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Abstract 

Background This study aimed to develop and validate an AI (artificial intelligence)-aid method in myocardial perfu-
sion imaging (MPI) to differentiate ischemia in coronary artery disease.

Methods We retrospectively selected 599 patients who had received gated-MPI protocol. Images were acquired 
using hybrid SPECT-CT systems. A training set was used to train and develop the neural network and a validation set 
was used to test the predictive ability of the neural network. We used a learning technique named “YOLO” to carry out 
the training process. We compared the predictive accuracy of AI with that of physician interpreters (beginner, inexpe-
rienced, and experienced interpreters).

Results Training performance showed that the accuracy ranged from 66.20% to 94.64%, the recall rate ranged from 
76.96% to 98.76%, and the average precision ranged from 80.17% to 98.15%. In the ROC analysis of the validation set, 
the sensitivity range was 88.9 ~ 93.8%, the specificity range was 93.0 ~ 97.6%, and the AUC range was 94.1 ~ 96.1%. In 
the comparison between AI and different interpreters, AI outperformed the other interpreters (most P-value < 0.05).

Conclusion The AI system of our study showed excellent predictive accuracy in the diagnosis of MPI protocols, and 
therefore might be potentially helpful to aid radiologists in clinical practice and develop more sophisticated models.
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Background
Coronary artery disease (CAD) is one of the lead-
ing causes of morbidity and mortality throughout the 
world [1]. According to the report released by the 
American Heart Association (AHA) in 2016, over 15.5 
million people above 20 years of age suffer from CAD 
in the United States [2]. Currently, imaging methods 
regarding CAD diagnosis include electrocardiography 
[3], invasive coronary angiography (ICA) or non-inva-
sive tomographic coronary angiography (CTCA) [4, 5], 
myocardial perfusion imaging (MPI) [6], ultrasonog-
raphy [7], etc. All these methods have been proved 
to be effective. Among them, MPI with single-photon 
emission computer tomography (SPECT) is a well-
established non-invasive test in terms of the evaluation 
of ischemia, scar, left ventricular volumes, and ejec-
tion fraction, by directly reflecting the tracer uptake 
of the heart [8]. With advances during the past few 
years, MPI has certainly evolved from a diagnostic test 
of high accuracy for the detection of CAD (reportedly 
with mean sensitivity and specificity of 90% and 75%, 
respectively) to an essential tool for risk stratification 
[9, 10].

Traditionally, the interpretation of medical imaging 
requires one’s sufficient knowledge in the medical-
related domains [11], which needs decades of train-
ing. Clinically, this interpretation process can also 
be time-consuming. Simultaneously, patients have 
been demanding faster and more personalized care 
[12, 13]. The resultant shortage of physicians and the 
requirement for efficiency emerged thereafter. Inspir-
ingly, artificial intelligence (AI, or machine learning) is 
poised to influence nearly every aspect of human life, 
especially in the medical field. These years, the com-
bination of AI and medical imaging has been remain-
ing as a hot topic and there is presently sufficient 
evidence demonstrating its practicability (e.g. AI with 
ultrasound, computed tomography, magnetic reso-
nance imaging, or histopathology) [14–17]. However, 
the application of AI in nuclear medicine imaging and, 
in particular, MPI can be troublesome. Firstly, MPI 
images are multi-slices rather than planer images and 
the interpretation is mostly based on the information 
seen in multiple slices [18]. Secondly, the interpreta-
tion also relies on the agreement of images from vari-
ous axes (i.e., short-axis, horizontal long-axis, vertical 
long-axis, and polar map) [19, 20]. These issues might 
hamper the establishment of an AI-aid diagnostic 
system in MPI. According to our limited knowledge, 
approaches to these problems are yet scarce, and we 
herein introduce an AI-aid method to detect ischemic 
abnormalities in MPI.

Materials and methods
Sample collection
We retrospectively selected 599 patients from the 
participating medical centers, and among them, 379 
(63.27%) cases were males and 220 (36.73%) cases were 
females. All patients had received gated-MPI protocol 
using 99mTc-sestamibi. Images were acquired using four 
hybrid SPECT-CT systems including (Discovery NM/
CT 670 CZT, GE Healthcare; Discovery NM 530c, GE 
Healthcare; Symbia T16, Siemens Corp.). Acquisition 
parameters were as follows:

1) Discovery NM/CT 670 CZT: 64 × 64 matrix size; 
1.3 zoom; 30 secs per view (30 views in total); 
140  keV ± 10% main energy window; 120 kVp CT 
tube voltage; 20  mA tube current; 1.25  mm slice 
thickness.

2) Discovery NM 530c: 64 × 64 matrix size; no zoom; 
30 secs per frame (48 frames in total); 140 keV ± 10% 
main energy window; without CT acquisition.

3) Symbia T16: 64 × 64 matrix size; 1.45 zoom; 16 secs 
per view (32 views in total); 140  keV ± 10% main 
energy window; without CT acquisition.

Reconstruction parameters were as follows:

– All images were reconstructed using FBP algo-
rithm with Butterworth filter (critical frequency: 
0.45 ~ 0.50). The correction methods used in the 
reconstruction process included CT-based AC 
(Discovery NM/CT 670 CZT), and dual-energy-
window technique-based SC.

– Individuals’ MPI images were pulled out for prepa-
ration. The mean diagnostic age was 59.14-year-old 
with a standard deviation of ± 11.61. All patients 
had or were suspected to have CAD-related presen-
tations prior to the SPECT scan. MPI images con-
sisted of three conventional axes: short-axis (SA, 
13,267 slices), horizontal long-axis (HLA, 11,465 
slices), and vertical long-axis (VLA, 11,676 slices). 
Patients were divided into two subsets including a 
training set and a validation set. By doing so, firstly, 
images of all patients were indexed in sequence and 
therefore 13,267 slices of SA, 11,465 slices of HLA, 
and 11,676 slices of VLA were totally indexed. Sec-
ondly, with these index numbers, we then sepa-
rated these images randomly before training using 
Python software (version 3.7.3). The training set 
was then used to train and develop the following 
neural network accounting for 70% (each axis), and 
the validation set was used to test the predictive 
ability of the neural network accounting for 30% 
(each axis).
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Machine learning network selection
Machine learning strategies can be generally split into 
either unsupervised or supervised learning. The main 
scope of unsupervised learning is to discover underly-
ing structure or relationships among variables in a data-
set, whereas supervised learning normally requires the 
classification of one or more categories or outcomes 
[21]. Due to the particularity of medical images which 
often requires the evaluation of multiple categories, in 
this study, we selected the supervised learning method-
regional deep learning technique, an ROI (region of 
interest)-based conventional neural network named 
YOLO (you only look once, version 3), [22] to complete 
the training. The YOLO algorithm was composed of four 
main stages: preprocessing of the tagged images, feature 
extraction utilizing deep convolutional networks (train-
ing), lesion detection with confidence (calculating), and 
finally lesion classification using fully connected neural 
networks (FC-NNs, output) [23]. Machine learning net-
work was implemented using Python software.

Tagging method for CAD‑suspected lesions
Images were tagged in accordance with the standardized 
myocardial segmentation and nomenclature for tomo-
graphic imaging of heart proposed by the ATA in 2002 
[24]. Therefore, a total of 17 tags (from the basal to the 
apical) were applied in the tagging process (Fig.  1). If a 
lesion was identified to exist in the apex wall, we delin-
eate that area with a tag “17” in all three axes (i.e. SA, 
HLA, and VLA). Accordingly, if a lesion was detected 
in the non-apical segment like the mid inferior wall, we 
give that area a tag “10” both in SA and VLA. In the input 
process of training, images of three axes were sent to the 
model separately and therefore a total of three sub-mod-
els were trained and then incorporated into one model. 
When detecting ischemia, these sub-models will give 
three independent results based on the ischemic area. A 
program named “labelme” under the Anaconda environ-
ment was used in this tagging step.

Statistical analysis
The age distribution of patients was tested using the Kol-
mogorov–Smirnov method. The lesion distribution of the 
17 segments among SA, HLA, and VLA was tested using 
the Chi-square test. A P-value < 0.05 was considered to 
be statistically significant.

Validation of the neural network
To test the training performance of the neural network, 
we calculated the average precision and recall rate. Addi-
tionally, in order to test its general clinical accuracy, ROC 
analysis was applied using the validation set. The gold 
standard was set as the diagnostic report made by an 
agreement of two experienced interpreters with at least 
30  years of high-volume medical-related background 
(expert). We also randomly selected 100 slices (random 
validation set) of each axis and compared the statistical 
differences of sensitivity, specificity among AI, beginner 
(with 1  week of training, intern), inexperienced inter-
preter (with 5 years of medical-related background, resi-
dent physician), and experienced interpreter, by using 
McNemar’s test [25]. To test the consistency between AI 
and the gold standard, a consistency check was also per-
formed by calculating Cohen’s Kappa coefficients. Lastly, 
to evaluate the diagnostic speed of AI, we performed a 
time consumption analysis between AI and experienced 
interpreters based on 60 patients selected from the vali-
dation set. We compared the distribution and statistical 
differences in terms of time consumption between them. 
All statistics were derived by using SPSS 23.0 (IBM, USA) 
and a P-value < 0.05 was considered to be statistically 
significant.

Results
Patient and lesion distribution
Overall, there was a normal distribution in both the male 
group and female group (all P-value > 0.05). Also, the 
diagnostic age of females was older than that of males 
(distribution peak at around 65-year-old for the female 

Fig. 1 Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. a short-axis; b horizontal long-axis; c 
vertical long-axis; 1, basal anterior; 2, basal anteroseptal; 3, basal inferoseptal; 4, basal inferior; 5, basal inferolateral; 6, basal anterolateral; 7, mid 
anterior; 8, mid anteroseptal; 9, mid inferoseptal; 10, mid inferior; 11, mid inferolateral; 12, mid anterolateral; 13, apical anterior; 14, apical septal; 15, 
apical inferior; 16, apical lateral; 17, apex
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group and around 55-year-old for the male group). As 
shown in Table 1 and Fig. 2, SA accounted for the major-
ity of lesions among all three axes (24,539 for SA vs. 3,978 
for HLA vs. 9,479 for VLA). Additionally, for each axis, 

statistically significant differences were derived among 
different segments (all P-value < 0.001). Among different 
segments, segment 4 (inferior) accounted for the major-
ity in SA (22.20%), segment 17 (apical) accounted for 
the majority in HLA (49.52%), and segment 4 accounted 
for the majority in VLA (22.73%) (Table 1 and Fig. 2). In 
comparison, segment 6 (anterolateral) accounted for the 
minority in SA (11.79%), segment 14 (septal) accounted 
for the minority in HLA (24.46%), and segment 1 
accounted for the minority in VLA (6.08%) (Table 1 and 
Fig. 2).

Metrics of accuracy, recall, and precision in the training set
In SA, accuracy ranged from 74.37% to 84.73%, recall 
rate ranged from 94.04% to 98.76%, and average accu-
racy ranged from 90.04% to 98.15% (Table 2). The accu-
racy, recall rate, and average precision of segment 4 were 
larger than those of other segments (84.73%, 98.76%, and 
98.15%, respectively).

In HLA, the range of accuracy was 66.20% ~ 79.32%, the 
range of recall rate was 88.50% ~ 92.77%, and the range of 
average accuracy was 81.90% ~ 90.34% (Table 3). Among 
segments 14, 17, and 16, segment 17 had the largest accu-
racy (79.32%), recall rate (92.77%), and average precision 
(90.34%), whereas segment 14 had the smallest numbers 
(66.20% for accuracy, 88.50% for recall rate, and 81.90% 
for average precision).

Table 1 Lesion distribution of the 17 segments among three 
axes

SA Short axis, HLA Horizontal long axis, VLA Vertical long axis, 1 Anterior for 
SA (Basal anterior for VL), 2 Anteroseptal, 3 Interseptal, 4 Inferior for SA (Basal 
inferior for VL), 5 Inferolateral, 6 Anterolateral, 7 Mid anterior, 10 Mid inferior, 13 
Apical anterior, 14 Septal, 15 Apical inferior, 16 Lateral, 17 Apical

SA n (%) HLA n (%) VLA n (%) Total n (%)

1 3,668 (14.95) - 576 (6.08) 4,244 (11.17)

2 4,221 (17.20) - - 4,221 (11.11)

3 4,376 (17.83) - - 4,376 (11.52)

4 5,447 (22.20) - 2,155 (22.73) 7,602 (20.01)

5 3,935 (16.04) - - 3,935 (10.36)

6 2,892 (11.79) - - 2,892 (7.61)

7 - - 713 (7.52) 713 (1.88)

10 - - 1,863 (19.65) 1,863 (4.90)

13 - - 938 (9.90) 938 (2.47)

14 - 973 (24.46) - 973 (2.56)

15 - - 1,759 (18.56) 1,759 (4.63)

16 - 1,035 (26.02) - 1,035 (2.72)

17 - 1,970 (49.52) 1,475 (15.56) 3,445 (9.07)

Total 24,539 (100.00) 3,978 (100.00) 9,479 (100.00) 37,996 (100.00)

P-value  < 0.001  < 0.001  < 0.001  < 0.001

Fig. 2 Lesion distribution among three axes. SA, Short axis; HLA, Horizontal long axis; VLA, Vertical long axis; 1, Anterior for SA (Basal anterior for 
VLA); 2, Anteroseptal; 3, Interseptal; 4, Inferior for SA (Basal inferior for VLA); 5, Inferolateral; 6, Anterolateral; 7, Mid anterior; 10, Mid inferior; 13, Apical 
anterior, 14, Septal; 15, Apical inferior; 16, Lateral; 17, Apical
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In VLA, the range of accuracy was 88.02% ~ 94.64%, the 
range of recall rate was 76.96% ~ 91.8%, and the range of 
average accuracy was 80.17% ~ 93.37 (Table 4). The great-
est accuracy was found in segment 17 (94.64%), whereas 
the greatest recall rate and average precision were found 
in segment 1 (91.80% and 93.37%, respectively). In 
addition, the smallest accuracy was found in segment 
15(87.91%) and the smallest recall rate and average pre-
cision were found in segment 13 (76.96% and 80.17%, 
respectively).

Validation of the neural network
Figure 3 was an example predicted by AI and segments 
of all lesions were identified accurately. In ROC analysis 
of the validation set, sensitivity, specificity, and AUC of 
SA were 93.8%, 97.6%, and 94.1%, respectively (Fig.  4a). 
The sensitivity, specificity, and AUC of HLA were 88.9%, 
93.0%, and 94.3%, respectively (Fig.  4b). The sensitiv-
ity, specificity, and AUC of VLA were 91.7%, 96.8%, and 
96.1%, respectively (Fig. 4c).

As demonstrated in Fig. 5, when comparing both sen-
sitivity and specificity with those of AI, all interpreters 
showed statistically significant differences in the ran-
dom validation set (all P-value < 0.05). Table  5 showed 
the comparison of sensitivity among AI, beginner, inex-
perienced, and experienced interpreters in the random 
validation set. The beginner had the largest sensitivity in 
the SA (99.15%, 95% CI: 97.33 ~ 99.78%), HLA (98.35%, 
95% CI: 94.87 ~ 99.57%), and VLA (98.30%, 95% CI: 
96.14 ~ 99.31%). However, there was no statistically sig-
nificant difference between the beginner and AI in SA. 
The sensitivity of the experienced interpreter was larger 
than that of AI in HLA and there was a statistically sig-
nificant difference (P-value < 0.001), but lower than those 
of AI in both SA and VLA (P-value of SA < 0.05, P-value 
of VLA > 0.05). In comparison, the inexperienced inter-
preter had the lowest sensitivity among all interpreters in 
both SA and VLA and there were statistically significant 
differences when comparing with AI (P-value < 0.001). 

Table 2 Training metrics of the short axis

1 Anterior, 2 Anteroseptal, 3 Interseptal, 4 Inferior, 5 Inferolateral, 6 Anterolateral

Accuracy (%) Recall (%) Average 
precision 
(%)

1 78.78 98.01 96.88

2 77.67 96.26 94.64

3 81.37 95.31 93.16

4 84.73 98.76 98.15

5 74.37 96.10 93.78

6 74.73 94.04 90.04

Table 3 Training metrics of the horizontal long axis

14 Septal, 17 Apical, 16 Lateral

Accuracy (%) Recall (%) Average 
precision 
(%)

14 66.20 88.50 81.90

17 79.32 92.77 90.34

16 70.83 88.85 87.02

Table 4 Training metrics of the vertical long axis

1 Basal anterior, 7 Mid anterior, 13 Apical anterior, 17 Apical, 15 Apical inferior, 10 
Mid inferior; 4 Basal inferior

Accuracy (%) Recall (%) Average 
precision 
(%)

1 90.32 91.80 93.37

7 89.36 85.14 86.47

13 88.02 76.96 80.17

17 94.64 84.13 88.51

15 87.91 81.92 85.39

10 90.91 86.33 88.30

4 92.69 87.57 88.71

Fig. 3 Lesions predicted by AI. a Short axis; b Horizontal long axis; c Vertical long axis



Page 6 of 10Zhang et al. BMC Medical Imaging           (2023) 23:84 

However, in terms of the HLA axis, it had the same sensi-
tivity as the experienced interpreter.

As shown in Table  6, the beginner had the smallest 
specificities in all three axes (4.17% in SA, 8.57% in 
HLA, 1.66% in VLA), and there were statistically signif-
icant differences compared with AI (all P-value < 0.001). 
Conversely, AI had the largest specificities in SA 
(98.61%, 95% CI: 91.46 ~ 99.93%), HLA (94.29%, 

95% CI: 85.27 ~ 98.15%), and VLA (97.24%, 95% CI: 
93.33 ~ 98.98%).Although the inexperienced interpreter 
and the experienced interpreter had the same specific-
ity in SA, it could be noticed that the specificities of 
the experienced interpreter were larger than those of 
the inexperienced interpreter in HLA and VLA. Addi-
tionally, the specificities of both the inexperienced and 
experienced interpreters had statistically significant dif-
ferences (all P-value < 0.05).

Fig. 4 ROC analysis of three different axes. a Short axis; b Horizontal long axis; c Vertical long axis

Fig. 5 Comparison of both sensitivity and specificity among different interpreters. a short-axis; b horizontal long-axis; c vertical long-axis

Table 5 Comparison of sensitivity among AI, beginner, inexperienced, and experienced in the random validation set

† P-value < 0.05
†† P-value < 0.001

() 95% confidence interval, SA Short axis, HLA Horizontal long axis, VLA Vertical long axis

AI (%) Beginner (%) Inexperienced (%) Experienced (%)

SA 98.30 (96.15 ~ 99.31) 99.15 (97.33 ~ 99.78) 79.04 (74.34 ~ 83.09) †† 93.77 (90.58 ~ 95.96) †

HLA 87.36 (81.44 ~ 91.66) 98.35 (94.87 ~ 99.57) †† 97.25 (93.36 ~ 98.98) †† 97.25 (93.36 ~ 98.98) ††

VLA 94.89 (91.89 ~ 96.85) 98.30 (96.14 ~ 99.31) † 85.51 (81.30 ~ 88.93) †† 92.61 (89.23 ~ 95.03)
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Consistency check showed that AI had the best 
agreement with the gold standard in all three axes 
(Cohen’s Kappa coefficients: 0.943 for SA, 0.754 for 
HLA, and 0.905 for VLA, all P-value < 0.001, Table  7). 
Likewise, the beginner had the smallest agreement with 
the gold standard (Cohen’s Kappa coefficients: 0.052 
for SA, 0.095 for HLA, and 0.013 for VLA; P-value of 
SA and HLA < 0.05, P-value of VLA > 0.05). Cohen’s 
Kappa coefficients of the experienced interpreter were 
smaller than those of AI but larger than those of the 
inexperienced interpreter (0.712 vs. 0.447 for SA, 0.804 
vs. 0.662 for HLA, and 0.827 vs. 0.630 for VLA, all 
P-value < 0.001).

In the time consumption analysis of the selected data-
set, it took AI 1673.23  s in SA, 1698.41  s in HLA, and 
1715.08 s in VLA to generate diagnoses, whereas it took 
the experienced interpreter 2348.67 s in SA, 2162.89 s in 
HLA, and 2352.98 s in VLA to give final prognoses. Also, 
the average time consumption of AI per axis was much 
less compared with that of the experienced interpreter 
(Supplementary Table  1). Figure  6 shows that AI com-
pleted the detective process mostly between 20 and 40 s 
in three axes. However, those numbers ranged largely 
from 20 to 60 s for the experienced interpreter.

Discussion
Due to the shortage of large-scale publicly available data-
sets containing SPECT images for the detection of CAD, 
the application of deep learning has not been thoroughly 
explored. This study described a clinical application of 
an AI-aid system with explainable predictions tested in a 
large, multicenter population with gated-MPI protocols. 
This system demonstrated significantly high predictive 
accuracy and clinical availability in all three axes.

Among all cardiovascular diseases, CAD is a major 
cause of morbidity and mortality among adults world-
wide and brings a heavy burden for the patients and their 
families [26]. In our cohort, more male patients received 
gated-MPI protocols (63.27% males vs. 36.73% females). 
This might be explained by the hypothesis that women 

Table 6 Comparison of specificity among AI, beginner, inexperienced, and experienced in the random validation set

† P-value < 0.05
†† P-value < 0.001

() 95% confidence interval, SA Short axis, HLA Horizontal long axis, VLA Vertical long axis

AI (%) Beginner (%) Inexperienced (%) Experienced (%)

SA 98.61 (91.46 ~ 99.93) 4.17 (1.08 ~ 12.50) †† 80.56 (69.20 ~ 88.59) †† 80.56 (69.20 ~ 88.59) ††

HLA 94.29 (85.27 ~ 98.15) 8.57 (3.53 ~ 18.35) †† 62.86 (50.43 ~ 73.86) †† 80.00 (68.39 ~ 88.26) †

VLA 97.24 (93.33 ~ 98.98) 1.66 (0.43 ~ 5.16) †† 78.45 (71.61 ~ 84.06) †† 91.16 (85.80 ~ 94.70) †

Table 7 Consistency check (diagnostic method vs. gold 
standard) of sensitivity and specificity in the random validation 
set

† < 0.05
†† < 0.001

SA Short axis, HLA Horizontal long axis, VLA Vertical long axis

Cohen’s Kappa

AI Beginner Inexperienced Experienced

SA 0.943 †† 0.052 † 0.447 †† 0.712 ††

HLA 0.754 †† 0.095 † 0.662 †† 0.804 ††

VLA 0.905 †† 0.013 0.630 †† 0.827 ††

Fig. 6 Comparison of time consumption distribution between AI and experienced interpreter. a short-axis; b horizontal long-axis; c vertical 
long-axis; statistical difference derived from Wilcoxon test
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often present with atypical symptoms and therefore con-
tinue to delay seeking treatment [27]. On the whole, the 
diagnostic age of CAD in females was larger than that 
of males (distribution peak at around 65-year-old for 
females and around 55-year-old for males). The increased 
number of elderly female patients might need targeted 
care.

The 17-segment model of the left ventricle, as an opti-
mally weighted approach for the visual interpretation of 
regional left ventricular abnormalities, has been widely 
used since it was proposed. In terms of the correspond-
ence between left ventricular 17 myocardial segments 
and coronary arteries, segments 1, 2, 7, 8, 13, 14, and 
17 are assigned to the left anterior descending coro-
nary artery distribution. Segments 3, 4, 9, 10, and 15 are 
assigned to the right coronary artery when it is dominant. 
Segments 5, 6, 11, 12, and 16 generally are assigned to the 
left circumflex artery [28]. Based on the research of Juil-
lière, Y., et  al., the most common segments of ischemia 
could be segment 1(anterior), segment 4 (inferior), and 
segment 17 (apical) [29]. Our study also revealed a similar 
distribution (15.52% for segment 1, 20.01% for segment 
4, 9.07% for segment 17). The higher abnormality ratio of 
segment 4 in our study might be explained by the higher 
involvement ratio of stenosis in the right coronary artery, 
compared with those of the left anterior descending cor-
onary artery or the left circumflex artery. Likewise, in a 
clinical trial of 215 patients conducted by Nordlund, D., 
et al., 39%of patients had left anterior descending artery 
occlusion, 49% had right coronary artery occlusion, and 
12% had left circumflex artery occlusion [30]. This was 
also consistent with the distribution of our analysis.

In SA, the training accuracy, recall rate, as well as 
average precision of segment 4 were larger than those 
of other segments (84.73%, 98.76%, and 98.15%, respec-
tively, Table  2). In HLA, segment 17 had the largest 
accuracy (79.32%), recall rate (92.77%), and average pre-
cision (90.34%), compared with other segments (Table 3). 
Similarly, the greatest accuracy was found in segment 
17 (94.64%) and the greatest recall rate and average pre-
cision were found in segment 1 of VLA (91.80% and 
93.37%, respectively, Table 4). The higher accuracy seen 
in these segments might be contributed from the rela-
tively larger number of lesions among these segments in 
the training set (segment 4 accounted for 22.20% in SA, 
segment 17 accounted for 49.52% in HLA, and 15.56% 
in VLA, Table 1). This indicated that a large number of 
lesions is essential for AI to extract enough features and 
subsequently increase the training accuracy of algorithm 
architecture. Some researchers also concluded that data-
sets with adequate sample size are one of the dominant 
factors in developing and training effective computer-
aided diagnosis algorithms [31, 32].

Apostolopoulos, I.D., et al. [33] proposed a method for 
automatic classification of polar maps based on a neural 
network named VGG16. The proposed model achieved 
a sensitivity of about 75.00% and a specificity of about 
73.43%. Arsanjani, R., et  al. [34] introduced a Support 
Vector Machine (SVM) algorithm in their study to pre-
dict the detection of ≥ 70% coronary artery lesions and 
their research yielded both relatively good sensitivity 
(84%) and specificity (88%) during validation. Betancur, 
J., et al. [35] developed an automatically predictive model 
to identify obstructive heart disease using deep learning 
and also achieved a good accuracy (AUC: 0.76 ~ 0.80). 
However, these studies did not incorporate different axes 
of the heart from MPI images as targeted training.

The results of our work highlight the capabilities of 
deep learning for classification tasks of nuclear medi-
cine imaging. On the validation set, sensitivity, specific-
ity, as well as AUC of all axes were all above 90% except 
for the sensitivity of HLA. On the random validation set, 
AI outperformed the beginner, the inexperienced inter-
preter, as well as the experienced interpreter, since it 
achieved both relatively larger sensitivities and specifici-
ties in all three axes (most P-value < 0.05, Tables 5 and 6). 
In terms of the comparison with the experienced inter-
preter, the proposed AI-aid system yielded a relatively 
equivalent performance of sensitivity. On the whole, the 
beginner had the largest sensitivities in all three axes 
(98.30 ~ 99.15%, Table  5). However, specificities in these 
axes were extremely low (1.66 ~ 8.57%). This suggested 
that the beginner could identify most of the ischemic 
lesions, but it resulted from the price of a large amount 
of false-positive lesions. Clinically, this situation must be 
avoided. However, even with a short period of training, 
this situation was not observed with AI, and therefore, 
this again confirmed the fact that AI, if with a proper 
design, has the intrinsically efficient learning capability 
in the classification of medical imaging. It could also be 
noticed that AI also had the best agreement in all axes 
(Cohen’s Kappa coefficients: 0.943 for SA, 0.754 for HLA, 
and 0.905 for VLA). These results suggest that the YOLO 
network, though an endeavor in our study, can be used as 
a promising approach in nuclear medicine. Several stud-
ies also confirmed the availability of it in medical imag-
ing, since it offers an excellent tradeoff between accuracy 
and efficiency [22, 36, 37].

There were three limitations to our study. First, since 
this was a retrospective study, acquisition parameters 
of different SPECT systems in different institutions had 
already been fixed to obtain good performance and could 
be adjusted to the exact same settings before model train-
ing. This might hamper the accuracy of the model to 
some extent but improve its robustness simultaneously. 
However, to minimize the impact of the input data, we 
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did use same reconstruction parameters to reconstruct 
these SPECT images. Second, the gold standard was set 
as the diagnostic report made by an agreement of two 
experienced interpreters because of the dilemma that not 
every patient received coronary angiography during hos-
pitalization on the one hand, and more MPI images were 
preferred to be used in the AI training process on the 
other hand. Third, due to the relatively limited number of 
lesions in the HLA, both sensitivity and specificity were 
inevitably lower than other axes in terms of the random 
validation set. Lower accuracy in some of the segments 
seen in this study might be partially be addressed by 
using a larger cohort in the next stage of our study. Last, 
the extent of ischemia was not included in our training 
because too many tags require much more samples in the 
training set. To achieve good accuracy in terms of both 
segment and extent of ischemia, further larger datasets 
will surely be required.

Conclusion
The AI system of our study showed excellent predictive 
accuracy, agreement, clinical availability, and efficiency in 
a large, multicenter population with gated-MPI protocols 
and therefore, might be potentially helpful to aid radiolo-
gists in clinical practice and develop more sophisticated 
models.
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