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Abstract 

Background Registration of three-dimensional (3D) knee implant components to radiographic images provides 
the 3D position of the implants which aids to analyze the component alignment after total knee arthroplasty.

Methods We present an automatic 3D to two-dimensional (2D) registration using biplanar radiographic images 
based on a hybrid similarity measure integrating region and edge-based information. More precisely, this measure 
is herein defined as a weighted combination of an edge potential field-based similarity, which represents the rela-
tion between the external contours of the component projections and an edge potential field estimated on the two 
radiographic images, and an object specificity property, which is based on the distinction of the region-label 
inside and outside of the object.

Results The accuracy of our 3D/2D registration algorithm was assessed on a sample of 64 components (32 femoral 
components and 32 tibial components). In our tests, we obtained an average of the root mean square error (RMSE) 
of 0.18 mm, which is significantly lower than that of both single similarity methods, supporting our hypothesis of bet-
ter stability and accuracy with the proposed approach.

Conclusion Our method, which provides six accurate registration parameters (three rotations and three translations) 
without requiring any fiducial markers, makes it possible to perform the important analyses on the rotational align-
ment of the femoral and tibial components on a large number of cases. In addition, this method can be extended 
to register other implants or bones.

Keywords 3D/2D registration, X-ray images, Knee implant components, Orthopaedic implants

Background
Total knee arthroplasty (TKA) is an orthopaedic surgi-
cal procedure where the damaged articular surfaces of 
the knee joint are replaced with artificial implants. The 
implant consists of two metallic components that replace 
the bearing surfaces on the tibial plateau and femoral 

condyles, separated by a high molecular weight polyeth-
ylene insert. The component alignment after TKA has 
been proved as a significant factor in determining knee 
kinematics [1, 2], patellar tracking, and long-term clini-
cal outcome [3, 4]. This alignment is currently evalu-
ated in 2D X-ray images [5, 6]. However, position of the 
X-ray source, orientation of the subject’s pelvis and lower 
extremity may have an effect on measurements obtained 
from 2D radiographs. A 3D analyses of component posi-
tions after TKA will possibly not only to increase the 
accuracy of measurements, but also to lead to new works 
on TKA, or to improve implant designs which increase 
their life span because abnormal knee kinematics might 
cause premature failure of the implant [7, 8].
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A 3D lower extremity alignment assessment system 
has been created to evaluate 3D alignment by manually 
matching 3D bone and component projections with fron-
tal and oblique X-ray images of the entire lower extrem-
ity [4, 9]. But this system is time-consuming and has low 
accuracy of position estimation [10]. 3D alignment infor-
mation after TKA can also be obtained from magnetic 
resonance imaging (MRI) and computed tomography 
(CT) scan [11, 12] but is costly and involves significant 
radiation exposure in the case of CT scans. If serial fol-
low-up evaluations are needed, the cost and the issue of 
radiation will greatly increase after sequential MRI or 
CT scans. Another approach based on Roentgen stereo-
photogrammetry has been developed [13]. Roentgen ste-
reophotogrammetric analysis (RSA) is a highly accurate 
technique for 3D micromotion evaluation of orthopaedic 
implants but it is limited by the need to surgically insert 
numerous tantalum beads into the bones with a special 
instrument.

In our case, a 3D/2D registration based method seems 
to be an adequate and suitable solution. 3D/2D registra-
tion methods have been used in many medical fields, 
mostly in image-guided therapy, such as cancer diagno-
sis and therapy [14, 15], radiosurgery [16], interventional 
radiology [17], and a variety of therapies in surgery [18–
20]. In this context, these techniques align 3D implant 
components to 2D X-ray images to determine their 3D 
information (positions and orientations). These registra-
tion approaches can be classified into two groups based 
on the number of images used. Most of them use fluoro-
scopic images for 2D X-ray image.

The first group uses a single X-ray image and bipla-
nar X-ray images are used in the second group. Previ-
ous approaches used a direct image to image similarity 
measure [21] or contour-based 3D/2D registration [22, 
23] to estimate the pose of knee implant. Such tech-
nique can provide clinically sufficient accuracy only for 
five degrees of freedom (DOF) (three rotations and two 
translations parallel to image), as the DOF related to 
the translation perpendicular to image (depth position) 
is quite challenging. Yamazaki et  al. [22] improved the 
depth position estimation by optimizing it independently 
of the five other DOFs, using an approximate evaluation 
curve of depth position prepared after initial registra-
tion. Although depth position was improved, it wasn’t 
judged to be sufficiently accurate. The RMSE, average 
errors and standard deviation of depth position in this 
technique were ten times higher than those of two other 
translations. Another approach to increase the accuracy 
of depth position estimation was based on the fluoro-
scopic imaging property that the closer the object is to 
the source, the larger the image at the image intensifier is 
produced. Hossain et al. [24] determined the scale change 

due to the depth translation by using a calibration box to 
estimate the depth position. This approach gave accurate 
results but required an extra step to compute the scale 
change in the depth translation of the fluoroscopy unit. 
The second limitation is due to the high degree of shape 
symmetry of the components, particularly the tibial com-
ponent. A symmetrical pose might be obtained instead 
of the true one because the representation of both solu-
tions on the X-ray image is very similar (see Fig.  1). In 
[23], the authors try to solve this problem by simultane-
ously estimating two symmetrical poses, but the algo-
rithm still might not converge toward the true pose. By 
using biplanar 2D images, these methods can measure all 
six DOFs with a sufficient accuracy (see Fig. 1) and avoid 
the symmetrical issue. Kim et al. [25] optimized the nor-
malized correlation coefficient (NCC) between the dual 
X-ray images and two corresponding virtually projected 
component images to obtain six DOFs. George et  al. 
have shown that using biplanar images provides a highly 
accurate estimation of six DOFs [26]. However, biplanar 
fluoroscopic images at the same exact position are not 
easy to obtain due to the moving pictures and the com-
plexity of the system. In addition, they involve a potential 
risk of radiation to the patient. Radiography is an ade-
quate choice as it is the lowest in term of cost, complex-
ity, and risk of radiation compared to fluoroscopy, MRI, 
or CT scan.

In this paper, we propose a simple method to align the 
components of a 3D knee implant to biplanar oblique 
X-ray images. This method does not require fiducial 
markers and/or intraoperative X-ray image segmenta-
tion. It uses a hybrid (relying on both region and edge-
based information) similarity measure both combining 
the contour similarity between the external contours of 
the component projections and an edge potential field 
estimated on the two radiographic images [27] and a 
region label similarity measure term (which is based on 
the distinction of the region label inside and outside of 
the object [28]). Then a stochastic Exploration Selec-
tion (ES) algorithm is used to estimate the six DOFs of 
implant position.

Proposed approach
Image pre‑processing
Contour detection
Due to the metallic material, the implant components 
appear much whiter than the neighboring bones and soft 
tissues. A pre-processing process is performed on each 
image to enhance the visibility of the component con-
tours which, in fact, constitute the most important and 
reliable low-level visual cue in each radiographic image. 
First, a histogram equalization technique increases the 
global contrast. Second, a median filter and non-local 
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means denoising [29] algorithm are used to remove the 
noise from the images. The non-local means denoising 
method replaces a pixel with a weighted average of pixels 
having a similar neighborhood. More precisely, for each 
pixel, it first searches in a large search window (centered 
on the pixel to be denoised) for all the neighborhoods of 
pixels that most closely resemble (with a least squares 
(LSQ) similarity measure) the neighborhood of the pixel 
to be filtered. Then, a weighted average (based on the 
previous LSQ similarity measure) of all these central pix-
els (of all these neighborhoods) allows to estimate the 
denoised greyscale value of the pixel. Finally, the edges 
are detected by using a Canny edge filter [30] (see Fig. 2).

Label detection
The next part of the pre-processing step is the region-
label extraction. By using the Simple Linear Iterative 
Clustering (SLIC) algorithm [31], the input images are 
segmented into K labels (i.e. superpixels). This algorithm 
is actually simple and has a low computational cost. SLIC 
performs a clustering of pixels in a five-dimensional (5D) 
space based on their color similarity and proximity in the 
image. The 5D space is defined by the L, a, b values of the 
CIELAB color space and x,  y coordinates of the pixels. 
Due to the fact that the distance between two colors in 
the CIELAB space is different from the spatial distance in 
the xy plane, it is not possible to simply use the Euclidean 
distance. In order to cluster pixels in this 5D space, a new 
distance measure based on Euclidean distance, with nor-
malization of the spatial distances, was introduced:

(1)dLab =
√

(Lu − Lv)2 + (au − av)2 + (bu − bv)2

(2)dxy = (xu − xv)2 + (yu − yv)2

Fig. 1 Example of tibial component projection on two X-ray images. From top to bottom : symmetrical and true pose. a, b component external 
contours projected on 135-degree image and 45-degree image, and (c) 3D view of component projections

Fig. 2 Example of contour-based pre-processing step. From left 
to right, first row : input X-ray image, histogram equalization image 
enhancement, and second row : denoised image, pre-processed 
image
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where D is the sum of the Lab distance and the xyplane 
distance normalized by the grid interval S =

√

N
K  , N is 

the number of pixels in image and m is a variable to con-
trolling the compactness of a superpixel.

The algorithm begins by initializing K cluster cent-
ers. Each pixel in the image is associated with the near-
est cluster center whose search area overlaps this pixel. 
After all the pixels are associated, new centers are com-
puted as the average 5D vector of all the pixels belonging 
to the cluster. The assignment of each pixel to the nearest 
cluster center and the re-computation of the new clus-
ter center process are iteratively repeated until conver-
gence. At the end of this process, a few remaining pixels 
are enforced to connect to the largest neighboring cluster 
(see Fig. 3).

3D/2D registration procedure
Once the edges and the region-based labels are extracted 
from the image by our pre-processing step (see “Image 
pre-processing” section), a rigid registration is performed 
to align the component to biplanar images. To this end, 
we combine the object specificity property [28] and the 
similarity between the external contours of the compo-
nent projections and an edge potential field estimated on 
the two radiographic images.

Similarity measurement

Edge potential field‑based similarity An edge potential 
field-based similarity measure is defined in order to eval-
uate the concordance or the similarity degree between 
the external contours of the component projections on 
biplanar X-ray images and an edge potential field, esti-
mated from the previously detected edges of the two 
views. Concretely, this edge potential field attracts the 
component and aligns it to the edge from the input image 
by giving a similarity measure all the greater as the edges 

(3)D = dLab +
m

S
dxy of the projected contours of the component coincide well 

with the edges existing in the two views. The edge poten-
tial field � of each view is computed on the pre-processed 
image and is defined (as in [27]) as:

where (δx, δy) is the displacement to the nearest edge 
point in the image, and ρ is a smoothing factor which 
controls the degree of smoothness of the potential field. 
Finally, a directional component is added to produce a 
cost function measuring the correspondence between the 
projected contours of the component and the edges in 
the two views:

where α(x, y) is the angle between the tangent direction 
of the external contours at (x, y) and the tangent of the 
nearest edge, and n1, n2 are the number of pixels on exter-
nal contours of the component of each view (see Fig. 4).

Object specificity property Object specificity property is 
based on the following hypothesis : the labels inside and 
outside the object are distinct. This property is fulfilled 
(thus involving a minimal cost or error function) when-
ever the labels inside an object are specific to that object, 
i.e. the labels inside an object do not occur outside that 
object and vice versa. It is defined by:

where � = {l1, ..., lK } is the set of K labels in image, 
zs ∈ � , ph is the proportion of the pixels with label lh in 

(4)�(x, y) = exp
(

−ρ

√

δ2x + δ2y

)

(5)

E =−
1

n1

∑

n1

(�1(x, y)| cos(α1(x, y))|)

−
1

n2

∑

n2

(�2(x, y)| cos(α2(x, y))|)

(6)ϑ =

K
∑

h=1

ph|{s : zs = lh, s /∈ cint}|

Fig. 3 Example of label-based pre-processing step : input X-ray 
image (left) and pre-processed image (right)

Fig. 4 Directional component used in Eq. (5)
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the interior cint of component, and the last factor is the 
number of pixels belonging to label lh in the exterior of 
component. To reduce execution time, the last factor can 
be written as |{s : zs = lh}| − |{s : zs = lh, s ∈ cint}| , so 
|{s : zs = lh}| can be precomputed, only ph is computed 
dynamically. By normalizing this property, we obtain a 
cost (or error) function (to be minimized):

where N1,N2 are the number of pixels of component 
related to each view.

Six registration parameters optimization
Finally, our registration approach is formulated as the 
minimization of the following cost function:

where θ is a set of six registration parameters and β is a 
weighting factor between respectively the edge-based 
and region-based energy terms of our energy-based 
registration model. In order to minimize this complex 
non-convex cost function, we resort to ES algorithm, a 
stochastic and efficient optimization algorithm, already 
proposed in [32] and especially well-suited for this type 
of function to be optimized.

In fact, the ES algorithm belongs to the class of evo-
lutionary algorithms. This class of algorithm inspires 
the natural evolution to solve hard problems. Suppose 
that a problem is a natural environment which encom-
passes a population of individuals. Each individual 
represents a possible solution to the problem. A fitness 
function is used to measure the degree of adaptation 
of each individual (i.e. potential solution) to its envi-
ronment (i.e. problem). Like evolution in nature, these 
algorithms produce progressively better solution to the 
problem. This class of algorithm has been successfully 
used in medical imaging [33–35] or for detection and 
accurate localization of shapes in traditional images 
[28]. More formally, the ES algorithm can be described 
in two steps: exploration and selection steps (more 
details are given in [32]). The first step implicates a 
probabilistic operator to attempt a random search on 
a graph of each individual which is considered as a 
potential solution. And the second step creates inter-
action and selection between individuals. This pro-
cess is run until a stopping criterion has been met (see 
Algorithm 1).

(7)V =
ϑ1

N1
+

ϑ2

N2

(8)C(θ) = E(θ)+ βV (θ)

Algorithm 1 ES AlgorithmExperimental Results

To evaluate the accuracy of our 3D/2D registration algo-
rithm, ground truth models were created. A ground truth 
model is the rendering of the 3D implant components on 

Fig. 5 Example of biplanar ground truth images (top) and biplanar 
real radiographic images (bottom)
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a real X-ray image (see Fig.  5). The ground truth image 
retains the properties of the X-ray imaging such as vari-
ety of imaging noise originated from several components 
of the system (X-ray source, CCD camera, controller 
circuits, etc.), and the patient bone structures overlap 
with other bones or dense soft tissues (cartilage, menis-
cus, and fascia). A random transformation (rotation 

and translation) was applied to the ground truth 3D 
components. Then we compared the registered trans-
formed components with the ground truth components. 
This comparison was evaluated on 64 randomly trans-
formed components (32 femoral and 32 tibial com-
ponents). In this comparison, we also performed the 
registrations with different similarity measurements. 
Afterward, these results were analyzed by using a statisti-
cal Z-test1 between hybrid similarity and single similarity 
approaches where the null hypothesis was that there is no 
difference between two approaches, and a statistical sig-
nificance threshold set at p≤ 0.001. Then the p-value was 
calculated.

Table  1 shows the average RMSE2 for the random 
transformed components before registration. Table  2 
shows the average RMSE for each component and for 
all components by using potential field similarity, object 
specificity similarity and our hybrid similarity in our 

Table 1 Average of RMSE (mm) for the random transformed 
components before registration

Initial RMSE

Femoral components 12.055

Tibial components 11.481

All components 11.768

Table 2 Accuracy test (average of RMSE (mm) and p-value)

Hybrid Potential field Object specificity

Femoral components 0.177 0.525 0.269

Tibial components 0.183 2.658 0.28

All components 0.18 1.592 0.275

p-valueHybrid/... < 0.0001 < 0.0001

Table 3 Average errors ± standard deviations and p-values of six DOFs

Rotation (degrees) Translation (mm)

X Y Z X Y Z

Femoral components Hybrid 1.047 0.767 1.062 0.046 0.047 0.086

± 0.771 ± 0.591 ± 0.672 ± 0.03 ± 0.031 ± 0.043

Potential field 1.065 0.822 0.879 0.187 0.161 0.142

± 0.87 ± 0.68 ± 0.771 ± 0.146 ± 0.115 ± 0.127

Object specificity 1.02 0.869 0.977 0.075 0.065 0.101

± 0.767 ± 0.674 ± 0.722 ± 0.049 ± 0.052 ± 0.07

Tibial components Hybrid 0.727 0.713 0.878 0.085 0.075 0.046

± 0.567 ± 0.473 ± 0.578 ± 0.046 ± 0.039 ± 0.035

Potential field 2.635 4.854 3.241 0.829 0.777 0.561

± 1.9 ± 3.492 ± 1.765 ± 0.368 ± 0.67 ± 0.554

Object specificity 0.641 0.776 0.869 0.073 0.109 0.067

± 0.523 ± 0.595 ± 0.61 ± 0.062 ± 0.068 ± 0.05

All components Hybrid 0.887 0.74 0.97 0.065 0.061 0.066

± 0.695 ± 0.536 ± 0.634 ± 0.044 ± 0.038 ± 0.044

Potential field 1.85 2.838 2.06 0.508 0.469 0.351

± 1.673 ± 3.224 ± 1.803 ± 0.426 ± 0.571 ± 0.453

p-valueHybrid/PotentialField < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Object specificity 0.83 0.822 0.923 0.074 0.087 0.084

± 0.684 ± 0.637 ± 0.67 ± 0.056 ± 0.064 ± 0.063

p-valueHybrid/ObjectSpecificity 0.5093 0.2225 0.5552 0.0989 < 0.0001 0.0012

1 Z-score=µ2−µ1√
σ 2
1
/n

 , where µ2 is the average error of the single similarity 
approach, µ1 and σ 2

1
 are the average error and the variance of the hybrid 

similarity approach, and n is the number of components.

2 RMSE =

√

∑

n

i=1
dist

2
i

n
 , where disti is the distance between a vertex of the 

transformed component and its correspondence in the ground truth com-
ponent, and n is the number of vertices.
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accuracy test, as well as the comparison between the dif-
ferent approaches. Table 3 shows the average errors (AE) 
and the standard deviations (SD) by using single similari-
ties and hybrid similarity, and the comparison between 
each DOF. Figure 6 shows the RMSE of each transformed 
components. Finally Figs.  7 and 8 show an example of 
3D/2D registration on ground truth images and real radi-
ographic images, respectively.

In our experiments, we set the size of the popula-
tion to 20 and the number of iterations to 800. For 
the tibial components, the average RMSE were 2.66 

mm, 0.28 mm and 0.18 mm by using the edge poten-
tial field-based similarity measure, the object specificity 
similarity measure and our hybrid similarity measure, 
respectively. The average RMSE of the femoral compo-
nents in these three similarity measures were 0.53 mm, 
0.27 mm and 0.18 mm, respectively. Finally, for all com-
ponents, the average RMSE were 1.59 mm, 0.28 mm 
and 0.18 mm, respectively, and the p-values between 
hybrid similarity and single similarity approaches were 
inferior than 0.0001. A complete evaluation took, on 
average, approximately 245 seconds on a 64-bit desktop 

Fig. 6 RMSE of each transformed components
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PC (Ubuntu 16.04 LTS, 1.30GHz Core i7 CPU and a 
graphic card with Intel, 16GB RAM). Note that we 
didn’t use any libraries in programming in C++.

Discussion
Our tests showed that the potential field similar-
ity is sensitive. Its average RMSE of the tibial com-
ponents was a lot higher than those of the femoral 
components because there are more artifacts around 
the tibial component than the femoral component. 
Tibial component contours are attracted by the poten-
tial field of the tibial and fibular contours. The object 

specificity similarity was more stable and accurate 
than the potential field similarity. But the combina-
tion of both edge and region-based similarity measures 
gave the best result in terms of stability and accuracy, 
as shown by the statistically significant difference that 
was found between hybrid similarity and single similar-
ity approaches. The difference of their average RMSE of 
each component was less than 0.006 mm. The advan-
tage of label-based similarity is its stability. In addition, 
this term, based on the region process and a numeri-
cal integration is inherently robust to noise. However, 
this measure alone is not precise because the number 

Fig. 7 Example of 3D/2D registration result on ground truth images: a hybrid similarity, (b) potential field similarity, and (c) object specificity 
similarity, first row : 45-degree image and second row : 135-degree image

Fig. 8 Example of 3D/2D registration result on real radiographic images. a, c component external contours projected on 45-degree image 
and 135-degree image, and (b) 3D view
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of pixels in the border labels is fewer than the number 
of pixels inside the label. On the contrary, the edge-
based similarity measure is accurate while also being 
more sensitive to noise or other artifacts existing in 
the images. That’s why the combination of the stability 
and the robustness to noise of the label-based similar-
ity term with the accuracy of the edge-based similarity 
measure, provides a robust unsupervised registration 
method.

Compared to the NCC-based method in [25], the 
experiments showed that their results are very slightly 
better than that of our method (see Table 4). The differ-
ences were less than 0.04 mm. Note that the tests of the 
NCC-based method used fluoroscopic images of saw-
bones and didn’t involve the rotations.

Unlike other works that use fluoroscopic images, our 
method uses biplanar radiographic images which are 
the advantageous in terms of cost, complexity, and risk 
of radiation and provide six registration parameters 
with a sufficient accuracy without the need for addi-
tional fiducial markers. Our method is also robust to 
image noise and occlusions, as demonstrated by the AE 
and the SD of each parameter in our tests. The AE of 
translation parameters were around 0.06 mm and their 
SD were less than 0.05 mm. For the rotation parame-
ters, the AE were less than 1 degree, and the SD were 
around 0.6 degree. In addition, this method can be 

extended to register other implants or bones to bipla-
nar oblique or frontal/lateral X-ray images (see Figs. 9 
and 10).

The proposed method, based on the ES optimizer, is 
slightly time-consuming but it is easily parallelizable and 
thus remains especially well-suited for the next-genera-
tion GPU or massively parallel computers and multi-core 
processors.

Based on the result of our TKA component registra-
tion, the rotational alignment of the femoral and tibial 
components can be studied by measuring and analyzing 
both component position and orientation. For example, 
the external rotation angles of the implants can be meas-
ured. These rotations are important in patello-femoral 
tracking because inappropriate rotation of the femoral 
component may cause flexion imbalance and patellofem-
oral problems [25]. The combined rotational alignment 
change after TKA can also be measured and the different 
influence of symmetric and asymmetric tibial component 
designs on the combined rotational alignment can be 
compared [36]. Our accurate registration method makes 
it possible to perform these important analyses on a large 
number of cases.

Conclusion
We have presented an unsupervised registration of 3D 
knee implant components to biplanar X-ray images. This 
method uses a hybrid similarity measure by combining 
the object specificity property and the similarity between 
the external contours of the component projections and 
an edge potential field (related to the edges) estimated on 
the two radiographic images. A stochastic optimizer (ES) 
algorithm is then used to efficiently estimate the six DOFs 
of implant position. Our method can avoid symmetrical 

Table 4 Results (average of RMSE (mm)) of our method versus 
the NCC-based method in [25]

Our method NCC‑
based 
method

Femoral components 0.177 0.141

Tibial components 0.183 0.15

All components 0.18 0.146

Fig. 9 Example of our registration for femoral and tibial components 
on real radiographic images : lateral image (left) and frontal image 
(right)

Fig. 10 Example of our registration for the distal femur on real 
radiographic images : 45-degree image (left) and 135-degree image 
(right)
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solution and provides six registration parameters with a 
good accuracy. Moreover, it does not require any fiducial 
markers. The proposed 3D/2D registration approach has 
the potential to increase the effectiveness of computer-
aided clinical analysis, namely relative angle analysis 
which is important to predict not only the function but 
also the stability and survival of TKA implants [37].
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