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Abstract 

Background  Treatment plans for squamous cell carcinoma of the head and neck (SCCHN) are individually decided 
in tumor board meetings but some treatment decision-steps lack objective prognostic estimates. Our purpose was 
to explore the potential of radiomics for SCCHN therapy-specific survival prognostication and to increase the models’ 
interpretability by ranking the features based on their predictive importance.

Methods  We included 157 SCCHN patients (male, 119; female, 38; mean age, 64.39 ± 10.71 years) with baseline head 
and neck CT between 09/2014 and 08/2020 in this retrospective study. Patients were stratified according to their 
treatment. Using independent training and test datasets with cross-validation and 100 iterations, we identified, ranked 
and inter-correlated prognostic signatures using elastic net (EN) and random survival forest (RSF). We benchmarked 
the models against clinical parameters. Inter-reader variation was analyzed using intraclass-correlation coefficients 
(ICC).

Results  EN and RSF achieved top prognostication performances of AUC = 0.795 (95% CI 0.767–0.822) and 
AUC = 0.811 (95% CI 0.782–0.839). RSF prognostication slightly outperformed the EN for the complete (ΔAUC 0.035, 
p = 0.002) and radiochemotherapy (ΔAUC 0.092, p < 0.001) cohort. RSF was superior to most clinical benchmarking 
(p ≤ 0.006). The inter-reader correlation was moderate or high for all features classes (ICC ≥ 0.77 (± 0.19)). Shape fea‑
tures had the highest prognostic importance, followed by texture features.

Conclusions  EN and RSF built on radiomics features may be used for survival prognostication. The prognostically 
leading features may vary between treatment subgroups. This warrants further validation to potentially aid clinical 
treatment decision making in the future.
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Background
Squamous cell carcinoma of the head and neck (SCCHN) 
is among the most common cancers worldwide [1] with 
a 5-year relative survival of 52.1% [2]. At baseline, the 
primary tumor and lymph nodes are assessed by con-
trast-enhanced computed tomography (CT) scans and/
or magnetic resonance imaging [3]. The clinical workup 
for staging and diagnosis further includes, for example, 
pathological confirmation, general clinical examinations 
as well as the strong recommendation to perform head 
and neck endoscopy and fluorodeoxyglucose-positron 
emission tomography [3]. The TNM Classification of 
Malignant Tumors (TNM) is based on the three alphanu-
meric codes T, N, and M to describe the primary tumor, 
regional lymph nodes, and metastasis, respectively and 
it is a known prognostic factor for patient survival based 
on disease stage [3]. Pre-treatment risk assessment 
is the cornerstone for effective treatment planning to 
achieve the best cure rates and lowest risk of morbidity 
[3]. Therefore, treatment plans are based on tumor (e.g. 
TNM stage) as well as patient (e.g. age) characteristics 
[3]. Treatment regimens are complex, i.e. single-modality 
treatment or variant combinations of surgery, radiation, 
chemotherapy and systemic therapy with and without 
potential optional steps [3]. The final treatment plan is 
a consensus finding of a multidisciplinary team includ-
ing various treatment disciplines (e.g. surgery, radiation 
oncology), diagnosis (e.g. radiology) and treatment sup-
port [3]. Two biomarkers are currently captured in the 
clinical practice guidelines [3] with prognostic (p16) 
or therapeutic (programmed death-ligand 1) value [3]. 
Recent advances in CT and magnetic resonance imag-
ing technologies, quantitative imaging biomarkers and 
artificial intelligence provide promising opportunities, 
especially in oncology [4]. CT and MRI may yield com-
plementary information; i.e. MRI may allow for quantita-
tive diffusion imaging but CT measures tend to be more 
stable which facilitates their implementation in artifi-
cial intelligence modeling [3, 5, 6]. Radiomics describes 
the transformation of images into mineable data and 
it has the potential to characterize tumor characteris-
tics beyond visual perception [7]. Radiomics biomarkers 
have shown promising results in characterizing different 
tumor types [8, 9] but there is no evidence yet in treat-
ment-specific survival prognostication of SCCHN.

We hypothesize that imaging biomarkers offer treat-
ment-specific prognostic capabilities in survival predic-
tion. Therefore, the goal of this study was to analyze the 
primary SCCHN tumor by means of radiomics features 
to evaluate the treatment-specific model performance 
and treatment-specific feature importance for continu-
ous survival prognostication. Furthermore, analysis and 
ranking of imaging features according to their predictive 

importance was carried out to improve the interpretabil-
ity of the model.

Methods
The local ethics committee of the Goethe University 
Frankfurt am Main, Germany approved this retrospective 
study (project number: 20–890) and waived informed 
written consent.

Study design
We screened a total of 4,608 consecutive patients 
for study inclusion. The screening cohort comprised 
patients who underwent contrast-enhanced CT imag-
ing of the head and neck between 09/2014 and 08/2020 
on one single CT system. Further inclusion criteria were 
(I) > 18 years of age, (II) 2 mm axial plane reconstruction, 
(III) baseline pretherapeutic imaging, (IV) histological 
confirmation of SCCHN (oral cavity, pharynx, larynx, 
nasal/sinus/nasopharyngeal). Exclusion criteria were (I) 
imaging artefacts affecting the tumor region, (II) insuf-
ficient visual delineation of the tumor, (III) post-biopsy 
hemorrhage in the tumor, (IV) incomplete scan proto-
col. Consequently, 157 patients (male, 119; female, 38; 
mean age, 64.39 ± 10.71  years) were evaluated. In Fig.  1 
we depict the STARD Flowchart of study inclusion and 
indicate the number of excluded patients for each cause. 
In Table 1 we summarize the clinical and epidemiological 
characteristics.

Reference standard
All tumors were histologically confirmed in the institu-
tion’s pathology department. The clinical data and tumor 
stage were extracted from the written reports and the 
consensus statements of multidisciplinary tumor board 
meetings. Overall survival was defined as the primary 
outcome measure.

CT acquisition and reconstruction
Examinations were performed on a third-generation, 
dual-source, dual-energy CT system (Somatom Force, 
Siemens Healthineers, Forchheim, Germany). After the 
acquisition of a scout, the image acquisition (caudocra-
nial direction) was performed during the venous phase 
following routine protocols: automatic start 70  s after 
the beginning of the contrast agent (Imeron 400, Bracco, 
Milan, Italy) injection (dose: 1.2  mL/kg of body weight, 
maximum volume: 120  mL, flow-rate: 3  mL/s) through 
a peripheral vein of the forearm. The X-ray tubes were 
operated with the settings: tube A, 90 kV, reference cur-
rent–time product of 90mAs; tube B, Sn150kV [0.64 mm 
tin filter], 69mAs (reference); rotation time, 0.25 s; pitch, 
0.7; collimation, 2 × 128 × 0.6  mm. Attenuation-based 
tube current modulation (CARE Dose 4D, Siemens) and 
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Fig. 1  STARD Flowchart of patient inclusion into the study. The study cohort comprised 157 patients which were enrolled into the respective 
subgroups as depicted. RCTX, radiochemotherapy
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Table 1  Demographics, clinical and epidemiological characteristics of included patients

Complete cohort Surgery cohort RCTX cohort Radiation cohort No therapy Therapy unclear 

Patients 157 (100%) 47 (29.94%) 57 (36.31%) 20 (12.74%) 17 (10.83%) 16 (10.19%)
  Male 119 (75.8%) 37 (78.72%) 42 (73.68%) 14 (70%) 11 (64.7%) 15 (93.75%)

  Female 38 (24.2%) 10 (21.28%) 15 (26.32%) 6 (30%) 6 (35.29%) 1 (6.25%)

Age at initial diagnosis (mean, std, 
years)

64.39 (+/- 10.71) 61.74 (+/- 9.24) 61.6 (+/- 9.49) 71.6 (+/- 12.14) 70.6 (+/- 10.86) 63.06 (+/- 11.86)

Tumor localization
  Outer nose and nasal cavities 8 (5.09%) 2 (4.25%) 2 (3.51%) 2 (10%) 0 (0%) 2 (12.5%)

  Oral cavity 36 (22.92%) 18 (38.3%) 5 (8.77%) 4 (20%) 5 (29.41%) 4 (25%)

  Tounge margin 1 (0.64%) 0 (0%) 0 (0%) 0 (0%) 1 (5.88%) 0 (0%)

  Oropharynx 51 (32.48%) 9 (19.15%) 23 (40.35%) 7 (35%) 7 (41.18%) 5 (31.25%)

  Hypopharynx 14 (8.92%) 1 (2.13%) 8 (14.04%) 3 (15%) 0 (0%) 2 (12.5%)

  Larynx 47 (29.94%) 17 (36.17%) 19 (33.33%) 4 (20%) 4 (23.53%) 3 (18.75%)

Carcinogen exposure 52 [105] (33.12%) 15 [32] (31.91%) 19 [38] (33.33%) 10 [10] (50%) 4 [13] (23.53%) 4 [12] (25%)

  Alcohol 3 [105] (5.77%) 1 [32] (6.67%) 1 [38] (5.26%) 0 [10] (0%) 1 [13] (25%) 0 [12] (0%) 

  Smoking 26 [105] (50%) 7 [32] (46.67%) 9 [38] (47.37%) 6 [10] (60%) 2 [13] (50%) 2 [12] (50%)

  Alcohol and smoking 23 [105] (44.23%) 7 [32] (46.67%) 9 [38] (47.36%) 4 [10] (40%) 1 [13] (50%) 2 [12] (50%)

Immunohistochemistry at initial diagnosisab

  CK 5/6b and p63b tested 99 [58] (63.06%) 30 [17] (63.83%) 39 [18] (68.42%) 14 [6] (70%) 11 [6] (64.71%) 5 [11] (31.25%)

    CK 5/6b and p63b positive 84 [58] (84.85%) 26 [17] (86.67%) 31 [18] (79.5%) 13 [6] (92.9%) 10 [6] (90.9%) 4 [11] (80%)

    CK 5/6b and p63b negative 15 [58] (15.15%) 4 [17] (13.33%) 8 [18] (20.5%) 1 [6] (7.1%) 1 [6] (9.1%) 1 [11] (20%)

  p16b tested 99 [58] (63.06%) 30 [17] (63.83%) 39 [18] (68.42%) 14 [6] (70%) 11 [6] (64.71%) 5 [11] (31.25%)

    p16b positive 27 [58] (27.27%) 6 [17] (20%) 13 [18] (33.3%) 3 [6] (21.43%) 2 [6] (18.2%) 3 [11] (60%)

    p16b negative 72 [58] (72.73%) 24 [17] (80%) 26 [18] (66.7%) 11 [6] (78.57%) 9 [6] (81.8%) 2 [11] (40%)

Gradingc

  CIS (carcinoma in situ) 6 [1] (3.85%) 0 (0%) 3 [1] (5.36%) 1 (5%) 0 (0%) 2 (12.5%)

  G1 5 [1] (3.21%) 3 (6.4%) 0 [1] (0%) 1 (5%) 1 (5.88%) 0 (0%)

  G2 118 [1] (75.64%) 37 (78.2%) 41 [1] (73.21%) 16 (80%) 13 (76.47%) 11 (68.75%)

  G3 24 [1] (15.38%) 7 (14.9%) 10 [1] (17.86%) 1 (5%) 3 (17.65%) 3 (18.75%)

  No grading providedd 3 [1] (1.92%) 0 (0%) 2 [1] (3.57%) 1 (5%) 0 (0%) 0 (0%)

TNM-Staging
  cTNM-Staging 
    cT1 19 (12.10%) 15 (31.91%) 2 (3.51%) 0 (0%) 1 (5.88%) 1 (6.25%)

    cT2 29 (18.47%) 11 (23.4%) 12 (21.05%) 4 (20%) 0 (0%) 2 (12.5%)

    cT3 32 (20.38%) 6 (14.63%) 12 (21.05%) 5 (25%) 5 (29.41%) 4 (25%)

    cT4 77 (49.04%) 15 (31.91%) 31 (54.39%) 11 (55%) 11 (22%) 9 (56.25%)

    cN0 52 (33.12%) 24 (51.06%) 10 (17.54%) 8 (40%) 4 (23.53%) 6 (37.5%)

    cN1 28 (17.83%) 12 (25.53%) 8 (14.04%) 2 (10%) 3 (17.65%) 3 (18.75%)

    cN2 55 (35.03%) 6 (12.77%) 31 (54.39%) 7 (35%) 5 (29.41%) 6 (37.5%)

    cN3 4 (2.54%) 0 (0%) 2 (3.51%) 0 (0%) 2 (11.76%) 0 (0%)

    cNX 18 (11.46%) 5 [42] (10.64%) 6 (10.53%) 3 (15%) 3 (17.65%) 1 (6.25%)

    cM0 148 (94.27%) 47 (100%) 53 (92.98%) 20 (100%) 13 (76.47%) 15 (93.75%)

    cM1 5 (3.19%) 0 (0%) 3 (5.26%) 0 (0%) 2 (11.76%) 0 (0%)

    cMX 4 (2.54%) 0 (0%) 1 (1.75%) 0 (0%) 2 (11.76%) 1 (6.25%)

  pTNM-Staginge 47 [110] (29.94%)

    pT 39 [118] (24.84%) 39 [8] (83%)

      pT0 1 [118] (2.56%) 1 [8] (2.56%)

      pT1 9 [118] (23.08%) 9 [8] (23.08%)

      pT2 13 [118] (33.33%) 13 [8] (33.33%)

      pT3 6 [118] (15.38%)  6 [8] (15.38%)

      pT4 10 [118] (25.64%) 10 [8] (25.64%)
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third-generation advanced modeled iterative reconstruc-
tion (ADMIRE, Siemens; strength level 3) with a medium 
smooth reconstruction kernel (Br40) was used. Images 
were generated in clinical routine using weighted aver-
ages from both detectors (60% low kV, 40% high kV spec-
trum). For each patient the volume CT dose index and 
the dose length product was recorded. All acquisitions 
were reconstructed as axial slices with 2 mm slice thick-
ness in clinical routine. For the radiomics analysis the 
2 mm axial images were exported in Digital Imaging and 
Communications in Medicine (DICOM) format.

Image preprocessing and segmentation
For the visualization and processing of the DICOM image 
stack we used the 3D Slicer software platform (http://​

slicer.​org, version 4.11.20200930) [10]. We resampled 
the images to a spacing of 1 mm × 1 mm × 1 mm employ-
ing B-spline interpolation (https://​www.​slicer.​org/​wiki/​
Regis​trati​on:​Resam​pling, supplementary methods 2 of 
Griethuysen et al. [11]) [10]. We did not perform further 
image manipulation as the Imaging Biomarker Standardi-
zation (IBSI) does currently not cover image preprocess-
ing [12]. One especially trained investigator (InB, 1 year 
of experience), manually delineated each tumor on a rep-
resentative 2D plane with the biggest tumor area, spar-
ing calcifications and air bubbles for radiomics analysis 
(Fig. 2). All segmentations were independently reviewed 
by a radiologist (SB, 3 years of experience, in-training) 
under the supervision of a board-certified radiologist 
(IrB, 10 years of experience). In case of disagreement, the 

Values in square brackets indicate non available data. a99 out of a total of 157 patients had an immunhistochemistry at initial diagnosis. Markers were stained on 
a patient-specific basis in clinical routine. bFirst introduced 11/2014. cA three-stage grading system was applied in clinical routine. dNo grading provided for p16 
positive squamous cell carcinoma of the oropharynx. ∆Only known in surgically treated patients (n = 47). Not every surgically treated patient received a determination 
of pTNM-, L-, V-, Pn- or R-status as determined in square brackets. Percentage values in round brackets indicate the percentage of the pTNM distribution within the 
surgery-cohort

Table 1  (continued)

Complete cohort Surgery cohort RCTX cohort Radiation cohort No therapy Therapy unclear 

      pTX 0 [118] (0%) 0 [8] (0%)

      pTis 0 [118] (0%) 0 [8] (0%)

    pN 39 [118] (24.84%) 39 [8] (83%)

      pN0 25 [118] (64.01%) 25 [8] (64.01%)

      pN1 6 [118] (15.38%) 6 [8] (15.38%)

      pN2 6 [118] (15.38%) 6 [8] (15.38%)

      pN3 2 [118] (5.12%) 2 [8] (5.12%)

      pNX 0 [118] (0%) 0 [8] (0%)

    pM 39 [118] (24.84%) 39 [8] (83%)

      pM0 39 [118] (100%) 39 [8] (100%)

      pM1 0 [118] (0%) 0 [8] (0%)

    L 30 [127] (19.11%) 30 [17] (63.83%)

      L0 24 [127] (80%) 24 [17] (80%)

      L1 6 [127] (20%) 6 [17] (20%)

    V 31 [126] (19.75%) 31 [16] (65.96%)

      V0 28 [126] (90.32%) 28 [16] (90.32%)

      V1 3 [126] (9.68%) 3 [16] (9.68%)

    Pn 30 [127] (19.1%) 30 [17] (63.83%)

      Pn0 27 [127] (90%) 27 [17] (90%)

      Pn1 3 [127] (10%) 3 [17] (10%)

  Resection margin 32 [125] (20.38%) 32 [15] (68.1%)

    R0 28 [125] (87.5%) 28 [15] (87.5%)

    R1 3 [125] (9.4%) 3 [15] (9.4%)

    RX 1 [125] (3.1%) 1 [15] (3.1%)

Local histologic follow-up 80 [77] (50.96%) 28 [19] (59.57%) 39 [18] (68.42%) 8 [12] (40%) 0 [17] (0%) 5 [11] (31.25%)

  Local relapse histologically 
confirmed

18 [77] (22.5%) 9 [19] (32.14%) 4 [18] (10.26%) 2 [12] (25%%) 0 [17] (0%) 3 [11] (60%)

  Local relapse histologically 
excluded

62 [77] (77.5%) 19 [19] (67.86%) 35 [18] (89.74%) 6 [12] (75%) 0 [17] (0%) 2 [11] (40%)

http://slicer.org
http://slicer.org
https://www.slicer.org/wiki/Registration:Resampling
https://www.slicer.org/wiki/Registration:Resampling
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case was discussed (InB, SB, IrB), the segmentation was 
deleted and the workflow was repeated. All investigators 
were blinded to the clinical data. The segmentation pro-
cess was repeated by a radiologist (SM, 3 years of experi-
ence, in-training) to analyze the inter-observer variance.

Features extraction
Within the 3D Slicer software platform we used the 
open-source extension PyRadiomics to extract the radi-
omics features [10, 11]. We used the default settings of 
PyRadiomics and extracted all original standard features 
from seven feature classes: Shape-based, First Order Sta-
tistics, Gray Level Co-occurrence Matrix (GLCM), Gray 
Level Run Length Matrix (GLRLM), Gray Level Size 
Zone Matrix (GLSZM), Gray Level Dependence Matrix 
(GLDM), Neighboring Gray Tone Difference Matrix 
(NGTDM) leading to 107 features per segmentation as 
previously described [13].

Evaluation of inter‑observer reproducibility
Intra-class correlation coefficients (ICC) were calculated 
for each feature to assess the reproducibility of measure-
ments [13] applying ICC3 of the Pingouin package [14] in 
Python. In short, ICC range from -1 (perfect anticorrela-
tion) to 1 (perfect correlation) and reproducibility can be 
defined as excellent (≥ 0.75), good (0.60 – 0.74), moder-
ate (0.40 – 0.59) or poor ≤ 0.39 [13].

Quantitative radiographic biomarkers to predict overall 
survival
We stratified our patient cohort (I, complete cohort) 
into subgroups depending on the therapeutic approach 
(II, surgery [with and without radiation and/or chem-
otherapy] vs. III, definite radiochemotherapy vs. IV, 

definite radiotherapy) to assess the dedicated perfor-
mance of radiographic biomarkers. All analysis were 
performed in Python 3.7.6, within Jupyter Notebook 
and respective open-source packages to ensure highest 
transparency and sustainability. Scikit-survival 0.16.1 
was used for the survival analysis [15]. We applied and 
compared two variant machine learning models for 
automatic feature selection and survival prediction. In 
model 1, we standardized the feature values to account 
for scale differences among features and applied an elas-
tic net (EN) with tuning of the penalty strength alpha 
applying grid-search. In model 2, we applied a Random 
Survival Forest (RSF) with permutation-based stratifi-
cation of feature importance. In order to rule out inter-
scanner variability, we limited the analysis to include 
only examinations from one single CT scanner and 
respectively, we had to analyze a rather small patient 
cohort and small patient subgroups. The stratification 
of patients in variant training and test datasets could 
highly impact the model performance. To account for 
this potentially confounding variability, we performed 
independent iterations with Monte Carlo cross-val-
idation with 100 random splits for both models. We 
identified and ranked the absolute features’ values 
according to the mean and median of the 100 iterations 
to obtain the top 10 feature signature (either ranked 
by the mean or by the median). We depict ranking by 
the mean and median of the 100 iterations to point out 
the high impact of the averaging strategy on the feature 
selection. Each iteration of each model was trained on 
an independent dataset of 75% of the data drawn at 
random and tested in the remaining 25%. In summary, 
this approach accounts for performance differences of 
the models based on the different stratifications of the 

Fig. 2  Region of interest circumscription. Computed tomography images of a representative patient to depict the workflow of region of interest 
definition (ROI). From left to right the original image and radiomics ROI are shown. Patient with T2N0M0 laryngeal squamous cell carcinoma who 
was treated with definite radiochemotherapy who was still alive at the last documented contact 945 days after the initial diagnosis
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training and test datasets and homogenizes the results 
facing small patient subgroups. In the EN (model 1) 
additional nested fivefold shuffled cross-validation 
was used within the training-dataset for grid-search 
hyperparameter tuning. In model 1, the penalizing EN 
allowed for automatic feature selection and we ranked 
each feature’s median and mean of the 100 iterations to 
analyze the feature importance. In model 2, we ranked 
the feature’s median and mean of each of the 100 itera-
tions according to the feature importance estimated by 
its permutation applying the ELI5 library (https://​eli5.​
readt​hedocs.​io/​en/​latest/​overv​iew.​html). We illustrate 
the workflow of the model implementation in supple-
mentary material S1. To analyze the potential comple-
mentary value of the signature features we performed 
correlation analyses. Of note, we use the term AUC to 
describe the Cox-Survival (Harrel’s) C (AUC).

General statistical analysis
Statistical analyses were performed in Python, using the 
Pingouin package [14]. Further statistics and graphical 
illustrations were performed in Microsoft Excel (Micro-
soft Corporation) and Affinity Designer 1.8.5.703 (Serif 
(Europe) Ltd). The sample size was the result of including 
all eligible patients since the installation of the used CT 
scanner in our department.

Data availability
The datasets used and/or analyzed during the current 
study are available from the corresponding author on 
reasonable request. We calculated the radiomics qual-
ity score for our study and yielded a score of 16 (https://​
radio​mics.​world/​rqs, supplementary material S2) [16].

Results
Study population
Our study population comprised 157 patients (male, 119; 
female, 38; age, 64.39 ± 10.71) who received baseline CT 
acquisition at a single CT scanner. Patients were treated 
with surgery (n = 47 with and without additional RT or 
RCTX), definite RCTX (n = 57) or definite RT (n = 20). 
In 16 patients, the treatment was unclear and 17 patients 
refused therapy. The latter two patient subgroups were 
excluded from dedicated subgroup analyses due to their 
small patient size. In total, 78.3% [123/157] of survival 
data records were censored. The proportion of censoring 
was pronounced after 2 years of follow-up (supplemen-
tary material S3). We depict the patient characteristics 
in Table 1 and Kaplan-Meier survival plots for each sub-
group in supplementary material S4.

Overall survival prognostication performance using elastic 
nets and random survival forests
The EN and RSF demonstrated variant prognostic per-
formance depending on the analyzed subgroup (Table 2, 
Figs. 3 and 4). The complete cohort had moderate prog-
nostic power (EN, AUC = 0.71 [95% CI 0.70–0.73]; RSF, 
AUC = 0.75 [95% CI 0.73–0.76]). The models showed 
moderate prognostic power for the surgery cohort (EN, 
AUC = 0.67 [95% CI 0.63–0.72]; RSF, AUC = 0.68 [95% 
CI 0.63–0.72]). The EN could not predict RCTX and RT 
treated patients’ survival accurately (AUC = 0.56–0.59). 
The RSF could weakly predict the survival of the RCTX 
cohort (AUC = 0.65 [95% CI 0.62–0.68]). No survival 
prognostication was seen for the RSF analyzing the RT 
cohort (AUC = 0.51 [95% CI 0.42–0.60]). The RSF prog-
nostic performance was superior to the EN for the com-
plete cohort (p = 0.002) and the RCTX cohort (p < 0.001).

Benchmarking against non‑invasive clinical parameters
We benchmarked the quantitative imaging features based 
EN and RSF against EN and RSF models based on clini-
cal information (sex, age, cTNM stage) (Table  2, sup-
plementary materials S5 and S6). The clinical models 
achieved a performance of AUC = 0.45–0.63 for EN and 
of AUC = 0.58–0.79 for RSF. The quantitative EN model 
had a significantly better performance for all cohorts 
(p < 0.001) except the RCTX and RT cohort (p = 0.42; 
0.43). The quantitative RSF model had a significantly bet-
ter performance for all cohorts (p ≤ 0.006) except the RT 
cohort. A combined model comprising the quantitative 
imaging features and clinical features did not improve the 
performance of the quantitative imaging models (p ≥ 0.07 
for all features, Table 2, supplementary materials S7 and 
S8).

Feature importance using elastic nets and random survival 
forests
As we assumed that the radiographic differences which 
influence the overall survival differ according to the ther-
apeutic strategy and machine learning model, we ranked 
and compared the features’ importance values to depict 
the top 10 non-zero features. The EN tended to favor one 
dedicated feature for each subgroup, especially when 
using the median as averaging strategy. This highlights 
the high variation of feature importance depending on 
the different stratification of patients in the iterated train/ 
test splits (if a feature has a median of zero it means that 
the feature did not have any predictive importance in 
more than half (> 50) of the model’s iterations). In EN 
(Fig. 3) the top ranked feature was a shape feature for the 
complete cohort (Sphericity) and RCTX (Elongation). In 
the surgery cohort, the top ranked EN feature was part 

https://eli5.readthedocs.io/en/latest/overview.html
https://eli5.readthedocs.io/en/latest/overview.html
https://radiomics.world/rqs
https://radiomics.world/rqs
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of the gray level run length matrix features (LongRun-
HighGrayLevelEmphasis). The RSF revealed larger sets 
of features with an importance coefficient >0 and more 
subtle differences between the ranked feature importance 
(Fig.  4). In RSF the top ranked feature was a shape fea-
ture for the complete cohort (Maximum2DDiameterCo-
lumn), surgery cohort (Maximum2DDiameterRow) and 
RCTX (Elongation). In the RT cohort the best ranked 
feature was Contrast (GLCM). Of note, the surgery 
and RT cohort did not yield any non-zero feature in the 
median ranked approach. To analyze the complementary 
information of lower ranked features we computed cor-
relation analyzes of the top 10 mean ranked features for 

EN and RSF (Figs. 5 and 6). In both models a multitude of 
features are not strongly correlated (Figs. 5 and 6) depict-
ing their potentially contributing value in the individual 
iterations.

In the clinical benchmark importance analysis, cT4, 
cT3 and cN3 yielded the highest EN importance and 
cT4 and patient age yielded the highest importance in 
the RSF model (supplementary materials S5 and S6). In 
the combined features (clinical and quantitative imaging) 
importance analysis, clinical features were found among 
the top ranked features, especially in EN (supplemen-
tary materials S7 and S8). The clinical benchmark char-
acteristics revealed minimal correlation (supplementary 

Table 2  Model performance for the EN, RSF, benchmark and combined (quantitative imaging features and benchmark) models

The Cox-Survival (Harrel’s) C (AUC) with the respective confidence interval is shown for each model and subgroup for the training and test dataset. For statistical 
analysis two-sided, independent Student’s t-test was performed comparing the iterated AUC values of the test dataset

AUC​ Cox-Survival (Harrel’s) C, EN Elastic net, RCTX Radiochemotherapy, RT Radiotherapy, RSF Random survival forest

Cohort AUC test 95% CI AUC train 95% CI p(test) vs RSF p(test) vs 
Benchmark or 
combined

EN

  Complete 0.711 0.695–0.728 0.799 0.793–0.805 0.002  < 0.001

  Surgery 0.672 0.627–0.718 0.778 0.751–0.804 0.938  < 0.001

  RCTX 0.560 0.527–0.593 0.827 0.808–0.846  < 0.001 0.420

  RT 0.585 0.516–0.653 0.778 0.748–0.808 0.158 0.434

EN Benchmark

  Complete 0.632 0.613–0.650 0.745 0.730–0.760

  Surgery 0.445 0.404–0.486 0.772 0.741–0.804

  RCTX 0.578 0.546–0.611 0.789 0.771–0.808

  RT 0.621 0.560–0.681 0.776 0.751–0.801

RSF

  Complete 0.746 0.731–0.760 0.948 0.946–0.949  < 0.001

  Surgery 0.675 0.629–0.721 0.950 0.946–0.954 0.006

  RCTX 0.652 0.622–0.681 0.938 0.935–0.942 0.002

  RT 0.507 0.422–0.591 0.897 0.887–0.907  < 0.001

RSF Benchmark

  Complete 0.669 0.651–0.686 0.827 0.823–0.830

  Surgery 0.578 0.526–0.630 0.809 0.797–0.821

  RCTX 0.575 0.538–0.613 0.858 0.852–0.865

  RT 0.788 0.734–0.842 0.818 0.803–0.833

EN combined

  Complete 0.799 0.793–0.805 0.798 0.792–0.805  < 0.001 0.065

  Surgery 0.645 0.604–0.685 0.795 0.770–0.819 0.335 0.369

  RCTX 0.555 0.525–0.586 0.842 0.820–0.864  < 0.001 0.853

  RT 0.595 0.527–0.664 0.833 0.803–0.864 0.601 0.828

RSF combined

  Complete 0.759 0.745–0.772 0.949 0.948–0.951 0.215

  Surgery 0.673 0.632–0.714 0.953 0.947–0.958 0.944

  RCTX 0.650 0.615–0.684 0.943 0.939–0.956 0.924

  RT 0.568 0.488–0.647 0.904 0.895–0.912 0.298



Page 9 of 15Bernatz et al. BMC Medical Imaging           (2023) 23:71 	

materials S9 and S10). The combined model’s character-
istics revealed weak correlations (supplementary materi-
als S11 and S12).

Inter‑observer variance
Radiomics feature robustness was assessed by intra-cor-
relation analysis and yielded excellent mean results for all 
feature classes (supplementary material S13 depicts the 
box whisker plots and detailed ICC values). Mean feature 
class ICC values ranged from 0.77 (std 0.19, GLSZM) to 
0.96 (std 0.04, shape). Two radiomic features had ICC 
values <0.4 (poor, LargeAreaHighGrayLevelEmphasis, 
LargeDependenceHighGrayLevelEmphasis) (supplemen-
tary material S14). The EN never ranked poor features in 

the median averaging approach among the top 10 non-
zero features. The EN and RSF never ranked features 
with poor ICC among the top 3 most important features. 
Poor ICC features were among the top 10 ranked features 
in the surgery (rank 7) and RCTX (rank 4) cohort of the 
EN and the surgery cohort (rank 8) of the RSF.

Discussion
Artificial intelligence (AI) is able to integrate and synthe-
size high-dimensional data [4]. Narrow-task AI applica-
tions need to be interpretable to bridge the translational 
gap [4]. Squamous cell carcinoma’s of the head and neck 
potentially multi-modal treatment is complex bear-
ing optional treatment steps and the risk of long-term 

Fig. 3  Top 10 elastic net features with importance ranking. Box-Whisker Plots depict the importance coefficient of each feature for each subgroup 
either ranked according to the mean (A) or median (B) of the Monte Carlo 100 random split cross-validation. In (C) the Cox-Survival (Harrel’s) C 
(AUC) is shown for each 100× iterated model. Only features with an importance coefficient >0 are shown
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toxicities [3]. AI might yield the potential to aid clini-
cal decision making at best to improve patient outcome. 
Our data demonstrate that the quantitative image analy-
sis of standard-of-care baseline CT examinations has 
the potential to predict the overall survival of head and 
neck carcinoma patients. We were able to demonstrate 
that a random survival forest was superior to an elastic 
net for overall survival prognostication. The random sur-
vival forest-model, trained on quantitative image data 
was superior to the respective clinical benchmark. We 
ranked the image features according to their importance 
for each model in order to improve the interpretability 
of the models. In penalizing models, ranking of feature’s 

importance according to the iterated median seems to 
improve the interpretability of the model to a higher 
degree than following a mean-ranking approach. Shape 
features had the highest prognostic impact followed by 
higher dimensional radiomics features.

Radiomics’ prognostic potential in head and neck can-
cer patients was shown in numerous studies [9, 17–19]. 
Welch et  al. [17] demonstrated that signature radiom-
ics features might be surrogates of tumor volume and 
they urged refinement of radiomic methodology by pro-
posing a set of safeguards to promote sustainable radi-
omic research. In our work we followed the proposed 
safeguards [17]. We benchmarked our models against 

Fig. 4  Top 10 random survival forest features with importance ranking. Box-Whisker Plots depict the importance value of each feature for each 
subgroup either ranked according to the mean (A) or median (B) of the Monte Carlo 100 random split cross-validation. In (B) the surgery and RT 
cohort did not yield any non-zero feature in the median ranked approach. In (C) the Cox-Survival (Harrel’s) C (AUC) is shown for each 100× iterated 
model. Only features with an importance value >0 are shown
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Fig. 5  Correlation matrix of the top ranked features of the elastic net. The correlation matrices of the top features ranked by mean of Monte Carlo 
100 random split cross-validation with elastic net are shown for each subgroup
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Fig. 6  Correlation matrix of the top ranked features of the random survival forest. The correlation matrices of the top features ranked by mean of 
Monte Carlo 100 random split cross-validation with random survival forest are shown for each subgroup
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clinical factors [17] to demonstrate potential superior-
ity of imaging biomarkers. We used a penalizing elastic 
net and a random survival forest ensemble method with 
ranking of features according to their model-importance 
to select the highest ranked imaging features with sub-
sequent analysis of multicollinearity and underlying 
dependencies [17]. The ranking of the features was done 
after 100 random iterations and we either used the mean 
or median of the features’ importance value. The averag-
ing strategy had a high impact on the feature’s rank. In 
our cohort, most features that were low ranked apply-
ing the mean as averaging method did not yield any 
importance in more than 50% of the iterations using an 
EN (as depicted by a median = 0). Thus, one might pro-
pose using the median as averaging strategy as it seems 
to depict a clearer image of the high degree of varia-
tion in feature importance in different train/test splits. 
This might be a result of the cohort and subgroup sizes 
but also a feature intrinsic effect and we urge caution in 
interpreting studies with similar size if only one train/test 
split was performed. Nevertheless, the median averag-
ing approach might disguise whole feature sets of simi-
lar importance, e.g., if three features perform equally well 
each random split might pick one feature randomly and 
each feature could obtain an importance value >0 in less 
than 50% of the iterations. Consequently, one would dis-
miss the whole feature set in the median approach. That 
contrast (GLCM) was the top ranked feature in the RT 
cohort was potentially the result of bias facing a small 
patient subgroup size with approx. 50% right censoring. 
We did not pre-exclude features with poor ICC in order 
to analyze the capability of our models to automatically 
exclude non-robust features. In three models (EN, 2; RSF, 
1) features with poor ICC were ranked among the top 
10 most important features, but never among the top 3, 
indicating that most of the models worked well in auto-
matically excluding potentially non-robust features. The 
prognostic performance of our results (AUC = 0.71–0.75 
for our best working models) are in line with prior stud-
ies, i.e. Aerts et al. [9] had a performance as measured by 
the Concordance Index (CI) as generalization of the AUC 
from 0.69 and Patel et al. [19] revealed performances of 
0.79 in a combined clinical and radiomics model. In line 
with Welch et al. [17] the majority of our models ranked 
shape features with highest feature importance. Con-
trary to Welch et al. [17] and in line with the radiomics 
hypothesis [7] and further studies [9, 19, 20] our results 
indicate that radiomics features beyond shape features 
inherit complementary value which might be neces-
sary to build high performing machine learning models. 
We provided novelty by following the recently proposed 
pathway of clinical AI translation in designing narrow-
task AI applications [4] – we designed each model for 

each therapeutic subgroup. Our results indicate that 
variant treatment subgroups’ prognostication depends 
on variant radiomics features. This finding does not only 
promote the interpretability of the models to path the 
way of bridging the translational gap but also shows the 
potential of radiomics to aid clinical decision making. 
We hypothesize that radiomics imaging biomarker could 
aid in the stratification of patients into respective treat-
ment strategies i.e. if a patient might present with imag-
ing traits that are associated with diminished survival 
in one but prolonged or unaffected survival in another 
treatment-specific survival-model. Large prospective 
multicenter studies are necessary to stratify generaliz-
able feature candidates for aiding treatment selection 
and to path the way of integrating radiomics in clinical 
tumor board meetings. Our study has limitations that 
warrant discussion. First, the retrospective nature of our 
study might inherit selection bias. To obtain a reasonably 
sized study cohort for machine learning development, we 
included SCCHNs with variant localizations and HPV-
status though known variation in outcome [2, 3, 21]. To 
analyze treatment-specific imaging biomarkers we strati-
fied subgroups which tended to be small sized and hence 
the generalizability of the subgroup results should not be 
overstated. Right-censored data is a common problem 
in survival analysis and availability of more uncensored 
survival data would have been favorable. Last, to rule 
out inter-scanner variability we had to perform a single 
center approach, though this approach might reduce gen-
eralizability of our results.

Conclusions
In conclusion, this work demonstrates that standard of 
care baseline CT imaging of SCCHN patients can be used 
for the computational extraction of imaging biomarkers 
that allow treatment specific outcome prognostication. 
These biomarkers may provide objective response esti-
mates as additional tool to facilitate and improve indi-
vidualized tumor board consensus. Imaging biomarkers 
were superior to clinical features in outcome prediction. 
Treatment specific imaging biomarker importance rank-
ing might yield the potential to serve as a tool in clinical 
practice in aiding stratification of patients into appropri-
ate treatment arms to improve outcomes.
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