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Abstract 

Purpose Segmentation of liver vessels from CT images is indispensable prior to surgical planning and aroused 
a broad range of interest in the medical image analysis community. Due to the complex structure and low‑contrast 
background, automatic liver vessel segmentation remains particularly challenging. Most of the related researches 
adopt FCN, U‑net, and V‑net variants as a backbone. However, these methods mainly focus on capturing multi‑scale 
local features which may produce misclassified voxels due to the convolutional operator’s limited locality reception 
field.

Methods We propose a robust end‑to‑end vessel segmentation network called Inductive BIased Multi‑Head Atten‑
tion Vessel Net(IBIMHAV‑Net) by expanding swin transformer to 3D and employing an effective combination of con‑
volution and self‑attention. In practice, we introduce voxel‑wise embedding rather than patch‑wise embedding 
to locate precise liver vessel voxels and adopt multi‑scale convolutional operators to gain local spatial information. 

On the other hand, we propose the inductive biased multi‑head self‑attention which learns inductively biased relative 
positional embedding from initialized absolute position embedding. Based on this, we can gain more reliable queries 
and key matrices.

Results We conducted experiments on the 3DIRCADb dataset. The average dice and sensitivity of the four tested 
cases were 74.8% and 77.5% , which exceed the results of existing deep learning methods and improved graph cuts 
method. The Branches Detected(BD)/Tree‑length Detected(TD) indexes also proved the global/local feature capture 
ability better than other methods.

Conclusion The proposed model IBIMHAV‑Net provides an automatic, accurate 3D liver vessel segmentation 
with an interleaved architecture that better utilizes both global and local spatial features in CT volumes. It can be 
further extended for other clinical data.

Keywords Segmentation, 3D swin transformer, Multi‑head self‑attention

Introduction
Background
CT liver vessel segmentation is essential for 3D visu-
alization, path planning , and guidance in interventional 
liver surgery [28, 29]. However, the vessel and liver back-
grounds show similar intensity values on CT images 
due to their similarity in the enhancement character-
istics. They are curvy, twist, occlude one another, and 
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sometimes are seriously distorted by liver tumors. Due to 
the intensity similarity and complex structure of the liver 
vessel, accurate liver vessel segmentation is still challeng-
ing. Nowadays, accurate liver vessel segmentation heavily 
relies on doctors’ manual segmentation, which is hugely 
time-consuming and subject to the experience and skills 
of the experts [5].

Therefore, automatic vessel segmentation has triggered 
a broad discussion in the community. Even though some 
deep learning methods achieved big success on organ 
segmentation tasks, they cannot perform well in vessel 
segmentation due to the considerable variations of vessel 
structure and unbalance between backgrounds and ves-
sels. Most recent work are designed based on FCN [20], 
U-net [26], and V-net’s [22] variants. They heavily rely 
on convolution layers, which integrate multi-scale local 
information to get passable results. Yet convolution’s lim-
ited reception field does not have long dependencies and 
enough global features, it can hardly accurately distin-
guish variant vessel margins and segment minor vessels. 
Therefore, developing a liver vessel segmentation method 
that adds long dependencies and utilizes global spatial 
features is necessary.

Related work
Current liver vessel segmentation methods can be 
roughly classified into traditional region-based methods, 
edge-based segmentation methods and deep learning-
based methods. As region-based methods do not per-
form well in vessel segmentation, we review most related 
work in the latter two categories. Since we use the trans-
former model as our backbone, we also review the newest 
work related to the transformer model. A more compre-
hensive literature survey can refer to [7].

Traditional methods
Edge-based methods can be further classified into 

image filtering and enhancement algorithms, tracking-
based algorithms [23]. Filter and enhancement algo-
rithms extract the volume with a common process called 
filtering to reduce the noise, then enhance the vessels 
by applying image gradients or multi-scale high-order 
deviations, particularly the second derivatives of the 
angiographic images to extract high-frequency informa-
tion [16, 21]. Besides, Pamulapati et  al. [24] introduced 
a vessel segmentation method based on the medial axis 
enhancement filter. Tracking-based algorithms focus on 
the predefined vessel models and track the minimum cost 
path. Friman et al. [9] proposed to track many hypotheti-
cal vessel trajectories at the same time, which improved 
the results in low contrast conditions. Cetin et  al. [3], 
Cetin and Unal [2] presented the tubular structure seg-
mentation method, which utilized a second-order tensor 
from directional intensity measurement and employed 

a higher-order tensor based on cylindrical flux-based to 
construct the vascular structure.

Deep learning-based methods
Most deep learning-based liver vessel segmenta-

tion work rely on CNN-based architecture, specifically, 
U-net [26] and its variants, as well as little attempts by 
FCN [20] and V-net [22]. In chronological order, early-
stage vessel segmentation methods like retinal vessel 
segmentation are based on 2D methods. Later, with the 
segmentation targets changed to 3D images, 3D meth-
ods became mainstream. Fu et al. [10], Li et al. [18] have 
proposed the segmentation method for the retinal vessel 
from 2D images. These methods can handle small objects 
in 2D slices, however, the vessel segmentation on the 
liver, brain, or lung are volume tasks. Most 2D methods 
cannot transfer to 3D images directly due to space con-
tinuous along the Z-axis, which omits essential infor-
mation. Therefore, the current state of art solutions for 
liver vessel segmentation focus on 2D multi-path(2.5d) 
and 3D methods. Kitrungrotsakul et  al. [15] specifically 
proposed three DenseNets with the shared kernel that fit 
for resampling three planes(sagittal, coronal and trans-
verse planes) patches from IRCADb dataset called 2.5D 
method. Çiçek et al. [6] extend UNet from 2D image to 
volume, which fused multi-scale 3D convolution feature 
called 3D-UNet. In order to employ the 3D representa-
tion of liver vessel features, Huang et  al. [12] proposed 
the variant of 3D-Unet fit the problem worked well, and 
their evaluation of IRCADb incomplete annotations fur-
ther improved the result. Yu et al. [33] added the residual 
module into the 3D-UNet that provided more residual 
features. Xu et al. [31] employed a 3D-FCN frame for this 
task. However, a reasonably supervised deep network 
model has to be trained on a large dataset with high-
quality labels, and the current datasets cause the noise 
labels to hurt the model performance. Lately, Yan et  al. 
[32] proposed a way to fuse self-attention into 3D U-net 
that improved segmentation details as a great attempt.

Vision transformers and 2D swin transformer
The self-attention mechanism allows transformers 

to dynamically extract the important features of word 
sequences and learn their long-range dependencies. This 
notion has recently been extended to computer vision 
by defining the vision transformer [8], which aims at 
the image recognition task. By taking 2D image patches 
with positional embeddings as input and pre-trained on 
large classical datasets, ViT achieved comparable results 
with the CNN-based methods. In medical image tasks, 
more recent methods like [4, 34] enjoyed the benefit of 
both CNNs and transformers. Efforts of Chen et  al. [4] 
firstly utilize CNNs to extract low-level local features 
and transformers to catch global intersections. Currently, 
based on the shifted windows mechanism, Liu et al. [19] 
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proposed Swin transformer that can learn hierarchical 
object concepts at different scales by applying appropri-
ate downsampling to feature maps that achieved state-of-
art semantic segmentation. Inspired by swin-transformer, 
Swin-Unet [1] firstly employed hierarchical transformer 
blocks with integrated encoder and decoder to build 
U-shape architecture. This work improved transUnet’s 
result on medical multi-organ segmentation tasks. For 
3D segmentation, Karimi et  al. [14] tentatively replaced 
the 3D convolutional operators with transformers as the 
backbone to build the model. They first split the local 
volume block into 3D patches and embedded them into 
a 1D sequence through ViT’s self-attention design. Com-
pared to these methods, our IBIMHAV-Net inherits the 
advantages of convolution in encoding precise spatial 
information and using inductive biased self-attention in 
hierarchical representation that helps to overcome con-
nectivity and variance of liver vessel segmentation.

Proposed method
Motivated by existing 2D swin-transformer [1, 19] and 
past vision transformer attempts [4, 8, 11], we propose a 
transformer-based architecture for volumetric liver ves-
sel segmentation which better utilize global features and 
long dependencies. The main advantages and contribu-
tions of the proposed method are as follows:

1. We propose a network architecture by expand-
ing swin transformer to 3D and combining convolution 
and self-attention to play their strengths. For self-atten-
tion, the global spatial information has been encoded by 
embedding, and long dependencies have been entangled 
by our designed 3D transformer block. For convolution, 
multi-scale convolutions in the local feature path and 
downsampling/upsampling layers help to encode pre-
cise local information and capture hierarchical resolution 
features.

2. We introduce the voxel-wise rather than patch-wise 
embedding as the initial transformer input to fully uti-
lize volumetric information, which transforms volumet-
ric prediction to the sequence-to-sequence prediction in 
hierarchical resolution features.

3. We propose the Inductive Biased multi-head 
attention(IB-MSA) which changes the positional embed-
ding way that learns biased positional embedding with 
initialization of absolute 1-dimensional embedding in the 
transformer blocks. Thus dramatically improving liver 
vessel segmentation results.

Methodology
The proposed method starts with dataset preprocess-
ing. Then we introduce the architecture of our frame-
work, namely Inductive BIased Multi-Head Attention 
Vessel Net(IBIMHAV-Net), including the details of our 

3D transformer design and inductive biased multi-head 
attention mechanism. Finally, we describe post-process-
ing which reduces some discrete inaccurate results.

Preprocessing
Preprocessing plays an essential role and affects the seg-
mentation results significantly [12, 13]. For example, 
applying preprocessing to lower the background noises 
and augment image contrast. Therefore, we arrange 
preprocessing as 4 steps: (1)3D IRCADb provides 20 
groups of CT images, liver vessel masks, and liver masks. 
We crop CT images and liver vessel masks to the liver 
region boundary as the ROI. Then adjust to the size to 
256x256x192 to unify the model input. (2)We truncate 
the intensity of all voxels in the volumes to the range 
of [-50, 250] HU to reduce the irrelevant details and 
increase image contrast. (3)In order to retain enough ves-
sels’ continuity features, we add a vessel mask outside the 
liver as a supplement of vessel information(Eg. Fig.  1). 
(4)Images are normalized to zero mean and unit vari-
ance. Because most liver vessels are quite small, we keep 
images with their original resolution can prevent artifact 
errors caused by resampling Fig. 2.

Overview of the architecture
The overall proposed architecture is shown in Fig.  3 
Left, which illustrates its U-shape form which includes 
encoder and decoder. We introduce the U-shape end-to-
end Transformer network IBIMHAV-Net, which employ 
pixel-wise embedding way for transformers. Our model’s 
long-range contextual interactions and precise spatial 
locate dependencies was provided by inductive biased 
multi-head self attention(IB-MSA) modules. The U-shape 
structure combined with feature extract path and three 
skip connections between multi-scale feature pyramids 
of encoder and decoder in a symmetrical manner. It helps 
to keep fine-grained details between transformer blocks. 
The feature extraction block and interleaved convolution 
up/downsampling layers gain accurate local spatial infor-
mation and abundant local features.

Encoder
Past vision transformer work like [4, 8, 19] have complete 
encoder part, yet they did not design a 3D encoder. Our 
architecture built up a path that includes 3D embedding 
block, downsampling layers combined with our trans-
former block design. In the encoder, the input is a 3D vol-
ume patch randomly cropped from full volume. Then we 
represent each 3D patch as HxWxD where H,W,D denote 
the height, width, and depth of each input patch, respec-
tively. Thus, the 3D convolution embedding layer obtains 
tokens, with each patch/token consisting of a 128-dimen-
sional feature. A linear embedding layer is then applied 
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to project the features of each token to a 1D sequence 
length denoted by C. The outputs of the patch embed-
ding block are connected to five 3D swin transformer 
blocks interspersed with down-sampling blocks.

The patch embedding block The linear embedding 
part is essential in the original swin transformer design 
[19], the Swin-T version first splits the one channel ves-
sel patch into non-overlapping patches size of into 1-D 
sequence, then followed with big convolutional kernels in 
the linear embedding layer to extract small patches fea-
tures. However, our task needs more precise spatial infor-
mation with larger input volume. Our embedding layer 
first tokenized the vessel volume patch X ∈ RH×W×D 
into high dimensional tensor. This high-dimensional ten-
sor represents as T ∈ R

H
4
×W

4
×D

4
×C , where W

4
× D

4
× C is 

the patch tokens and C represents the length of sequence 
which is 128(discussed in 3.3). Due to the variant and 
complex vessel structure, we design the successive 
large kernel convolutional combinations for pixel-wise 
level sequence encoding instead patch-size encoding. 
Moreover, this setting reduce computational complex-
ity with same range of receptive field to accommodate 

long sequence. After every convolutional layer followed 
one GELU and one layerNorm layer to fully embedding 
as 1-D sequence. The kernels and strides are set as Fig. 3 
Right since the input volumes were nearly squares to fit 
the model.

Down-sampling layer The swin transformer blocks 
used neighboring concatenate operations in past 2D 
tasks [1, 19]. However, we find that easy convolution with 
small strides worked better. It also needs a GELU layer 
and a Layer Norm to keep the normalization of process-
ing measures to refine the feature map mapped to [0, 1] 
to keep the sensitivity of the model. It works better than 
Batch Normalization (BN) and ReLU activation function 
in our architecture.

3D swin transformer block with Inductive Biased MSA 
Module
After passing patch embedding block’s, the high dimen-
sional sequence tensor T  is put into transformer blocks. 
Compare to original Swin transformer, our method 
conduct self-attention in a hierarchical path and com-
pute self-attention within 3D patches volume with bias 

Fig. 1 supplement of vessel mask used in the training set

Fig. 2 Effect of our pre‑processing, (A) is the original, (B) represents before preprocessing, (C) represents the CT after pre‑processing
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focusing on block edge segmentation (i.e. IB-MSA, bias 
positional multi-head self-attention) instead 2D shift 
window.

3D transformer block In the tail of embedding block, 
the sequence is transformed to the high-dimensional ten-
sor in swin transformer blocks. The main idea is to fully 
mix the captured long-term dependencies with hier-
archical object concepts at various scales by following 
down-sampling convolution and global spatial informa-
tion from the beginning embedding block.

In order to represent the workflow in our design, 
let the high-dimensional tensor T ∈ RL×C reshape as 
T̂ ∈ R

N×P×C by passing through IB-MSA, where N is 
the number of tiny local volumes, P = SH × SW × SD 
denotes the number of patch tokens in each volume. 

{SH , SW , SD} stand for the size of tiny local volume. To fit 
to our task’s various shape of vessel CT scans, this set-
ting could cover all patch tokens of the last transformer 
block in the encoder. Because of different sampling qual-
ity between datasets, it may not be reasonable to brute-
force pad the data in order to satisfy fixed {SH , SW , SD} . 
Therefore, the cropped patch X needs to be adaptively 
adjusted in order to fit the size of local volumes. And we 
set {SH , SW , SD} on IRCADb to {4, 4, 4}.

Following the baseline [1], we present two succes-
sive transformer blocks. The main difference is that our 
computational unit is built for 3D volumes rather than 
2D windows. Based on above volume partitioning way, 
the continuous swin transformer can be formulated as 
follows:

Fig. 3 Left: Architecture of IBIMHAV‑Net. Right: Compose of conv embedding, feature extraction block, up‑sampling layers and down‑sampling 
layers
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Here, l expresses the layer number, MLP represents 
multi-layer perceptron. IB-MSA is our bias multi-head 
attention and it has the 3D shifted version.

The 3D shifted window partitioning For an efficient 
self-attention model, we propose the method within local 
3D windows. The windows are arranged to evenly parti-
tion the image in a non-overlapping style(Fig. 4 middle). 
Supposing each window contains MxMxM patches, we 
extend the naive 2D MSA(e.g. swin transformer) to 3D. 
The computational complexity of IB-MSA on a volume of 
h*w*d patches is:

where the h, w, and d are fixed. However, the global 
self-attention computation is unaffordable in 3D succes-
sive transformer blocks. And we designed both scalable 
windows and tiny local self-attention to reduce a huge 
amount of computing resources. Firstly, we schedule 
local tiny patches {SH , SW , SD} to introduce more interac-
tions between local volumes and volume

{

h, s, d
}

.

Besides, the shifted window layers reduced the compu-
tational complexity by the efficient batch computation 
shown in Fig. 4. In the next layer l+1, the shifted IB-MSA 
reduces computational complexity by using half com-
pressed tiny volume SH

2
,
SW
2
,
SD
2

 that choose M=2 and 
mask out the padded values when computing attention. 

(1)

T̂
l = IB−MSA

(

LN
(

T
l−1

))

+ T
l−1

T
l = MLP

(

LN
(

T̂
l
))

+ T̂
l

T̂
l+1 = Shifted IB−MSA

(

LN
(

T
l
))

+ T
l

T
l+1 = MLP

(

LN
(

T̂
l+1

))

+ T̂
l+1

(2)�(MSA) = 4hwdC
2 + 2(hwd)2C

(3)�(IB−MSA) = 4hwdC
2 + 2SHSWSDhwdC

The self-attention computation in the new windows 
crosses the boundaries of the previous windows in layer l, 
providing connections among them shown in Fig.  4 
right.IB-MSA and relative position bias matrix Some 
recent researches [1, 8, 19] have shown that there are a 
lot advantages in bias to self-attention computation. 
Here, we intuitively change the biased focus on the edge 
of segmentation volume by introducing 3D relative posi-
tion bias B ∈ R

M2×M2×M2 for each head as:

where Q,K ,V ∈ R
P×d are the query, key and value matri-

ces; d is the dimension of query and key features, and 
P is the number of patch tokens in a 3D window. Since 
the relative position along each axis lies in the range of 
[−2M + 1, 2M − 1] , the positional mask have a big value 
other than B item. we parameterize a smaller-sized bias 
matrix B̂ ∈ R

(2M−1)×(2M−1)×(2M−1) , and values in B are 
taken from B̂.

Unlike standard self-attention module totally discards 
the position information and is perturbation equivariant 
which cannot model the image content in high structure, 
e.g. UNETR [11]. Swin transformer and swin-Unet [1, 19] 
use relative bias position embedding. However, original 
relative bias may lose some inductive bias such as locality 
and translation equivariance that has been mentioned in 
swin-transformer ablations. Moreover, the spatial invari-
ance is crucial for our transformer interleaved with con-
volution design and small medical image datasets. This 
type of position embeddings carry no information at 
patches and all spatial relations between patches need be 
learned from zero [8].

To overcome the above problem, we first initialize the 
pair-wise attention computing logit with 3D absolute rel-
ative bias in patch embedding and the first 3D swin-
transformer block. In addition, we The pair-wise 

(4)
Attention (Q,K ,V ) = SoftMax

(

QKT /
√
d + B

)

V

Fig. 4 An illustrated example of 3D shifted windows. The input size H′ ×W
′ × D

′ is 8× 8× 8 , and the 3D window size M×M×M is 4× 4× 4 . As 
layer l adopts regular window partitioning, the number of windows in layer l is 2× 2× 2 = 8. For layer l + 1 , as the windows are shifted 
by 

(

SH
2
,
SW
2
,
SD
2

)

= (2, 2, 2) tokens, the number of windows becomes 3× 3× 3 = 27 . Though the number of windows is increased, the efficient 

batch computation in [19] for the shifted configuration can be followed, such that the final number of windows for computation is still 8
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attention logit before softmax using relative position 
encoding between pixel i =

(

ix, iy, iz
)

 and pixel 
j =

(

jx, jy, jz
)

 . where qi is the query vector of pixel i, ki is 
the key vector for pixel j, rWjx−ix

 , rHjy−iy
 rDjz−iz

and are learna-
ble embeddings for relative width jx − ix and relative 
height and depth. Therefore, the relative position in 
pixel-wise attention computing and inductive bias can 
both be guaranteed in IB-MSA logit computing in Eq. 5 
and Fig. 5.

Our specific setting improved liver vessel edge segmen-
tation in Fig. 6 and we observe slight improvement with 
this bias complement with absolute position. The com-
parison of other methods is shown in Table 1.

Decoder
In the decoder part, the transformer blocks are similar to 
the encoder in another direction. Moreover, the up-sam-
pling blocks use deconvolution operator with small ker-
nels and strides which can recover low-level features to 
high-resolution details quickly if it is combined with skip 
connections. In the final stage, the transformer result is 
combined with the local extraction block to output the 
end-to-end result.

Weighted Loss Function
Liver vessels only exist in a small region of the liver, 
and unbalanced foreground(hepatic vessels) and 

(5)li,j =
q⊤i√
d

(

kj + rWjx−ix
+ rHjy−iy

+ rjz − iDz

)

background classes(liver) often cause predictive devia-
tion and bias the classification to the background with 
more voxels. Traditional dice coefficient calculated as:

where P is the predicted labels, G is the labels of the 
ground truth. It is hard to achieve desired segmentation 
results with vessels edge and small branches. The similar-
ity matrix of dice coefficient with special penalty weight 
parameter as WD(P,G,β)(weighted loss) has been pro-
posed to design loss function [12] as follows:

where β determined the weight of the number of cor-
rectly classified foreground voxels and misclassified 
voxels.

Since our task has 2 class labels, we can take fore-
ground and background as the first and second classes, 
respectively. Then Eq. (5) becomes:

Dice(P,G) = |P ∩ G|
|P ∩ G| + 0.5(|P − G| + |G − P|)

(6)

WD(P,G,β) = |P ∩ G|
|P ∩ G| + 0.5β(|P − G| + |G − P|)

Fig. 5 Here is the detail of mechanism in our inductive biased attention computing in swin transformer blocks

Table 1 Precision/time trade‑off

Method Memory(MB) Method Memory(MB)

FCN 15.53 UNETR 92.58

V‑NET 17.29 ResUnet 36.65

Huang et al. 19.36 Ours 103.5
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where p0i and p1i are the probabilities that voxel i belongs 
to the foreground (liver vessel) and the background 
(liver), respectively in the softmax layer output result. g0i 
and g1i are the labels of voxel i in the annotated data for 
liver vessels or liver with values 0 or 1, respectively.

From Huang et  al. [12]’s studies, the gradient of simi-
larity in Eqs. (6) to 2 variant shows the weight of the 
liver(background) and liver vessel(foreground) do not 
need a pre-trained method unlike Chen et al. [4], which 
provided the initial training weights from other models 
or datasets. Moreover, the proposed algorithms adjust 
the penalty for misclassified voxels by selecting β as 6 can 
both optimize the dice value and sensitivity in our model.

Post‑processing
Due to limitations of the GPU’s memory, we cannot put 
full-size volumes into our model. It can cause residual 
errors in the patch edges. Therefore, connected com-
ponent analysis is performed on the vessels after being 
trained by IBIMHAV-Net. To remove some noises caused 
by classification, regions with small partitions(less than 
180 m m3)are removed.

Experiments and results
Data augmentation and experiment material
3Dircadb-01 dataset is currently available with liver and 
liver vessel contours suited to our training and evalua-
tion of liver vessel segmentation algorithms. The dataset 
includes 20 contrast-enhanced CT volumes with various 
image resolutions, vessel structures, intensity distribu-
tions, and contrast between liver and liver vessels. To 
keep the accuracy, transform invariance, and robustness 
of our network, the training set and test set should have 
clear, abundant hepatic vessel structures with different 
intensity ranges, and contrast with the background and 
vessels. The liver vessel appearances should be similar 
in both training and testing datasets, so we deliver some 
experiments. By observing the voxel numbers and sta-
tistical data, The 3DIRCADb dataset includes 6 simple 
samples and 14 challenging samples. Finally, we choose 
16 volumes and 4 volumes as training/test data separately 
(both include simple and challenging samples) based on 
hand selection in each experiment. For the 16 training 
sets, we have to apply some image amplification meth-
ods for increasing our training set. For a sample in the 
training case, the fixed rotation set for 60◦ , 270◦ then add 
random translation from -25 to +25 pixels to get three 
times data as an augmentation strategy. In both the train-
ing and testing datasets, the original pixel spacing varied 

(7)

WD(β) =
∑N

i=1 p0ig0i
∑N

i=1 p0ig0i + 0.5β

(

∑N
i=1 p0ig1i +

∑N
i=1 p1ig0i

)

from 0.56mm to 0.87mm, slice thickness varies from 
1.25mm to 2mm and slicer varied from 113 to 225.

Our proposed method was implemented using Python 
3.8 and PyTorch 1.9.0. All experiments were conducted 
on an Nvidia A6000 GPU with 48GB memories. Input 
image size after preprocessing is set as 256x256x192. The 
crop size based on our network is 128x128x96 with over-
lapping stride 24 in the test result. The batch size is set 
to 2, and the learning rate was set as 3e-5, as far as the 
initial work tested [19], swin transformer can hardly con-
verge in the first 20-30 epochs. In the training process, 
we set the training epoch as 750. The default optimizer 
with momentum 0.9 and weight decay 2e-3 was used for 
model backpropagation. We employ precision, dice loss, 
and sensitivity three indexes to evaluate the results.

Experiments
In this subsection, we compare the proposed model with 
other state-of-art methods on 3DIRCAD dataset work. 
CNN-based methods including UNet [6], VNet [22], 
Huang et  al. [12] which is U-net’s optimized variant, 
and also ResUnet [33]. Besides, the improved graph cuts 
method proposed by sangsefidi et al. which is a practical 
new improvement for the traditional method has good 
performance in liver vessel segmentation [27]. In addi-
tion, there are some methods applied to data refinement 
[12] or specific data augmentation strategies like filters 
[15], note that our work does not compare to these tradi-
tional methods.

Quantitative Results To compare with other state-of-
art methods in an equitable way, we only focus on origi-
nal volume 3DIRCADb dataset. Our results are reported 
in Table 2. From Table 2, we can see the numerical results 
on two types of indexes. In order to quantize the global/
local feature segmentation. we introduce two indexes 
which are based on centerline measurements [17] and 
frequently appeared in airway segmentation tasks [25]. 
The local/global segmentation can be measured by 
Branches Detected(BD)/Tree-length Detected(TD) on 
swin transformer’s shifted window and IB-MSA mecha-
nism. Our model adopts larger input to catch global 
relationships and to obtain better segmentation results. 
Indeed, the CNN-based methods performed well on BD 
prediction which satisfies our expectations. Unetr and 
our model have the ability to capture global and local fea-
tures so they get better TD results. However, these two 
indexes have higher variance than we initially expected 
which can only be measured by average without interval.

For the other three indexes which measure voxel 
results, our method exceeds other methods signifi-
cantly in Dice and precision. The weighted loss function 
balanced segmented classes which avoid single voxel 
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obtaining multiple labels, which leads to the larger sensi-
tive index and prevents the over-segmentation.

Moreover, in order to achieve higher precision, our 
structure costs much more time and storage than the 
pure CNN-based methods. Here is a comparison of dif-
ferent models for this trade-off.

Visualization Results
Figure  6 shows the visualization of our experiment 

in one complex sample. After 3D morphological close 
operation and post-processing, the surface of the vessels 
becomes smoother and some noise blocks are removed. 
To compare the results visually, we utilize the software 
3D slicer’s toolbox and the zoomed-in patches. The full 
results are shown below in Fig. 6. This sample is long and 
curvy, the segmentation results of FCN and 3D U-Net,3D 
v-Net on hepatic veins are not so well, in which some 
regions are over-segmented or some minor vessels are 
missed. The reason could be Convolutional operators 
limit the capability of learning long-range dependencies. 
In addition, the third row’s Huang et al. and ResUnet did 
fairly well in the whole vessel structure, yet have many 
errors in the vessel edge which can be seen in the zoom-
in views. We can see the middle position here actually 
appear a fracture, it may cause by wrong labeling and 
it is not a small vessel so it cannot be removed by pre-
processing. In our model, our design’s global feature may 
recognize it as cracked. Moreover, the small vessel’s seg-
mentation at the bottom of the blue box has better com-
pleteness than UNETR. By utilizing the inductive biased 
multi-head attention and transformer, our methods on 
vessels performed relatively closer to the ground truth in 
vessel edges and overall structure.

To validate the generalization of our method, we con-
duct 4 test cases with hard cases and simple cases to 
show the result in Table 2. The dice coefficient in these 4 
cases is 84.3, 71.6, 75.9, 67.4 respectively in Fig. 7. We can 
see In complex cases (c) and (d), the green arrows point 
to some misclassification voxels. They are caused by 
missing labels in the ground truth. The red arrow points 

to the discontinuous vessel net. It is caused by a tumor in 
that position.

Ablation studies
To explore the influence of our design on the model per-
formance, we conducted a series of ablation studies on 
3Dircadb dataset.

Influences of inductive biased positional embed-
ding and IB-MSA Table 3 shows the comparison of dif-
ferent position embedding approaches for our network. 
IBIMHAV-Net with general position relative bias yields 
2.5% accuracy improvement compared to absolute posi-
tion embedding, indicating the effectiveness of relative 
position bias. In addition, our proposed biased attention 
yields a result better than other positional embedding 
approaches.

Influences of more skip and transformer 
blocks(bottleneck)

In our network architecture, the skip connections are 
connected after the down-sampling block and before 
the up-sampling block to unify the feature dimensions. 
Because the transformer has a different convergence rule 
compared to CNNs, which needs more discussion [1, 30]. 
In our model, there are only two successive Swin-trans-
former blocks are used to learn deep feature represen-
tation. Our experiment set 6, 10, 14, 18, 22 transformer 
blocks and corresponding upsampling/downsampling 
layers to study the convergence pattern of this model, 
which are shown in Fig. 8. It is worth noting that when 
the number of transformer blocks is 6, the smaller and 
larger up/down-sampling kernel blocks cannot lead to 
convergence.

Effect of downsampling strategies Patch merging 
is the down-sampling strategy used in the original swin 
transformer and the main idea is to concatenate the 
neighboring patches [1, 19]. We expand it to 3D by con-
catenating 2x2x2 neighboring patches first. Then apply-
ing a linear layer on the features can downsampling 
to 2x the original dimension. We choose small kernel 

Table 2 Qualitative comparison of segmentation performance by three evaluation metrics on 3DIRCADb

Method BD(%) TD(% Precision(%) Sensitive(%) Dice(%))

FCN 76.1 47.6 80.6±15.3 73.8±14.2 63.1±15.5

VNet [22] 78.6 60.4 87.6±11.8 75.8±8.4 65.5±15.4

UNETR [11] 79.7 74.1 86.1±16.7 70.3±6.6 66.3±11.6

Huang et al. [12] 80.1 66.1 97.1±0.8 74.3±10.6 67.5±6.9

ResUnet [33] 83.5 69.6 92.6±1.4 71.9±7.2 70.6±8.5

Graph cuts (Sangse et al.) [27] None None 74.1±12 None None

IBIMHAV‑Net 85.8 73.6 98.8±0.3 78.1±2.4 74.8±9.5
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Fig. 6 Visualization and comparison of proposed deep learning method and state‑of‑art machine learning‑based methods using raw volume 
as input with post‑processing. Three row indicates different genres of methods. First row: (a) ground truth result which is most similar to our result. 
Second row: (b), (c), (d) the traditional 3d medical image methods. Third row:(e), (f ), (g) the modern deep learning methods in the journals and our 
method
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Fig. 7 The first column list ground truth in different cases. The second column list our network’s results (a),(b),(c),(d) represent different cases
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convolution layers to reach the same operation and have 
better results. The results are shown in Table 4

Effect of up-sampling strategies The original swin 
transformer chooses the patch expanding layer in the 
encoder based on resize [1], which relies on resizing the 
patches to upsampling the features. We design a small 
kernel transposed convolution layer in the decoder to 
perform up-sampling as the feature dimension increases. 
To explore the proposed strategy’s effectiveness, we con-
duct the experiments of IBIMHAV-Net with Trilinear 
interpolation, 3D transposed convolution, and patch 
expanding layer([19]) on IRCADb-01 dataset. The experi-
mental results are shown in Table 5 indicate that the pro-
posed model combined with the transposed convolution 
layer can obtain better segmentation accuracy.

Effect of local feature extraction block The local 
feature extraction block includes some large kernel 
convolution layers. We have tried adding other feature 
extraction residual blocks in deeper places. The experi-
ment shows that the CNNs can only perform well in 
high-resolution parts. The main reason may be that the 
CNNs do not have enough spatial invariant properties, 
which can supplement precise local features for another 

swin-transformer path. When we dropped this design, 
the accuracy, and Dice coefficient were reduced by 12% 
and 7.5%, respectively.

Rolling of cropping patch size The testing results of 
the proposed IBIMHAV-Net with 224 x 224 x 96, 128 
x 128 x 96 input resolutions as input are presented in 
Table  3. As the input size increases from 224x224x96 
to and the patch size remains the same as 2, the input 
token sequence of transformer will become larger, thus 
improving the segmentation performance of the model. 
However, although the segmentation accuracy of the 
model has been slightly improved ±0.3% DSC, the com-
putational load of the whole network has also increased 

Table 3 Inductive position bias

Position embedding methods Precision

Our absolute + relative embedding 95.2

Relative bias embedding 97.7

Our relative bias 98.8

Fig. 8 The different settings to study the effect of kernel size and model bottleneck

Table 4 Ablation study on the impact of down‑sampling DSC(%)

Down‑sampling method DSC for vessel DSC for 
background

3D patch merging 69.12 89.95

convolution with small stride 74.83 96.92

Table 5 Ablation study on the impact of upsampling

Up‑sampling method DSC for vessel DSC for 
background

patch expanding 67.11 92.34

trilinear interpolation 72.21 95.22

3D transposed convolution 74.83 96.92
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significantly. In order to balance the running efficiency of 
the algorithm, the experiments in this paper are based on 
128x128x96 resolution scale as the input.

Effect of the weighted loss function and post-pro-
cessing The testing results of the proposed IBIMHAV-
Net structure have been discussed above. Here we design 
this ablation study to evaluate the necessity of these two 
processes. From Table 6, we know that the weighted loss 
function affects more than post-processing.

Conclusions
This paper designs a liver vessels segmentation method 
from CT images using the transformer-based network. 
Swin transformer has been expanding to 3D as the back-
bone which interleaved with convolutions and expanding 
for 3D volumes. In specific, the small stride convolution 
in both local feature block path and up/down-sampling 
blocks keep the spatial information hierarchically for 
two successive swin transformer blocks. A new pixel-
wised embedding method has been used for our few 
samples task with variant structures. A new type of bias 
positional embedding in our transformer is proposed. 
Numerical Evaluation and visualization based on differ-
ent benchmarks proved the validity of this deep learn-
ing method. Our method has been trained and tested on 
3D-IRCADb-01 dataset. In the future, we would further 
improve segmentation accuracy by introducing more 
precise datasets and trying multi-task methods to reduce 
the negative effects of liver tumors.
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