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Abstract
Background The medical profession is facing an excessive workload, which has led to the development of various 
Computer-Aided Diagnosis (CAD) systems as well as Mobile-Aid Diagnosis (MAD) systems. These technologies 
enhance the speed and accuracy of diagnoses, particularly in areas with limited resources or remote regions during 
the pandemic. The primary purpose of this research is to predict and diagnose COVID-19 infection from chest 
X-ray images by developing a mobile-friendly deep learning framework, which has the potential for deployment in 
portable devices such as mobile or tablet, especially in situations where the workload of radiology specialists may 
be high. Moreover, this could improve the accuracy and transparency of population screening to assist radiologists 
during the pandemic.

Methods In this study, the Mobile Networks ensemble model called COV-MobNets is proposed to classify positive 
COVID-19 X-ray images from negative ones and can have an assistant role in diagnosing COVID-19. The proposed 
model is an ensemble model, combining two lightweight and mobile-friendly models: MobileViT based on 
transformer structure and MobileNetV3 based on Convolutional Neural Network. Hence, COV-MobNets can extract 
the features of chest X-ray images in two different methods to achieve better and more accurate results. In addition, 
data augmentation techniques were applied to the dataset to avoid overfitting during the training process. The 
COVIDx-CXR-3 benchmark dataset was used for training and evaluation.

Results The classification accuracy of the improved MobileViT and MobileNetV3 models on the test set has reached 
92.5% and 97%, respectively, while the accuracy of the proposed model (COV-MobNets) has reached 97.75%. The 
sensitivity and specificity of the proposed model have also reached 98.5% and 97%, respectively. Experimental 
comparison proves the result is more accurate and balanced than other methods.

Conclusion The proposed method can distinguish between positive and negative COVID-19 cases more accurately 
and quickly. The proposed method proves that utilizing two automatic feature extractors with different structures 
as an overall framework of COVID-19 diagnosis can lead to improved performance, enhanced accuracy, and better 
generalization to new or unseen data. As a result, the proposed framework in this study can be used as an effective 
method for computer-aided diagnosis and mobile-aided diagnosis of COVID-19. The code is available publicly for 
open access at https://github.com/MAmirEshraghi/COV-MobNets.
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Introduction
Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) was initially identified in Wuhan, China, 
in December 2019, and then swiftly spread worldwide. 
Millions of individuals throughout the world have been 
impacted by COVID-19 [1–4]. Due to the high conta-
giousness of COVID-19, it is essential to quickly screen, 
identify, and isolate patients in order to stop the disease’s 
transmission and hasten their effective treatment [3, 4].

Despite the fact that the Reverse Transcription Poly-
merase Chain Reaction (RT-PCR) test plays a key role in 
diagnosing COVID-19, a high rate of disease progression 
and aggravation, particularly in Omicron and Delta vari-
ants, was caused by the lengthy turnaround time for RT-
PCR results [5, 6]. However, until the PCR test result is 
identified, those who have the disease can spread it to a 
large number of people as a disease transmission source. 
In addition, studies on COVID-19 variants have shown 
that the RT-PCR test has a significant rate of false nega-
tives, even for patients with severe symptoms [2, 4, 5, 7]. 
In these situations, COVID-19 should be identified by 
medical imaging methods, such as computed tomogra-
phy (CT) and Chest X-ray (CXR) scans, which have been 
shown to diagnose infection accurately [3, 8, 9].

Although CT has been proven to be accurate diag-
nostic techniques for COVID-19 detection [10, 11], it 
has several significant drawbacks, such as the huge cost, 
the inability to be done as a bedside test, and about 70 
times more ionizing radiation than X-ray [2, 1]. As per 
the recommendation provided by the American College 
of Radiology, CT scans should not be the primary diag-
nostic modality to be employed [12]. The CXR is a widely 
available, quick, cheap, non-invasive method, and a wide-
spread clinical technique for the diagnosis of COVID-19 
[8, 13]. However, accurate X-ray image diagnosis requires 
expertise and compared to other imaging techniques, the 
diagnosis of COVID-19 infection from a chest X-ray is 
far more challenging [1].

Researchers are investigating Artificial Intelligence 
(AI)-based methods for COVID-19 identification uti-
lizing X-ray images because of the successful and effec-
tive use of Deep Learning (DL) techniques in the field 
of Computer Vision and the biomedical [3, 4], because 
of the capability of successfully modeling higher-order 
systems and achieving human-like performance [14]. 
DL techniques have been used in numerous studies to 
automate the diagnosis of COVID-19 [1, 2, 5], [15–17]. 
In the field of computer vision, the DL-based model usu-
ally takes advantage of a hierarchical structure of Convo-
lutional Neural Network (CNN) or transformer encoder 
module in Vision Transformer (ViT) [18] structure. 

These central blocks can extract the features related to 
COVID-19 infection from X-ray images. Because of 
the automatic feature learning ability of DL methods, 
COVID-19 classification based on deep neural networks 
is being widely used [3]. Computer-Aided Diagnosis 
(CAD) systems utilize advanced machine learning algo-
rithms and image processing techniques to analyze X-ray 
images and deliver timely and reliable results, thereby 
aiding in the early detection, monitoring, and manage-
ment of COVID-19 cases [19].

To highlight recent developments in the diagnosis and 
detection of COVID-19 based on DL, several investiga-
tions are presented. Ghaderzadeh et al. [5] proposed a 
framework for COVID-19 detection based on two phases 
of CNN models. The first phase classifies COVID-19 
X-ray images by using DenseNet201 as a feature extrac-
tor. The dataset contains 10,816 public images and 341 
local images of two categories: normal and COVID-19 
samples. X-ray and CT-scan images were classified by the 
proposed framework. In another research work, Duran-
Lpez et al. [2] proposed COVID-XNet, comprising five 
convolutional layers, which was a custom DL system to 
detect and locate COVID-19 in chest X-ray images. The 
dataset includes 2,589 and 4,337 images were consid-
ered for COVID-19 and normal classes, respectively. This 
study took advantage of a histogram matching process 
for similarity in terms of histogram distribution, rib sup-
pression, and a contrast enhancement method in other to 
reduce the large variability of X-ray images and enhance 
the relevant information.

Further, Afshar et al. [15] proposed a COVID-CAPS 
architecture consisting of 4 convolutional layers and 
3 Capsule layers which classify positive and negative 
COVID-19. The dataset is generated from two pub-
lic chest X-ray datasets. This research highlights that 
COVID-CAPS contains fewer trainable parameters com-
pared to state-of-the-art models. In another research, the 
Convolutional Neural Network (CNN) is used by Wang 
et al. [16] to detect pneumonia, COVID-19, and nor-
mal cases from each other. The research proposed the 
COVID-Net network, which uses a lightweight residual 
projection-expansion design pattern. The dataset com-
prises 13,975 CXR images across 13,870 patient cases. 
This architecture’s parameter is only 11.75  million and 
the overall accuracy is 93.3%.

Afterward, Waheed et al. [17] suggested CovidGAN 
which takes advantage of a Generative Adversarial Net-
work (GAN) to increase the CXR data by synthetic 
augmentation. The target of the study is to improve 
COVID-19 detection on the VGG network. The data-
set is composed of 1,124 CXR images, which comprise 
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COVID-CXR and Normal-CXR. This study indicates the 
importance of augmentation techniques based on GAN 
networks. Wang et al. [20] proposed MLES-Net which 
takes advantage of the correlation between global and 
local features to generate the attention mask, which can 
focus automatically on the important points in various 
information, leading to improvement of the model effi-
ciency. This research combines two publicly CXR data-
set, containing 760 and 5863 X-Ray images related to 
COVID-19, normal, and pneumonia.

Samee et al. [21] proposed a novel metaheuristic 
approach based on hybrid dipper-throated and particle 
swarm optimizers to optimize VGG19 deep network for 
the detection of COVID-19 from X-ray images. In this 
study, lung region segmentation and augmentation were 
applied to the dataset, and a feature selection method 
was used to select the most significant features that can 
boost the classification results. Further, Elzeki et al. [22] 
suggested CXRVN network based on convolution neu-
ral networks which used three different COVID-19 
X-ray datasets. They adopt GANs to construct artificial 
instances for further data augmentation.

In this study, the researchers developed the Covid-19 
classification model based on deep learning and ensem-
ble learning, taking the advantage of CXR images. The 
positive COVID-19 in the input X-ray images is pre-
dicted by the diagnosis model. The author proposed a 
novel model called COV-MobNets, based on an ensem-
ble of two lightweight and mobile-friendly deep networks 
for the classification of COVID-19 based on X-ray images 
with improved accuracy. Image augmentation methods 
are applied to address the issue of over-fitting during the 
training process.

The background and motivation for developing Com-
puter-Aided Diagnosis (CAD) and Mobile-Aid Diagno-
sis (MAD) systems for the detection of COVID-19 from 
CXR images stems from the necessary need for accurate 
and efficient diagnostic tools during the global pandemic. 
These systems have the potential to be implemented not 
only on computers, but also on mobile phones with lim-
ited hardware capacity. The primary purpose of the pro-
posed COV-MobNets model in the context of COVID-19 
diagnosis is to provide an efficient and accurate tool for 
automated detection and classification of COVID-19 
cases from CXR images, especially in situations where 

the workload of radiology specialists may be high. With 
the aid of deep learning algorithms and mobile technol-
ogy, COV-MobNets aims to enhance the accuracy of 
COVID-19 diagnosis which can be suitable for deploy-
ment on mobile devices.

This paper has been formed into 4 sections. The pro-
posed method, preprocessing techniques, and datasets 
employed for experiments are described in section 2, and 
Section 3 presents and discusses experimentation results. 
Finally, the conclusion is presented in Section 4.

Materials and methods
Dataset
The dataset used for this research is COVIDx-CXR-3 [23] 
benchmark dataset, which is a large-scale benchmark 
dataset of CXR images for supporting COVID-19 com-
puter vision research, contains 30.386 CXR images from 
17.036 patients from at least 51 countries. COVIDx-
CXR-3 provides a smaller and well-balanced test set 
achieved by sampling a random 8:2 patient split from the 
RSNA RICORD initiative to ensure networks are evalu-
ated against expertly annotated positive samples [23].

This dataset is not only one of the newest and larg-
est, but it also creates a relatively balanced train and test 
sets for SARS-COV-2 positive and negative detection in 
terms of image count. Table 1 demonstrates the details of 
COVIDx-CXR-3 benchmark dataset. This research ran-
domly split the train set into a 9:1 ratio for the training 
and validation sets, respectively, and evaluated the pro-
posed model using the unique expertly annotated test set 
provided by dataset.

Data preparation and normalization
Research has shown that not only deep learning algo-
rithms but also image processing techniques can play a 
prominent role in the extraction of hidden patterns, par-
ticularly in medical image data [5]. In the first stage, the 
dataset images are decoded and converted to the com-
mon RGB format by repeating x-ray grayscale images 
three times. Then, the images are resized to (128,128) 
pixels. It is suitable to normalize images before the model 
can be adequately trained on them. Commonly, an RGB 
image has three channels that have a pixel intensity value, 
ranging from dark to white (0 to 255). Proposed three 
channel Images are normalized such that they have a 
value between 0.0 and 1.0 before feeding to the model’s 
input.

Online data augmentation
In research that uses deep learning algorithms, they 
depend on numerous data to escape from the impor-
tant challenge of model over-fitting [24]. Over-fitting is 
a condition when the model learns from the training data 
effectively, but it is unable to function well in untrained 

Table 1 Data distribution used for training and evaluating the 
proposed model
Type classes No. of samples No. of 

patients
Train Positive

Negative
15.994 2.808

13.992 13.850

Test Positive
Negative

200 178

200 200
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data. In this situation, the model begins to learn some 
complicated patterns in each example that are not nec-
essarily generalizable to the others [25]. Therefore, at 
this stage, data augmentation was applied to the train-
ing dataset, using transformations such as Vertical flip 
and Horizontal flip. The process of data augmentation 
was implemented in an online manner on the COVIDx-
CXR-3 dataset, wherein it was randomly applied to each 
batch of the training set during the training phase. This 
technique enables the model to generalize agreeably and 
be more robust to new cases.

Proposed method
Our study takes the advantage of lightweight networks 
to guarantee minimal parameter demand and real-time 
detection performance. This section presents the Mobi-
leViT model and MobileNetV3 models used in the pro-
posed Mobile Networks ensemble model.

MobileNetV3 
Convolutional Neural Network (CNN) architectures have 
been suggested to address a variety of computer vision 
issues, and can enhance performance of the models in 
terms of accuracy, size, efficiency, and speed [26]. The 
main layers of CNN in the classification mode are a com-
bination of convolutional layers, pooling layers, and acti-
vation functions which can act as a feature extractor, and 
fully connected layers that can act as a feature classifier 
[27]. The pooling layer is considered as a down-sampling 
technique used to preserve crucial information about 
image information, and it also decreases the extracted 
features’ dimensionality [25]. The central structure of 
CNN is convolutional layers, demonstrated in Eq. 1.

 
y (t) =

∫ ∞

−∞
x (p) h (t − p) dp = x (t) ∗ h (t)  (1)

Howard et al. [28] proposed MobileNetV3, which was 
improved from MobileNetV1 [29] and MobileNetV2 
[30]. They used a network architecture search (NAS) 
technique called NetAdapt algorithm that was used to 
search for the best kernel size and find the optimized 
MobileNet architecture to comply with platforms that 
have low-resourced hardware. Moreover, a novel non-
linearity known as hard swish (h-swish) is included in 
MobileNetV3. Equations  2 and 3 defines the h-swish 
nonlinearity, which is used to minimize the number of 
training parameters and decrease the size and complexity 
of the model.

 h − swish (x) = x.σ (x) (2)

 
σ (x) =

ReLU6(x + 3)
6

 (3)

The structure of a MobileNetV3 block, presented in 
Fig. 1a, contains inverted residual blocks as a main unit, 
which uses a skip connection for connecting the feature 
of input and output on the identical channels, resulting 
in enhanced features representation with less memory 
consumption. The inverted residual block consists of 
two important blocks: a squeeze-and-excitation (SE) 
block and a depthwise separable convolution block. A 
significant method in multiple computer vision applica-
tions is an efficient CNN that implements the depthwise 
convolution structure and is known for its quick train-
ing process [26]. The depthwise convolutional kernel 
is a learnable parameter and plays a key role in extract-
ing spatial features. Moreover, it improves model effec-
tiveness and lower computing costs [28]. The depthwise 
separable convolution block (Fig. 1b) consists of a kernel 
of 3 × 3 depthwise convolution used for input channels 
separately and a 1 × 1 pointwise convolution kernel. The 
batch normalization layer (BN) and the h-swish activa-
tion function are used after these kernels. During train-
ing, SE block is utilized to pay more attention to the 
pertinent features on each channel, resulting in improv-
ing feature representation [28, 26].

In the present study, the MobileNetV3-Large model, 
which is a light-weight, and mobile-friendly CNN-based 
network, was implemented for extracting features of 
COVID-19 CXR images. The classification task is done 
by adding layers of global average pooling, fully con-
nected, batch normalization, dropout, and softmax func-
tion. The overall framework of improved MobileNetV3 is 
demonstrated in Fig. 1.

MobileViT 
MobileViT, proposed by Sachin et al. of Apple in 2021 
[31], is a general-purpose, lightweight, and mobile-
friendly vision transformer (ViT). MobileViT incorpo-
rates the architectures of ViTs and CNNs. Hence, it not 
only has the self-attention and global vision of trans-
former networks, but it also has the efficiency and light-
weight of CNNs, which allows to learn global and local 
features strongly. The MV2 block and MVIT block are 
the central units of the MobileViT architecture.

In MobileNetV2 [30], the linear bottleneck inverse 
residual block known as MV2 was proposed. With this 
structure, low-dimensional compressed data is expanded 
to higher dimensions, depthwise separable convolu-
tion is used to filter the data, and the linear bottleneck 
block is used to return the features to the lower dimen-
sions [32]. The process in this structure makes use of tiny 
tensor data, which decreases the demand on the embed-
ded hardware for main memory access and increases 
response time.

The structure of MViT block, indicated in Fig. 3a, can 
be divided into 3 modules: the local information coding 
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module, the global information coding module, and the 
feature fusion module, which act as a local feature extrac-
tor, global feature extractor, and fuse feature information, 
respectively. MVIT can entirely extract the image fea-
tures with fewer parameters [31, 33].

MobileViT uses a transformer structure in a specific 
way. Natural Language Processing (NLP) frequently 
makes use of transformer structures that comprise 
encoders and decoders components, but transformer 
structures in ViTs consist of only an encoder component 
[18]. The encoder components, demonstrated in Fig. 2b, 
are collected from a stack of similar encoders and each 
one includes a multihead attention layer, normaliza-
tion layers, feed forward layer, and residual connection 
structure [18]. Transformer architectures have incorpo-
rated self-attention mechanisms to effectively capture the 
long-range dependencies between input images, leading 
to significant improvements in performance [34]. A type 
of self-attention structure known as Multihead Atten-
tion that enables the model to focus on various aspects 
of information [35]. The multihead attention formulas 
are shown in formulas 4–6. The terms Q, K, V, and W 
respectively stands for the query vector, key vector, value 
vector, and weight matrix [35].

 

Qi = QWQ
i ,

Ki = KWK
i ,

Vi = V WV
i ,

i = 0, . . . , 8.

 (4)

 headi = Attention (Qi, Ki, Vi) , i = 0, . . . , 8  (5)

 
MultiHead (Q, K, V ) =
Concact (head1, . . . , head8) W 0 (6)

MobileViT applies an n*n standard convolution plus a 
point-wise convolution to an input tensor of the shape 
H*W*C. The outcome of this is a tensor of the form 
H*W*d. The tensor is then divided into h*w*d nonover-
lapping patches. Then, each patch unfolded, resulting in 
intermediate-level embeddings of shape P*N*d, where 
P = w*h and N = H*W/P. Finally, the transformer is applied 
to these embeddings [31]. This process is illustrated in 
Fig. 2a.

In this paper, the MobileViT-XS model is implemented 
for extracting features of COVID-19 chest X-ray images, 
which is a light-weight, and mobile-friendly transformer-
based network. The classification task is done by adding 
layers of global average pooling, fully connected, batch 
normalization, dropout, and softmax function. The over-
all framework of improved MobileViT is demonstrated in 
Fig. 2.

Fig. 1 The overall overview of the improved MobileNetV3 architecture, comprising (a) MobileNetV3 block; (b) Depthwise separable convolution block; 
(c) Squeeze-and-excitation block; (d) Classification block
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Mobile Networks Ensemble Model
The ensemble model is a technique to enhance perfor-
mance and raise the accuracy rate of the model. If there 
are more distinct differences between the models in 
terms of feature extraction method, the model’s perfor-
mance will be better after the ensemble [25]. By utilizing 
multiple feature extractors, the model is able to learn a 
more robust representation of the data, which allows it to 
better generalize to new or unseen data. This is particu-
larly important in the context of COVID-19 image clas-
sification, where the availability of data is limited and the 
need for accurate and reliable classification is paramount. 
Hence, the features of chest X-ray images are extracted 
using two separate approaches, which can widely repre-
sent the differences between COVID-19 X-ray images 
widely and can improve classification outcomes.

The proposed framework combines two different 
feature extraction models, which are considered light-
weight and mobile-friendly models. The MobileViT 

model base on transformer structure and MobileNetV3 
model based on convolutional networks extract the fea-
tures of chest X-ray images and classify them into posi-
tive and negative COVID-19 categories.

The weighted sum technique is the ensemble approach 
utilized in this research. Different weight combinations 
are applied to find the best performance, as indicated in 
Fig.  4. Hence, the MobileNetV3 model’s output results 
are multiplied by a coefficient of 0.7, and the Mobile-
ViT model’s output results are multiplied by a coeffi-
cient of 0.3, which are considered as weight 2 and weight 
1, respectively. Finally, the sum of the two results is the 
final prediction outcome. Equation 7 shows the final pre-
diction equation of the ensemble model. Figure 3 shows 
the overall framework of the proposed Mobile Networks 
ensemble model called COV-MobNets for COVID-19 
CXR image classification.

 FinalPrediction = W1.P1 (x) + W2.P2 (x) (7)

Fig. 3 Overall framework of COV-MobNets (proposed model)

 

Fig. 2 Overall overview of proposed MobileViT architecture consist of: (a) MobileViT block; (b) Transformer Encoder block; (c) Classification block
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Result and discussion
Metrics
Metrics The sensitivity, specificity, accuracy, and F1 
score assessment criteria were established based on the 
model’s performance using a confusion matrix in order 
to objectively assess the performance of the proposed 
model. Sensitivity in this context was defined as the 
proportion of COVID-19 instances, which the model 
properly identified, to all of the actual COVID-19 cases. 
Specificity was defined as the proportion of the non–
COVID-19 instances properly detected by the model to 
all the actual non–COVID-19 cases. Moreover, accuracy 
was determined as the percentage of all COVID-19 and 
non-COVID-19 instances that were correctly identified 
from the chest X-ray images. These evaluations were per-
formed using the following equations 8–11.

 

Sensitivity (Recall) =
TP

True Positive+False Negative
 (8)

 
Specificity =

TrueNegative

TrueNegative + FalsePosetive
 (9)

 
Accuracy =

TrueNegative + TruePosetive

TotallCases
 (10)

 
Precision =

TruePositive

TruePositive + FalsePosetive
 (11)

Experimental setup
The process of implementing the proposed method is as 
follows:

Step 1: The original images are resized to shape 
(128,128,3). Then, the dataset is divided into training and 
validation sets at a ratio of 9:1. Also, 400 balanced sam-
ples are defined separately in the dataset for the test set.

Step 2: the batch size is set to 32, and the Adam algo-
rithm is used to optimize the models with an initial 
learning rate of 1 × 10 − 4.

Step 3: Data augmentation is employed on each batch 
of the training set during the training process. Both mod-
els are trained for 30 epochs, and the parameters of the 
trained models are saved.

Step 4: Two models with saved parameters are inte-
grated into Mobile Networks ensemble model for testing.

Table 2 shows the parameter details of the models.

Experimental comparison
The process outlined in the previous section was fol-
lowed to conduct the experiment. The loss changes curve 
and the accuracy changes curve of the training set for the 
MobileViT and the MobileNetV3 model are shown in 
Fig. 5. Furthermore, Table 3 indicates rates of the accu-
racy, Sensitivity, Specificity, and precision of the Mobi-
leViT model, the MobileNetV3 model, and the Mobile 
ensemble model on the test set.

It can be seen that the accuracy and precision of the 
MobileNetV3 based on CNN is 4.5% and 4.15% higher 
than that of the MobileViT model based on CNN and 
the Vision Transformer approach, respectively. Hence, 
the performance of the MobileNetV3 on the small data-
set in terms of COVID-19 classification is better than 
second one. After being ensemble into the Mobile Net-
works ensemble model, rates of the accuracy and preci-
sion achieved 97.75% and 97.87%, respectively, showing 
enhanced performance.

The classification capabilities of the model may be eval-
uated by accuracy rate, but precise details cannot be dis-
played with that. The confusion matrix, which compares 
the predicted outcome and actual value and is called 
the comparison matrix, can clearly show the prediction 
information of each class when the trained model pro-
duces predictions. The classification performance of the 
ensemble model suggested in this paper is further exam-
ined using the confusion matrix. the confusion matrix of 
the three models is shown in Fig. 6.

Table 2 Parameters of both models used in COV-MobNets for 
training process
Model MobileViT MobileNetV3
Optimizer Adam Adam

Learning rate Exponentially decay Exponentially 
decay

Initial learning rate 10−4 10−4

Final learning rate 10−6 10−5

Loss Binary Cross Entropy Binary Cross 
Entropy

Epoch 30 30

Batch size 32 32

Image size 128 × 128 128 × 128

Fig. 4 Ensemble results for different weight combinations
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Table 3 Performance comparison for Covid-19 detection
Model Data type Number of 

classes
Image size Accuracy 

(%)
Sensitivity 
(Recall) (%)

Specificity 
(%)

Precision (%) F1 
score

COVID-XNet [2] X-ray 2 128 × 128 94.43 92.53 96.33 93.76 93.14

COVIDGAN [17] X-ray 2 112 × 112 95 90 97.00 96% ---

COVID-CAPS [15] X-ray 2 224 × 224 95.7 90 95.80 --- ---

ResNet50 [1] X-ray 2 224 × 224 96.1 91.8 96.6 76.5 83.5

MobileViT X-ray 2 128 × 128 92.5 97.00 88.00 89.00 92.8

MobileNetV3 X-ray 2 128 × 128 97 97.50 96.50 96.53 97

COV-MobNets 
(Proposed)

X-ray 2 128 × 128 97.75 98.50 97.00 97. 04 97.78

Fig. 5 Loss and accuracy change curves of training and validation sets for: (a) the MobileViT model; (b) the MobileNetV3 model
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The confusion matrixes indicate that the recognition 
capability of the MobileNetV3 model is more balanced 
than MobileViT, and its recognition accuracy of Covid-19 
and non-COVID-19 cases is about the same. The Mobi-
leViT model has a difference in the ability to recognize 
COVID-19 cases and non- COVID-19 cases from X-ray 
images, whereas the ability to recognize COVID-19 cases 
remains strong. While recognizing COVID-19 cases in 
both base models is appropriate, a remarkable improve-
ment is seen after integrating these two powerful mobile 
networks based on different feature extractors. The 
Mobile Networks ensemble model (COV-MobNets) not 
only displays a more robust ability to recognize COVID-
19 and non- COVID-19 cases but also maintained its 
balance.

In practical applications, better analyses of CXR images 
can more accurately diagnose COVID-19, so Mobile Net-
works ensemble model (COV-MobNets) can in a promi-
nent way assist in the diagnosis of COVID-19 from the 
X-ray images. The accuracy rate of the proposed model 
is 3.32%, 2.25%, 2.05%, and 1.65% higher than the accu-
racy rate of the COVID-XNET, COVID-GAN, COVID-
CAPS, and ResNet50 models, respectively. Consequently, 
the Mobile Networks ensemble model (COV-MobNets) 
achieved better classification performance.

Conclusion
In this study, a diagnostic method was proposed for the 
COVID-19 CXR image classification that could identify 
COVID-19 and non-COVID-19 cases using a Mobile 

Fig. 6 Confusion matrix of three models: (a) MobileViT model; (b) MobileNetV3 model; (c) COV-MobNets model (proposed)
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Networks ensemble model to help medical professionals 
make a better diagnosis in the real world. The research 
employed COVIDx-CXR-3 dataset, and to address the 
issue of overfitting, the online data augmentation tech-
niques were applied during the training phase. An overall 
framework is designed that incorporates the MobileViT 
(based on ViT) and MobileNetV3 (based on CNN) into 
the Mobile Networks ensemble model called COV-Mob-
Nets. The accuracy of this model in the classification of 
positive and negative COVID-19 cases reached 97.75%. 
The findings indicate that the COV-MobNets proposed 
in this research were more accurate and performed bet-
ter than earlier models and had a balanced capacity for 
classification.

COV-MobNets can be integrated into existing medi-
cal imaging systems to assist radiologists in detecting 
COVID-19 from chest X-rays as the Computer-Aid Diag-
nosis. The model can quickly analyze large volumes of 
X-ray images, reducing the time and effort required for 
manual diagnosis. Moreover, COV-MobNets can have 
the potential to implement on Mobile phones and tablets 
by taking advantage of TensorFlow Lite (TF-Lite). The 
TF-Lite format is designed to execute models efficiently 
on devices, which reduces the file size and introduces 
optimizations that do not affect accuracy [36]. Hence, by 
implementing it on a mobile phone, it can be a dedicated 
radiology assistant in the diagnostic process.

The proposed COV-MobNets model presents certain 
limitations that need to be addressed in future research 
to improve its applicability and accuracy. One of these 
limitations is the potential data limitations that can affect 
the performance of the model. Collecting more diverse 
and representative datasets can improve the model’s per-
formance and reduce its limitations. Another limitation 
is the need for real-world validation to ensure the accu-
racy and effectiveness of the model in practical clinical 
settings. Real-world validation can provide additional 
evidence for the model’s effectiveness and limitations. 
Additionally, implementing the model on edge devices 
can provide a significant advantage in terms of portability 
and accessibility. Therefore, future research can focus on 
developing lightweight models that will be implemented 
on edge devices to facilitate their use in remote and 
resource-limited settings.

The findings of this study have significant implications 
for the medical profession, particularly in the context 
of the ongoing COVID-19 pandemic and the excessive 
workload that healthcare professionals were facing. The 
use of lightweight and mobile-friendly models makes the 
system easily deployable in resource-limited settings and 
allows for faster diagnosis and treatment. Moreover, the 
implementation of this model could help alleviate the 
workload burden on healthcare professionals by provid-
ing a reliable and efficient tool for COVID-19 diagnosis. 

In conclusion, the findings of this study offer promising 
solutions to aid medical professionals in the ongoing 
fight against the COVID-19 pandemic and the challenges 
it poses to the healthcare industry.
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