.

The present study was designed to determine the effect 
of multimodal US on ETE prediction before surgery. 
Researchers have investigated ETE by BMUS in prior 
studies, defining ETE as contact of more than 25% of the 
lesion with the thyroid capsule or loss of capsular hyper-
echogenicity, consistent with our study [24]. It has also 
been reported that vascularity beyond the capsule on 
CDFI images showed high specificity but low sensitivity 
[25]. Conversely, we did not find a relationship between 
CDFI vascularity and ETE. SMI is a mature method to 
display tiny blood flow [26]. It reached higher sensitiv-
ity in detecting microvessels of thyroid tumours, possibly 
being more valuable in predicting ETE. In the present 
study, with a larger sample size, we found that SMI vas-
cularity performed better in diagnosing ETE than CDFI. 
CEUS has shown a solid ability to distinguish malignant 
and benign lesions by dynamically exhibiting blood sup-
ply patterns. The normal thyroid capsule manifests high 
enhancement during CEUS because of the vessels in the 
intrinsic capsule. Like Yan Zhang et al., we found that 
discontinuous enhancement of the thyroid capsule was 
highly suggestive of ETE [16]. However, lesion enhance-
ment beyond the capsule could not predict ETE. This 
may be because few PTCs present hyper or isoenhance-
ment. Moreover, several studies have demonstrated the 

correlation between LNM and ETE. Our study found that 
suspicious lymph nodes in cervical US examination also 
indicate the possibility of ETE.

Human vision has a limitation in distinguishing details 
in medical imaging, which causes limited applicability in 
ETE diagnosis. The clinical model established by linear 
SVM for ETE prediction showed insufficient discrimi-
natory ability. To overcome this problem, we employed 
radiomics. Radiomics is known to rapidly extract numer-
able quantitative features from digital images through 
high-throughput computing for analysis [27]. It can be 
widely applied in medical imaging diagnosis and treat-
ment decision-making. The experimental results show 
that radiomics features extracted from multimodal US 
images were independently associated with ETE. Adding 
these radiomics features to the clinical model increased 
the accuracy, AUC and F1 score in the cross-validation 
and test sets, which is also better than the previously 
reported clinical model based on US [7]. Therefore, our 
study suggested that radiomics has a favourable discrimi-
natory ability to solve medical imaging classification 
problems. We also investigated cases with inconsistent 
predictive results from the clinical and multimodal mod-
els. Figure 7 provides a series of multimodal US images 
for two misdiagnosed cases. We speculated that the 
multimodal model enhances the sensitivity of ETE pre-
diction, which may lead to overestimation or misdiag-
nosis of minor nodules with a low risk of ETE. On the 
other hand, the multimodal model still showed better 
performance than the clinical model, while the thyroi-
dal capsule seemed to be continuous on BMUS imaging 
(Fig. 7E).

Previous studies showed that the computed tomog-
raphy (CT) radiomics nomogram for preoperative pre-
diction of ETE in PTC patients was slightly better than 
that in our research, with an AUC of 0.80–0.84 in the 
test set [28–30]. Wei R et al. used multimodal magnetic 
resonance imaging (MRI) radiomics scores to calculate 
the risk of ETE in PTCs with tumour diameters ≥ 5 mm, 
which reached an AUC of 0.87 [31]. Given the radiation 
of CT and renal unsafety of iodine-based contrast media 
in patients with chronic renal insufficiency and the cost 
and consuming time of MRI, we prefer to explore a pre-
dictive model based on US. However, there needs to be 
more studies investigating ETE by US imaging radiomics 
analysis. Although Wang X et al. developed a radiomics 
nomogram based on the BMUS radiomics score and 
clinical factors (tumour location and radiologist diagno-
sis) that reached good discrimination in the validation 
cohort (AUC = 0.824) [9], an external test set is needed 
to confirm the generalization ability. In the present study, 
the SVM-supervised classifier was chosen rather than 
the nomogram for automatic computational analysis of 
the possibility of ETE. It performed with high accuracy 

Table 1  Clinicopathological characteristics of PTCs in the 
training and test sets
Clinicopathological 
characteristics

Training set 
(n = 184)

Test set 
(n = 66)

P Value

Gender 0.868

Male 40 (16.0%) 15 (6.0%)

Female 144 (57.6%) 51 (20.4%)

Age (years) 41.0 (33.0, 
51.0)

41.5 (32.0, 53.0) 0.939

Maximum Size (cm) 0.8 (0.6, 1.2) 0.9 (0.6, 1.2) 0.915

Location 0.425

Isthmus 7 (2.8%) 4 (1.6%)

Left lobe 91 (36.4%) 27 (10.8%)

Right lobe 86 (34.4%) 35 (14.0%)

US-LNM 0.177

Normal 146 (58.4%) 47 (18.8%)

Suspicious 38 (15.2%) 19 (7.6%)

Pathological LNM 0.227

No 94 (37.6%) 28 (11.2%)

Yes 90 (36.0%) 38 (15.2%)

ETE 0.964

No 151 (60.4%) 54 (21.6%)

Yes 33 (13.2%) 12 (4.8%)
Data are presented as median with interquartile range and number where 
applicable

PTC: papillary thyroid carcinoma; LNM: cervical lymph node metastasis; US-
LNM: cervical lymph node metastasis on ultrasound; ETE: extrathyroidal 
extension
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Table 2  Univariate analysis of clinical and multimodal US characteristics for ETE in the training set
Characteristics Non-ETE (n = 151) ETE (n = 33) P Value
Gender 0.075

Male 29 (15.8%) 11 (6.0%)

Female 122 (66.3%) 22 (12.0%)

Age (years) 41.0 (33.0, 51.0) 44.0 (36.0, 52.5) 0.514

Tg 0.030
Low 34 (18.5%) 3 (1.6%)

Normal 112 (60.9%) 26 (14.1%)

High 5 (2.7%) 4 (2.2%)

TgAb 0.640

Normal 118 (64.1%) 27 (14.7%)

Abnormal 33 (17.9%) 6 (3.3%)

TPOAb 0.206

Normal 118 (64.1%) 29 (15.8%)

Abnormal 33 (17.9%) 4 (2.2%)

Maximum size (cm) 0.70 (0.60,1.00) 1.20 (0.85,1.55) < 0.001
Location 0.119

Isthmus 4 (2.2%) 3 (1.6%)

Left Lobe 73 (39.7%) 18 (9.8%)

Right Lobe 74 (40.2%) 12 (6.5%)

US-LNM 0.047
No 124 (67.4%) 22 (12.0%)

Yes 27 (14.7%) 11 (6.0%)

Degree of contact < 0.001
< 25% 93 (50.5%) 7 (3.8%)

25-50% 46 (25.0%) 22 (12.0%)

>50% 12 (6.5%) 4 (2.2%)

Angle of contact < 0.001
None 70 (38.0%) 3 (1.6%)

Acute 63 (34.2%) 26 (14.1%)

Straight or obtuse 18 (9.8%) 4 (2.2%)

Bulging 0.014
No 118 (64.1%) 19 (10.3%)

Yes 33 (17.9%) 14 (7.6%)

Capsule echogenic loss < 0.001
No 125 (67.9%) 16 (8.7%)

Yes 26 (14.1%) 17 (9.2%)

CDFI vascularity extending 0.419

No 143 (77.7%) 30 (16.3%)

Yes 8 (4.4%) 3 (1.6%)

SMI vascularity extending 0.009
No 145 (78.8%) 27 (14.7%)

Yes 6 (3.3%) 6 (3.3%)

Enhancement extending 0.082

No 145 (78.8%) 29 (15.8%)

Yes 6 (3.3%) 4 (2.2%)

Discontinuous capsular enhancement < 0.001
No 127 (69.0%) 18 (9.8%)

Yes 24 (13.0%) 15 (8.2%)
Data are presented as median with interquartile range and number where applicable

US, ultrasound; ETE, extrathyroidal extension; Tg, thyroglobulin; TPOAb, thyroid peroxidase antibody; TgAb, thyroglobulin antibody; US, ultrasound; CDFI, colour 
Doppler flow imaging; SMI, superb microvascular imaging; US-LNM, cervical lymph node metastasis on ultrasound



Page 9 of 12Wan et al. BMC Medical Imaging           (2023) 23:96 

and a good guarantee against overfitting. The multimodal 
model based on multimodal US radiomics features and 
clinical records by linear SVM yielded a cross-validation 
AUC of 0.911 and a test AUC of 0.716, indicating that 
multimodal US contained valuable information about 
ETE. TableS2 provides a detailed comparison of the data 
that have been reported previously for ETE prediction.

However, the number of mETE samples in this study 
was much larger than that of gETE samples. There were 
41 nodules with mETE and 4 with gETE. Thus, this 
research used the same model to predict both of them. 
We utilized the subgroup accuracy to assess the pre-
dictive ability in different subgroups [subgroup accu-
racy = the number of correct classifications/total number 
of samples in the subgroup (%)] (Table  6). The model 

could predict mETE as well as gETE. Fisher’s exact test 
showed no difference between the subgroup accuracy of 
the multimodal model (P value of the cross-validation: 
0.489; P value of the test set: 1.00).

A major clinical contribution of this paper is providing 
the possibility of improving individualized treatment in 
PTC patients. However, the 8th AJCC no longer includes 
mETE as the protocol to define T3 for tumour staging of 
PTC. ETE is still a prognostic factor, according to previ-
ous studies. Evidence shows that active surveillance is an 
alternative to surgery in low-risk PTC patients. However, 
the therapeutic strategies for those with ETE may need 
to be stricter. The pathological standard for ETE in PTC 
lesions remains controversial [1, 2]. The incidence of 
pathological ETE in our study is reasonable due to the 

Table 3  Comparison of radiomics values of ETE and non-ETE groups in the training set
Modality Method Radiomics parameters Non-ETE (n = 151) ETE (n = 33) P 
BMUS Geometry GeoX (6.26 ± 0.88) × 102 (5.88 ± 1.02) × 102

Grey-level co-occurrence matrix S (5,5) InvDfMom (1.60 ± 0.30) × 10− 1 (1.90 ± 0.40) × 10− 1

Absolute gradient GrKurtosis 2.47 ± 1.14 3.20 ± 1.01

SMI Grey-level run length matrix Vertl_GLevNonU (6.85 ± 5.20) × 102 (12.58 ± 9.07) × 102

Wavelets transform WavEnHH_s5 (7.63 ± 3.18) × 101 (5.78 ± 1.89) × 101

Wavelets transform WavEnHL_s6 (1.11 ± 0.6) × 102 (1.36 ± 0.77) × 102

SWE Grey-level co-occurrence matrix H_S (0,1) SumOfSqs (1.08 ± 0.70) × 102 (1.03 ± 0.88) × 102

Autoregressive model Teta1 (8.8 ± 0.30) × 10− 1 (9.0 ± 0.30) × 10− 1

Grey-level run length matrix R_Horzl_GLevNonU (5.26 ± 4.21) × 102 (9.64 ± 6.54) × 102

CEUS Grey-level run length matrix Vertl_GLevNonU (8.14 ± 5.87) × 102 (15.31 ± 12.1) × 102

Grey-level run length matrix Vertl_RLNonUni (1.98 ± 1.46) × 104 (3.68 ± 2.83) × 104

Wavelets transform WavEnHL_s4 (1.04 ± 0.30) × 102 (0.85 ± 0.20) × 102

Histogram Perc.99% (1.96 ± 0.15) × 102 (1.78 ± 0.25) × 102

BMUS, B-mode US; CDFI, colour Doppler flow imaging; SWE, shear-wave elastography; SMI, superb microvascular imaging; CEUS, contrast-enhanced ultrasound. 
S(x,y), grey level co-occurrence matrix for inter-pixel distance x along rows and y along columns; InvDfMom, inverse difference moment; Gr Kurtosis, absolute 
gradient kurtosis; Horzl, Horizontal; Vertl, vertical; GLevNonU, gray-level non-uniformity; WavEnHH (HL), energies of wavelet transform coefficients in frequency 
channels HH (HL); SumOfSqs, Sum of squares; RLNonUni, run-length non-uniformity; Perc.99%, percentile 99%

Fig. 4  Radiomics feature selection using LASSO regression in the training set
(A) The 10-fold cross-validation process was used to generate the 13 selected features in LASSO regression for further modelling. (B) The feature coef-
ficient convergence graph
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prevalence of micro-PTC. Thus, the established model 
may provide better application in the real world.

Our study has several limitations. First, none of the 
qualitative multimodal features (e.g., peak intensity, time 
to peak, SMI vascularity index, and shear wave speed) 
were included in our study. Further research should use 
these parameters as input in predictive models. Second, 
it was a retrospective, one-centre study with unavoidable 
selection bias. More prospective and multicentre studies 
are required to explore the possible relationship between 
multimodal US features and the presence of ETE. Third, 
radiomics features extracted from static images lead to 
missing some of the information, especially for CEUS 
images. Evaluating the thyroid nodule with dynamic 
real-time US assessment could provide more accu-
rate ETE results. More importantly, a major decrease in 
AUC in the test set indicated that the model was over-
fitted. Although we use 5-fold cross-validation to mini-
mize overfitting when modelling, there is still a risk of 

Table 4  The inter-observer reproducibility and intra-observer 
reproducibility of selected feature
Selected features Interclass 

coefficient
Intraclass 
coefficient

Shape-GeoX 0.993 0.986

BMUS-S (5,5) InvDfMom 0.895 0.947

BMUS-GrKurtosis 0.705 0.772

SMI-Vertl_GLevNonU 0.858 0.790

SMI-WavEnHH_s5 0.802 0.862

SMI-WavEnHL_s6 0.668 0.798

SWE-H_S (0,1) SumOfSqs 0.721 0.966

SWE-Teta1 0.402 0.652

SWE-R_Horzl_GLevNonU 0.740 0.774

CEUS-Vertl_GLevNonU 0.816 0.930

CEUS-Vertl_RLNonUni 0.840 0.900

CEUS-WavEnHL_s4 0.858 0.942

CEUS-Perc.99% 0.423 0.908
Inter/intra class correlation coefficient values were considered excellent for 
ICC ≥ 0.75, satisfactory for ICC 0.4 ≤ ICC < 0.75, poor for ICC < 0.4

Fig. 6  (A) The precision-recall curve in the cross-validation set. (B) The precision-recall curve in the test set

 

Fig. 5  (A) ROC curves of the three models in the cross-validation set. (B) ROC curves of the three models in the test set
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overfitting in machine learning. This is more likely if the 
sample size is small and unbalanced. Thus, if sufficient 
training examples are provided, a deep learning system 
capable of video image processing will be able to address 
this issue in the future.

Conclusions
The diagnostic power of the clinical model in ETE predic-
tion was inferior to the diagnostic power of the radiomics 
model based on multimodal US. The superiority of mul-
timodal US radiomics features in predicting ETE pro-
vides further evidence of the potential clinical value of 
radiomics analyses in assessing ETE. The linear SVM 
predictive model based on information supplied by mul-
timodal US radiomics and clinical features demonstrates 
a promising approach for predicting preoperative ETE in 
PTC patients.
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Table 5  Diagnosis performance of the three models
Group Model Sen Sep Acc AUC (95% CI) F1 score

Multimodal Model 54.5% 94.0% 87.0% 0.911 (0.866–0.957) * 0.691

Cross-validation Clinical Model 12.1% 96.7% 81.5% 0.700 (0.593–0.807) 0.472

Radiomic Model 57.6% 94.7% 88.0% 0.908 (0.857–0.960) * 0.691

Multimodal Model 50.0% 92.6% 84.8% 0.716 (0.522–0.910) 0.571

Test set Clinical Model 8.3% 96.3% 80.3% 0.676 (0.513–0.839) 0.421

Radiomic Model 58.3% 94.4% 87.9% 0.698(0.477–0.918) 0.636
*Compared to AUC of Clinical Model in cross-validation cohort, there is a significant different (P < 0.05). Sen, sensitivity; Spe, specificity; Acc, accuracy; AUC, area 
under the curve; CI, confidence interval

Table 6  The predictive accuracy of gETE and mETE group in different models
gETE mETE

Models Cross-validation Test set Cross-validation Test set

Clinical model 0/2 (0%) 1/2 (50%) 4/31 (12.9%) 0/10 (0%)

Radiomic model 2/2 (100%) 2/2 (100%) 17/31 (54.8%) 5/10 (50%)

Multimodal model 2/2 (100%) 1/2 (50%) 16/31 (51.6%) 5/10 (50%)
Number of correct classification/ total number of samples in the subgroup (subgroup accuracy, %)

Fig. 7   A ~ D, multimodal ultrasound images for a non-ETE tumour misdi-
agnosed by the multimodal model but correctly diagnosed by the clinical 
model; E ~ H, an ETE case misdiagnosed by clinical models but diagnosed 
correctly by radiomics

 

https://doi.org/10.1186/s12880-023-01049-8
https://doi.org/10.1186/s12880-023-01049-8


Page 12 of 12Wan et al. BMC Medical Imaging           (2023) 23:96 

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
The studies involving human participants were reviewed and approved by 
Beijing Tian Tan Hospital Ethics Committee (ethics approval number KY 2020-
007-02) in accordance with the Declaration of Helsinki. Authors confirm that 
all methods were in accordance with the relevant guidelines and regulations. 
The patients/participants provided their written informed consent to 
participate in this study.

Consent for publication
Not applicable.

Author details
1Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical 
University, No. 119 West Road of South 4th Ring Road, Fengtai District, 
100160 Beijing, China

Received: 13 October 2022 / Accepted: 16 June 2023

References
1.	 Turk AT, Asa SL, Baloch ZW, Faquin WC, Fellegara G, Ghossein RA, Giordano TJ, 

LiVolsi VA, Lloyd R, Mete O, et al. Interobserver Variability in the histopatho-
logic Assessment of Extrathyroidal Extension of Well differentiated thyroid 
carcinoma supports the New American Joint Committee on Cancer Eighth 
Edition Criteria for Tumor Staging. Thyroid. 2019;29(5):619–24.

2.	 Nishino M, Jacob J. Invasion in thyroid cancer: controversies and best prac-
tices. Semin Diagn Pathol. 2020;37(5):219–27.

3.	 Perrier ND, Brierley JD, Tuttle RM. Differentiated and anaplastic thyroid car-
cinoma: major changes in the american Joint Committee on Cancer eighth 
edition cancer staging manual. CA Cancer J Clin. 2018;68(1):55–63.

4.	 Danilovic DLS, Castroneves LA, Suemoto CK, Elias LO, Soares IC, Camargo RY, 
Correa FA, Hoff AO, Marui S. Is there a difference between minimal and gross 
extension into the strap muscles for the risk of recurrence in papillary thyroid 
carcinomas? Thyroid 2020, 30(7):1008–16.

5.	 Bortz MD, Kuchta K, Winchester DJ, Prinz RA, Moo-Young TA. Extrathyroidal 
extension predicts negative clinical outcomes in papillary thyroid cancer. 
Surgery. 2021;169(1):2–6.

6.	 Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, 
Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al. 2015 american 
thyroid Association Management Guidelines for adult patients with thyroid 
nodules and differentiated thyroid Cancer: the american thyroid Association 
Guidelines Task Force on thyroid nodules and differentiated thyroid Cancer. 
Thyroid. 2016;26(1):1–133.

7.	 Lamartina L, Bidault S, Hadoux J, Guerlain J, Girard E, Breuskin I, Attard M, 
Suciu V, Baudin E, Al Ghuzlan A, et al. Can preoperative ultrasound predict 
extrathyroidal extension of differentiated thyroid cancer? Eur J Endocrinol. 
2021;185(1):13–22.

8.	 Cao Y, Zhong X, Diao W, Mu J, Cheng Y, Jia Z. Radiomics in differentiated thy-
roid Cancer and nodules: explorations, application, and Limitations. Cancers 
(Basel) 2021, 13(10).

9.	 Wang X, Agyekum EA, Ren Y, Zhang J, Zhang Q, Sun H, Zhang G, Xu F, Bo 
X, Lv W, et al. A Radiomic Nomogram for the Ultrasound-Based evaluation 
of Extrathyroidal Extension in Papillary thyroid carcinoma. Front Oncol. 
2021;11:625646.

10.	 Li XL, Lu F, Zhu AQ, Du D, Zhang YF, Guo LH, Sun LP, Xu HX. Multimodal 
Ultrasound imaging in breast imaging-reporting and data system 4 
breast lesions: a prediction model for Malignancy. Ultrasound Med Biol. 
2020;46(12):3188–99.

11.	 Yao Z, Dong Y, Wu G, Zhang Q, Yang D, Yu JH, Wang WP. Preoperative diagno-
sis and prediction of hepatocellular carcinoma: Radiomics analysis based on 
multi-modal ultrasound images. BMC Cancer. 2018;18(1):1089.

12.	 Pei S, Cong S, Zhang B, Liang C, Zhang L, Liu J, Guo Y, Zhang S. Diagnostic 
value of multimodal ultrasound imaging in differentiating benign and malig-
nant TI-RADS category 4 nodules. Int J Clin Oncol. 2019;24(6):632–9.

13.	 Jin ZQ, Lin MY, Hu WH, Li WY, Bai SJ. Gray-scale ultrasonography combined 
with elastography imaging for the evaluation of papillary thyroid micro-
carcinoma: as a prognostic clinicopathology factor. Ultrasound Med Biol. 
2014;40(8):1769–77.

14.	 Liu Y, Liu H, Qian CL, Lin MS, Li FH. Utility of quantitative contrast-enhanced 
ultrasound for the prediction of extracapsular extension in papillary thyroid 
carcinoma. Sci Rep. 2017;7(1):1472.

15.	 Wu Y, Rao K, Liu J, Han C, Gong L, Chong Y, Liu Z, Xu X. Machine learning 
algorithms for the prediction of Central Lymph Node Metastasis in patients 
with papillary thyroid Cancer. Front Endocrinol (Lausanne). 2020;11:577537.

16.	 Zhang Y, Zhang X, Li J, Cai Q, Qiao Z, Luo YK. Contrast-enhanced ultrasound: a 
valuable modality for extracapsular extension assessment in papillary thyroid 
cancer. Eur Radiol. 2021;31(7):4568–75.

17.	 Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda–a software 
package for image texture analysis. Comput Methods Programs Biomed. 
2009;94(1):66–76.

18.	 Huang X, Shu J, Yan Y, Chen X, Yang C, Zhou T, Li M. Feasibility of magnetic 
resonance imaging-based radiomics features for preoperative prediction of 
extrahepatic cholangiocarcinoma stage. Eur J Cancer (Oxford England: 1990). 
2021;155:227–35.

19.	 Gu Q, Feng Z, Liang Q, Li M, Deng J, Ma M, Wang W, Liu J, Liu P, Rong P. 
Machine learning-based radiomics strategy for prediction of cell proliferation 
in non-small cell lung cancer. Eur J Radiol. 2019;118:32–7.

20.	 Li Y, Liu Y, Zhang M, Zhang G, Wang Z, Luo J. Radiomics with Attribute bag-
ging for breast tumor classification using Multimodal Ultrasound images. J 
Ultrasound Med. 2020;39(2):361–71.

21.	 Mohammadi A, Mirza-Aghazadeh-Attari M, Faeghi F, Homayoun H, 
Abolghasemi J, Vogl TJ, Bureau NJ, Bakhshandeh M, Acharya RU, Abba-
sian Ardakani A. Tumor Microenvironment, Radiology, and Artificial 
Intelligence: should we consider Tumor Periphery? J Ultrasound Med. 
2022;41(12):3079–90.

22.	 Christiansen F, Epstein EL, Smedberg E, Åkerlund M, Smith K, Epstein E. 
Ultrasound image analysis using deep neural networks for discriminating 
between benign and malignant ovarian tumors: comparison with expert 
subjective assessment. Ultrasound Obstet Gynecol. 2021;57(1):155–63.

23.	 Grani G, Lamartina L, Cantisani V, Maranghi M, Lucia P, Durante C. Interob-
server agreement of various thyroid imaging reporting and data systems. 
Endocr Connect. 2018;7(1):1–7.

24.	 Hu S, Zhang H, Sun Z, Ge Y, Li J, Yu C, Deng Z, Dou W, Wang X. Preoperative 
assessment of extrathyroidal extension of papillary thyroid carcinomas by 
ultrasound and magnetic resonance imaging: a comparative study. Radiol 
Med. 2020;125(9):870–6.

25.	 Kamaya A, Tahvildari AM, Patel BN, Willmann JK, Jeffrey RB, Desser TS. Sono-
graphic Detection of Extracapsular extension in papillary thyroid Cancer. J 
Ultrasound Med. 2015;34(12):2225–30.

26.	 Fu Z, Zhang J, Lu Y, Wang S, Mo X, He Y, Wang C, Chen H. Clinical applications 
of superb microvascular imaging in the superficial tissues and Organs: a 
systematic review. Acad Radiol. 2021;28(5):694–703.

27.	 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, 
they are data. Radiology. 2016;278(2):563–77.

28.	 Yu P, Wu X, Li J, Mao N, Zhang H, Zheng G, Han X, Dong L, Che K, Wang Q, 
et al. Extrathyroidal extension prediction of papillary thyroid Cancer with 
computed tomography based Radiomics Nomogram: a Multicenter Study. 
Front Endocrinol (Lausanne). 2022;13:874396.

29.	 Xu XQ, Zhou Y, Su GY, Tao XW, Ge YQ, Si Y, Shen MP, Wu FY. Iodine maps from 
dual-energy CT to Predict Extrathyroidal extension and recurrence in papil-
lary thyroid Cancer based on a Radiomics Approach. AJNR Am J Neuroradiol. 
2022;43(5):748–55.

30.	 Chen B, Zhong L, Dong D, Zheng J, Fang M, Yu C, Dai Q, Zhang L, Tian J, Lu W, 
et al. Computed Tomography Radiomic Nomogram for Preoperative Predic-
tion of Extrathyroidal Extension in Papillary thyroid carcinoma. Front Oncol. 
2019;9:829.

31.	 Wei R, Wang H, Wang L, Hu W, Sun X, Dai Z, Zhu J, Li H, Ge Y, Song B. 
Radiomics based on multiparametric MRI for extrathyroidal extension feature 
prediction in papillary thyroid cancer. BMC Med Imaging. 2021;21(1):20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿Preoperative prediction of extrathyroidal extension: radiomics signature based on multimodal ultrasound to papillary thyroid carcinoma
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Patients
	﻿Clinical and laboratory information
	﻿Ultrasound examination
	﻿Image interpretation and analysis
	﻿Radiomics feature extraction
	﻿Intraobserver and interobserver agreement
	﻿Dimensionality reduction and radiomics feature selection
	﻿Development and validation of ETE-predictive models
	﻿Pathology
	﻿Statistical analysis

	﻿Results
	﻿Clinicopathological characteristics
	﻿Clinical and multimodal US characteristics
	﻿ETE prediction

	﻿Discussion
	﻿Conclusions
	﻿References


