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Abstract 

Purpose  Multiple myeloma (MM), the second most hematological malignancy, have been studied extensively in the 
prognosis of the clinical parameters, however there are only a few studies have discussed the role of dual modalities 
and multiple algorithms of 18F-FDG (18F-fluorodeoxyglucose) PET/CT based radiomics signatures for prognosis in MM 
patients. We hope to deeply mine the utility of raiomics data in the prognosis of MM.

Methods  We extensively explored the predictive ability and clinical decision-making ability of different combination 
image data of PET, CT, clinical parameters and six machine learning algorithms, Cox proportional hazards model (Cox), 
linear gradient boosting models based on Cox’s partial likelihood (GB-Cox), Cox model by likelihood based boosting 
(CoxBoost), generalized boosted regression modelling (GBM), random forests for survival model (RFS) and support 
vector regression for censored data model (SVCR). And the model evaluation methods include Harrell concordance 
index, time dependent receiver operating characteristic (ROC) curve, and decision curve analysis (DCA).

Results  We finally confirmed 5 PET based features, and 4 CT based features, as well as 6 clinical derived features 
significantly related to progression free survival (PFS) and we included them in the model construction. In various 
modalities combinations, RSF and GBM algorithms significantly improved the accuracy and clinical net benefit of pre-
dicting prognosis compared with other algorithms. For all combinations of various modalities based models, single-
modality PET based prognostic models’ performance was outperformed baseline clinical parameters based models, 
while the performance of models of PET and CT combined with clinical parameters was significantly improved in 
various algorithms.

Conclusion  18F‑FDG PET/CT based radiomics models implemented with machine learning algorithms can sig-
nificantly improve the clinical prediction of progress and increased clinical benefits providing prospects for clinical 
prognostic stratification for precision treatment as well as new research areas.
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Background
The second most prevalent hematologic malignancy is 
MM. It is a plasma cell disorder characterized by aber-
rant monoclonal plasma cell (PC) proliferation in bone 
marrow (BM) [1]. It develops from monoclonal gammop-
athy of undetermined significance (MGUS), and under-
goes an intermediate phase known as smoldering MM 
(SMM), before advancing to active MM [2].

At present, MM is diagnosed using laboratory- and 
image-based assessments. The most widely utilized 
imaging methods for MM diagnosis are CT and PET/
CT. The bone and extraosseous symptoms of MM can 
be evaluated using PET/CT in terms of their presence, 
size, and metabolic activity [3]. 20% of newly diagnosed 
MM patients still have a dismal prognosis, despite recent 
improvements in new therapies for the survival of MM 
patients [4, 5]. Therefore, predicting MM patient prog-
nosis and treating them with precision can potentially 
enhance patients’ survival in the future [6]. In the clinics, 
cytogenetic examinations using bone marrow biopsy and 
aspiration are necessary for the prognostic stratification 
and precise treatment of MM patients [7]. However, this 
invasive procedure is often painful for the patients, and 
samples are difficult to obtain. There are times when an 
intrusive biopsy is ineffective on the first try and requires 
subsequent biopsies. Additionally, due to the heterogene-
ity of the obtained biopsy material, it may not be typical 
of the whole malignancy parts and only represents a tiny 
fraction of it.

Due to the limitations of conventional approaches 
outlined above, finding noninvasive ways of prognostic 
prediction among MM patients is a topic of significant 
research interest. There is a recent rise in using machine 
learning (ML) algorithms to predict patient prognosis 
based on radiomics features. This is a noninvasive and 
accurate mean of prognostic stratification, and it was 
previously reported in MM patients [8]. Schenone et al. 
employed ML algorithms to accurately stratify the out-
come of autologous transplanted MM patients based on 
CT radiomics features. This, in turn, assisted in designing 
proper personalized treatments for individual patients 
[9]. Although the Li et  al. study analyzed an ML model 
constructed from MRI-based radiomics features, in 
combination with a clinical model for MM, MRI is typi-
cally not the examination of choice for MM patients, 
and certain shortcomings still exist in this regard [3, 10]. 
Given these evidences, it is imperative to identify novel 
biomarkers for the accurate prediction of MM patient 
prognosis. Based on prior research, radiomics-based 
prognostic signatures have great potential in stratifying 
MM patients as either low- or high-risk. This information 
is crucial, particularly, for high-risk patients, who, with 
advanced therapy, may experience enhanced outcomes.

Furthermore, a multimodal application of ML has 
emerged in recent years that integrates radiomics fea-
tures from PET, CT, and so on to construct ML mod-
els. This approach facilitates a closer examination of 
the entire intra-heterogeneous tumor, rather than the 
limited information gathered from unimodal medical 
images [11]. Haider et al. used 5 machine learning algo-
rithms and multimodal model integrating both PET and 
CT features to analyze the relationship between oro-
pharyngeal squamous cell carcinoma and human pap-
illomavirus, with an area under the AUC of 0.78 [12]. 
Although there are related studies that predicted MM 
patient prognosis based on PET/CT imaging radiom-
ics features. However, to date, there are no reports on 
employing the multimodal radiomics features of PET 
and CT and multiple ML algorithms to predict MM 
patient prognosis. Hence, herein, we utilized the afore-
mentioned method to study prognosis and to enhance 
personalized patient care in order to better MM patient 
outcome [13, 14].

Materials and methods
Study population and clinical data
Patients with histopathologically proven MM who 
received a 18F-FDG PET/CT scan at our institu-
tion between February 2014 and October 2022 were 
involved in this retrospective analysis. Patients were 
included if: 1. Bone marrow samples that met the diag-
nostic criteria of the IMWG for multiple myeloma [15] 
were positive for the disease. 2. All patients’ complete 
clinical data were accessible. 3. Pre-treatment 18F-FDG 
PET/CT was performed. Patients were disqualified if: 
1. They have already had chemotherapy or autologous 
stem cell treatment before image scanning. 2. Image 
that clearly have artifacts. 3. Patients who also have 
other cancerous conditions. 4. The liver’s mean stand-
ardized uptake value (SUVmean) is outside the range of 
1.3 to 3.0 [16]. Clinical variables including gender, age 
at diagnosis, serum LDH level, Hemoglobin level, Glob-
ulin level, Albumin level, A/G level, Creatinine level, 
Glomerular filtration rate (GFR) level, calcium level, 
HCT level, Absolute Neutrophil count, Leukocytes 
count, red blood cells count, serum β2-microglobulin 
(B2M) level, R-ISS stage, ISS stage, cytogenetic abnor-
malities, and the patients’ individual regimens arms 
were observed. The term "progression-free survival" 
refers to the time between the original diagnosis and 
any subsequent progression, relapse, or death. And 
the criterias of progression and relapse are based on 
the International Myeloma Working Group consensus 
Criteria for Response and Minimal Residual Disease 
Assessment in Multiple Myeloma [17].
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Image acquisition
From participating sites, we collected baseline 18F-FDG 
PET/CT images in the DICOM format. Patients with 
normal blood glucose levels were asked to fast, stop 
receiving intravenous glucose, and avoid severe activ-
ity or extended exercise for  6  h before intravenous 18F-
FDG (3.7  MBq/kg) delivery. A hybrid PET/CT scanner 
(uMI780, United Imaging Healthcare, Shanghai, China) 
was used for all PET/CT imaging which included a low-
dose CT scan (current 120  mA; tube voltage 120  kV; 
matrix 512 × 512 pixels; slice thickness 3.00  mm; win-
dow width 300–500 HU; window level 40–60 HU) and 
a PET scan (with 1.5  min/position in 3D acquisition 
mode and 5–6 bed positions), and it performed less than 
one hour after radiotracer injection as part of the scan-
ning procedure. The PET image was reconstructed using 
attenuation iterative correction approach (Ordered Sub-
sets Expectation Maximization, OSEM) and the win-
dow width and window level of the CT images were set 
to 350 and 50 then submitted to the MedEx workstation 
together with fusion imaging once all the patient’s PET/
CT image parameters had been standardized.

Image segmentation and feature extraction
The radiomic profiles were obtained from the semi-
automatic delineation volumes of interest (VOIs) 
following normalization, discretion, and image resa-
mpling. To minimize the impact of varying slice 

thicknesses and voxel sizes on the radiomics pro-
file, decrease dependence of the radiomic profiles on 
voxel size, and ensure rotational invariance of textural 
profiles, while retaining the original intensity scale 
and meaning of voxel values, two distinct discretiza-
tion strategies were employed for the two quantitative 
functional imaging modalities (18F-FDG -PET and low 
dose CT) with fixed bin width (FBW) sizes (bin sizes 
for PET = 0.25; CT = 25) which may be more suitable in 
certain circumstances than a fixed bin number for com-
parative analysis by various modalities [18]. Based on 
the Image Biomarker Standardization Initiative (IBSI) 
criteria of image normalization and contrast prioritiza-
tion inside VOIs, we employed tri-linear interpolation 
to produce isotropic 3 × 3 × 3 and 2 × 2 × 2 mm voxels in 
PET and CT scans respectively. An example of deline-
ations of VOIs and the outline of the liver is shown in 
Fig. 1.

The radiomics features included Shape, the First 
Order Statistics (firstorder), Gray Level Cooccurence 
Matrix (glcm), Gray Level Dependence Matrix (gldm), 
Gray Level Run Length Matrix (glrlm), Gray Level Size 
Zone Matrix (glszm), and Neighbouring Gray Tone 
Difference Matrix (ngtdm). The image type includes, 
original image, wavelet filtering, square filtering, 
square root filtering, logarithm filtering, exponential 
filtering, gradient filtering transformed images, and 
LocalBinaryPattern2D, LocalBinaryPattern3D image 

Fig. 1  An example of delineation of VOIs and the outline of the gross liver of a 73-years-old male diagnosed with MM and ISS staging II, RISS 
staging II
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types. These algorithms for obtaining radiomics fea-
tures were according to the IBSI criteria [19].

PET and CT  imaging  were  assessed  and  delin-
eated  by  a  nuclear  medicine  physician  and  veri-
fied by another nuclear radiologist with 13 years of exten-
sive experience who was blind to the patients’ prognosis. 
The LIFEx(version 7.3.0;https://​www.​lifex​soft.​org/) [20] 
software was used to semi-automatically outline the VOIs 
which implemented a semi-automatic MTV protocol 
using a fixed threshold of 41% SUVmax and minimum 
absolute SUV 2.5 [16]. Bone marrow was considered 
involved if focal or multifocal lesions presented higher 
SUV than 1.5 (ratio of voxel SUV/liver SUVmax) uptake 
than the liver [21]. And gross liver was been manually 
delineated before the VOIs has been semiautomatically 
delineated. Non-tumor areas were manually erased  (e.g., 
kidney, bladder, brain tissue, trachea, dental cavities, 
arthritis).

For each patient, SUVmax, MTV, TLG, sMTV, sTLG 
were recorded. The VOIs were then applied to CT 
images by overlaid onto co-registered CT scans and 
non-bone areas in CT images such as muscles, air, and 
surrounding fat planes were manually erased. A total of 
1688 radiomic features from were extracted via PyRadi-
omics software(version 3.0.1) [22], and the Z-transform 
approach was used to normalize the obtained radiom-
ics feature values in order to eliminate the magnitude 
disparity.

Feature selection
Both CT, PET and clinical data were used feature 
screening special strategies as followed:1. To make 
the process of feature selection more clinically inter-
pretable, we used univariable cox regression for vari-
able screening with a threshold p-value < 0.05. 2. 
LASSO-penalized COX regression were used to pro-
cess high-dimensional radiomics data of CT and PET 
by compressing the coefficient with different penalty 
parameter λ, a fivefold cross validation was performed 
to determine the optimal value of Lasso penalty param-
eter λ. 3. Subsequently stepwise model selection with 
using the Alkaike information criterion (AIC) defined 
final key features in clinical data, PET, CT data respec-
tively, meanwhile verified the effects of multicollin-
earity of features selected using threshold Variance 
Inflation Factor (VIF) < 5. The VIF measures the sever-
ity of multicollinearity in multiple regression models 
[23]. It represents the ratio of the estimator variance of 
the regression coefficient to the variance when no lin-
ear correlation between the independent variables is 
assumed.

Model construction
We further investigated the impact of 6 ML methods, 
namely, Cox, GB-Cox [24], CoxBoost [25], GBM [26], 
RFS [27], and SVCR [28, 29]. The R software 4.2.0 was 
employed for all ML method implementations. The par-
ticular details of R packages involved in this research ML 
methods are summarized in the Additional file: Supple-
mentary Table 4.

Tunning of hyperparameters
The adjustment of parameters for sophisticated mod-
els like the GBM and RFS took a lot of effort, while the 
Cox approach did not require parameterization, so the 
hyperparameters that affects the effect of the model the 
most is selected. And some of these algorithms have sim-
ilar parameters such as number of trees and number of 
boosting steps so they are also in the scope of our tuning 
hyperparameters, and the range of hyperparameters are 
available at Supplementary Table  4. For each ML tech-
nique, the parameters were chosen from the combination 
of parameters that gave the greatest performance using 
the fivefold cross validation on a training fold with a grid 
search method.

Evaluation of multiple machine learning algorithms 
and multimodality models
To evaluate the effectiveness of various ML approaches 
on the resampled training/validation groups, the Harrell 
concordance index (C-index) analysis with confidence 
interval (CI) was utilized. The percentage of CI was 95% 
in this study. We used timeROC package to draw time 
dependent receiver operating characteristic (ROC) curve 
to study the accuracy of various models to predict from 
100 to 1600  days progress free time [30]. The clinical 
application prospects were analyzed with DCA nomo-
gram, decision curve analysis (DCA) evaluated the clini-
cal utility of different decision strategies was performed 
by calculating the net benefits for a range of threshold 
probabilities in the median follow-up time [31].

Statistical analysis
Due of the small dataset size, we created training and val-
idation groups using the bootstrap resampling approach 
(iterative resampling with replacement for 1000 times). 
The C-index obtained from resampled training and vali-
dation sets after 1000-times bootstraps. Time dependent 
ROC curves and DCA nomograms were obtained from 
the merged validation groups for each machine learning 
methods and modality combinations. The models were 
constructed on the training groups and internally vali-
dated using 1000 bootstrap samples to avoid overfitting. 

https://www.lifexsoft.org/
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Besides, the survival curves evaluated the discontinuous 
variables by the Kaplan–Meier algorithm and significance 
was compared by the log-rank tests between groups. 
Spearman’s rank-order correlation was used to measure 
correlation-ship between two continuous variables which 
do not obey the normal distribution, while Pearson’s cor-
relation was used for normal distribution continuous 
variables. Comparisons of C-index were performed for 
each 1000 resampling and on the fused 1000 resampling 
validation set data by Student’s t-test and a one-shot non-
parametric approach respectively. Continuous variables 
are described using means and standard deviations, and 
categorical variables are demonstrated with percentages.

Results
Study samples
The 121 patients with MM who underwent 18F-FDG 
PET/CT exams at our facility between February 2014 and 
October 2022 were initially included in this retrospec-
tive study. However, 98 patients were ultimately enrolled 
in this study after meeting the inclusion and exclusion 
criteria. The median PFS time were 25.9  months (95% 
CI, 23.8—29.5  months). And the baseline clinical char-
acteristics of the included patients were summarized in 
Table 1.

Feature selection
Firstly, by univariate Cox proportional regression analy-
ses, and the threshold for p-value was less than 0.05, we 
screened 11 clinical parameters, 266 features derived 
from PET radiomics features, and 408 features derived 
from CT which were significantly associated with PFS. 
Then lasso-cox regression with optical lasso with penalty 
parameters λ screened 10 PET-based radiomics features, 
7 CT-based radiomics features (Supplementary Table 1/ 
Supplementary Fig. 1). Finally, we used the AIC to select 
finalized features via a step-down backward process from 
the multivariate regression model, and 5 PET-based fea-
tures, and 4 CT based features, as well as 6 clinically 
derived features, were finally identified (Table  2). The 
final VIF values and the correlation heatmap verified 
that there was no significant covariance among the final 
15 identified features (Fig.  2/Table  2). In addition, fea-
tures including ISS_staging, RISS_staging, and adverse 
prognostic cytogenetics status which were from clinical 
parameters were evaluated by Kaplan–Meier analyses. 
(Supplementary Fig. 2).

To make the screened features clinically interpretable, 
we used two methods to assess the impact of features 
on patient prognosis. 1. Hazard ratio (HR) based on a 
linear equation of the Cox proportional hazards model. 
HR denotes the odds ratio of individual features in the 
linear equation, reflecting the speed of the occurrences 

of outcome events, greater than 1 indicates the faster 
the time to the occurrence of the outcomes (Table 2). 2. 
Nonlinear model based on random forests for a survival 
model, it supplies a detailed insight into the nonlinear 
relationship of each characteristic’ level concerning mor-
tality (PFS outcomes), and the mortality was calculated 
on the median duration of follow-up (Fig. 3).

Assessment and comparison of models
The training and validation sets are generated by 1000 
iterations of resamples implemented with the “boot-
strap” method, and on the training and validation sets, 
the model’s C-index is evaluated. We identified whether 
there were statistical differences for CT, CT + CLI, PET, 
and PET + CLI modalities when compared with clini-
cal parameters respectively in the fused 1000 validating 
groups. And both statistical methods (Student’s t-test 
and a one-shot nonparametric test) showed significance 

Table 1  Baseline clinical characteristics of patients

Riss Revised-International Staging System based staging, B2M β2-microglobulin, 
ISS International Staging System, HCT Hematocrit, A/G ratio Albumin/ Globulin 
(Ratio), GFR Glomerular filtration rate, LDH Lactate dehydrogenase

Continuous variables are represented by the mean ± standard deviation, while 
categorical variables are expressed as percentages

Adverse prognosis cytogenetics Status: FISH analysis confirmed del(17p), t 
(4;14), t (14;16), add 1q21;

Characteristics Level Statistic

Gender female 48 (49.0%)

male 50 (51.0%)

Age_at_diagnosis years 60.0 (± 10.6)

LDH U/L 222.1 (± 128.5)

Hemoglobin g/L 95.2 (± 24.3)

Globulins g/L 50.0 (± 27.8)

Albumin g/L 37.0 (± 7.4)

A/G ratio 1.1 (± 0.7)

Creatinine μmol/L 115.6 (± 109.3)

GFR ml/min 77.5 (± 51.5)

Calcium mmol/L 2.5 (± 0.4)

HCT 0.3 (± 0.1)

Absolute Neutrophils 10^9/L 3.5 (± 1.7)

Leukocytes 10^9/L 5.7 (± 2.2)

Red blood cells 10^9/L 3.2 (± 0.8)

B2M mg/L 7.3 (± 6.2)

ISS_staging I 25 (25.5%)

II 29 (29.6%)

III 44 (44.9%)

Adverse prognostic cytogenetics 
status

No 57 (58.2%)

yes 41 (41.8%)

RISS_staging I 23 (23.5%)

II 46 (46.9%)

III 29 (29.6%)
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Table 2  Finalized features screened from the step 3 incorporated in the model construction

Riss Revised-International Staging System based staging, B2M β2-microglobulin, ISS International Staging System, HCT Hematocrit, A/G ratio Albumin/ Globulin (Ratio), 
GFR Glomerular filtration rate, LDH Lactate dehydrogenase

Adverse prognosis cytogenetics Status: FISH analysis confirmed del(17p), t (4;14), t (14;16), add 1q21

Feature_names VIF HR P-value

Adverse prognostic cytogenetics status 2.633 2.197 0.00018

RISS_Staging 3.645 2.482 0.00009

Red blood cells 4.372 0.613 0.01988

Albumin 4.173 0.447 0.00009

B2M 3.687 1.426 0.00472

Absolute Neutrophils 2.336 0.597 0.03329

wavelet.LLL_firstorder_10Percentile_PET 2.48 1.796 0.00396

exponential_glcm_InverseVariance_PET 2.766 1.995 0.00068

lbp.2D_firstorder_InterquartileRange_PET 4.352 1.470 0.00569

lbp.3D.k_glcm_MCC_PET 2.307 1.479 0.03082

original_shape_MajorAxisLength_PET 4.638 1.777 0.00408

original_shape_MinorAxisLength_CT 3.794 1.704 0.00233

original_ngtdm_Busyness_CT 3.335 1.378 0.00529

exponential_glszm_SmallAreaLowGrayLevelEmphasis_CT 1.52 0.492 0.00273

wavelet.HLH_gldm_SmallDependenceEmphasis_CT 1.765 0.552 0.01432
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(p < 0.001) in all 6 algorithms except for the SVRC 
algorithm constructed PET based radiomics model 
when compared with clinical parameters based model 
(P = 0.4824: a one-shot non-parametric test, P = 0.3468: 
Student’s t-test).

The pictures depicted the performance of 6 ML meth-
ods (in columns) and 5 different modalities combinations 
(in rows) on the 1000 times merged training/validation 
bootstrap sampling (Fig.  4). It’s interesting to observe 
that the best model was the combined model of the RSF 
algorithm, clinical parameters, and PET-based radiom-
ics features in validation groups (Average CI: 0.880, 
95% CI: 0.878–0.881) (Supplementary Tables  2  and  3), 
and the model of the combination of GBM algo-
rithm, clinical parameters, and CT based radiomics 
had a leading C-index in training groups respectively. 

(Average CI: 0.961, 95% CI: 0.961–0.962) (Supplementary 
Tables 2 and 3).

And a heatmap with clustering showed the average 
C-index of various combinations, indicating that GBM 
and RSF algorithms performed consistently, and Cox 
and CoxBoost algorithms performed comparably but 
not as well as the former two algorithms. The combi-
nation of clinical parameters with PET or CT is more 
accurate than either one alone to predict the PFS for 
myeloma (Fig. 4).

The time ROC depicts the change in AUC values 
within the varying in follow-up time (Fig.  5). Time-
dependent ROC analysis indicated that for each algo-
rithm, performance for the prediction of prognosis can 
be greatly improved with the addition of PET or CT fea-
tures to clinical parameters during the follow-up time. 

Fig. 3  Random forests for survival model based estimations of relationship of finalized features’ level with mortality (PFS outcomes). The vertical axis 
displays the ensemble predicted value (mortality representing estimated risk for an individual), while x-variables (clinical, PET and CT based features) 
are plotted on the horizontal axis
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Fig. 4  A-B Heatmaps with clustering illustrates the average performance of predictive ability of different algorithms and different modalities of 
1000 bootstrap iterations in training groups and validation groups respectively.The similar performance of modalities and algorithms are considered 
to belong to the same cluster in the clustering analysis

Fig. 5  A-F time dependent ROC nomogram depicted the performance for predicting PFS of Cox, RSF, GBM, SVRC, CoxBoost, GB-COX algorithms 
respectively. The vertical axis displays the area under the receiver operating characteristic curve (AUC), and time of follow-up are plotted on the 
horizontal axis
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Single-modality PET models demonstrated higher pre-
diction accuracy than clinical parameters in the late dur-
ing the mid- to late-term follow-up time.

The decision curve analysis for the individualized pre-
diction models is presented in Fig.  6, decision curve 
showed that except for the DCA curve of the SVRC algo-
rithm and the combination CLI + CT in COX regression, 
both CT + PET and PET + CLI improve the clinical deci-
sion-making for patients, the threshold probability based 
on CT + PET and PET + CLI was better than that in the 
clinical strategies. However, The DCA of CT- or PET-
based models alone does not exhibit a higher net benefit 
of decision-based on nomogram compared to clinical 
parameters based models.

Discussion
At present, the role of 18F-FDG PET/CT in diagnostics 
and response evaluation criteria among MM patients 
has reached an extremely significant level of evidence for 
clinical decision making, prognosis determination, and 
treatment response evaluation [32–34]. However, only 
a few prior studies have examined the prognostic values 
of radiomics features in MM. Using the Cox regression 
model, Yang et al. confirmed that the radiomics profiles 
of bone marrow MRI exhibit obvious correlation with 

MM patient OS. Moreover, the predictive performance 
of radiomics-based signature is far superior to the tra-
ditional clinical model [10]. Ludivine Morvan et al. pro-
vided a novel radiomics feature selection protocol for 
18F-FDG PET-based radiomics in MM patients, and they 
emphasized the advantages of employing image-based 
characteristics (including, textural profiles) for disease 
progression estimation [35]. In addition to the prognos-
tic investigations, 18F-FDG PET/CT-based radiomics 
have been used in other different application of areas in 
MM. In comparison to human specialists, the radiom-
ics model showed a significant improvement in diagnos-
tic capacity. For example, the PET radiomics measure is 
quite effective in differentiating between bone metastases 
and vertebral MM [36]. However, to our knowledge, this 
report is the first to utilize CT and PET-based radiomics 
features, as well as combined clinical parameters imple-
mented with multiple ML methods, to predict prognosis 
of MM patients. We employed a total of 10 image types 
and 8 features types in this study, and fully explored the 
radiomics features of PET/CT in MM patients in detail.

The bootstrap method was used in this study. Boot-
strap is a common statistical method that uses repeated 
resampling of data samples to generate larger sample 
sets, thereby avoiding the limitation of small sample 

Fig. 6  A-F DCA nomogram depicted the clinical net benefit of treat all, none treatment, and treatment of different modalities for Cox, RSF, GBM, 
SVRC, CoxBoost, GB-COX algorithms respectively
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sizes. Similar bootstrap procedures were implemented 
in studies of Yilong Huang et al. [37], Wen L et al. [38], 
and Mostafa Nazari et al. [39]The significant differences 
between the clinical models and the radiomics models 
were compared using two statistical methods [40]. Using 
multiple feature screening methods, we retained the fea-
tures with clinical interpretability while eliminating the 
multicollinearity among features.

Based on our analysis, the late RISS, ISS staging, high-
risk genetic status, anemia, high serum globulin level, and 
low albumin levels were strongly associated with shorter 
PFS, which corroborates with published clinical trials and 
findings within clinical practice [34, 41]. PET-based fea-
tures original_shape_MinorAxisLength, original_shape_
LeastAxisLength_PET, MTV, sMTV demonstrated 
relevancy of PFS in the step1 for MM progress in this 
study. However, they were excluded from analysis during 
the feature selection step 2 due to the multicollinearity 
because the coefficients became 0 at the optimal penalty 
parameter. Our rationale was that these features simul-
taneously reflected high tumor burden and late tumor 
stage, and thus, depicted the magnitudes of the tumors.

The exclusion of CT-based features such as wavelet.
HHH_gldm_SmallDependenceEmphasis and wavelet.
HLH_gldm_SmallDependenceEmphasisCT was due to 
their extraction process from the same feature type of 
radiomics feature and the same type of filter of image, 
with only different combinations generated by using 
high-pass and low-pass filters in each of the three dimen-
sions. Thus, these features also exhibit high collinearity 
and were therefore excluded from the analysis.

Other factors that are known to impact MM progno-
sis are high level LDH, hypercalcemia, renal insufficiency, 
and baseline treatment arms, TLG and sTLG. However, 
in this study, these factors did not reach significance 
likely due to the limited data and unintentional selection 
bias. It is also possible that these factors have less prog-
nostic significance, compared to the other factors identi-
fied in this report, which is similar to the findings of the 
Yang Li et al. and Bastien Jamet et al. studies [10–13].

Using RSF and GBM algorithms, we further enhanced 
PFS accuracy in various modalities, and improved the 
overall clinical decision-making process. However, the 
overall GB-COX and CoxBoost algorithms accuracies 
did not improve significantly, compared to the multi-
variate COX regression models, yet they significantly 
improved the clinical decision-making ability in the 
combinations of PET + CLI and CT + CLI. Unlike the 
boosting-based algorithm,the decision tree-based algo-
rithm RSF/GBM was more prone to overfitting produc-
ing higher differences between the bootstrap training 
sets and the validation sets. However, the SVRC algo-
rithm achieved the lowest predictive performance in 

our systematic evaluation likely due to our feature 
selection steps, as such, this requires further explora-
tion in future investigations [35, 42, 43]. Furthermore, 
in this investigation, we observed that the PET-based 
radiomics features were better in predicting MM 
patient prognosis, compared to CT-based radiomics 
features. We also demonstrated that integrating the 
radiomics signature with patient clinical profile greatly 
enhanced the prognostic predictive ability of our 
model. Based on this evidence, the radiomics signature 
is critical for estimating patient prognosis. It not only 
provides prognostic efficiency of bone marrow PET/CT 
radiomics in MM patients, but also has potential for 
clinical risk classification. This report offers an essential 
supplementary reference for radiomics-based prognos-
tic models as we compared numerous ML methods for 
PFS estimation of MM patients. This large-scale com-
parison is beneficial for the accurate selection of ML 
methods for radiomics-based PFS estimation.

There were several restrictions on this work. First of all, 
because it was a single-center retrospective study, there 
could have been accidental bias in the patient selection 
process. As a result, our conclusions are not representa-
tive of the general population. Secondly, owing to a rela-
tively small patient population and absence of an external 
groups for validation, we employed the bootstrap tech-
nique for model assessment to circumvent the issue of 
limited sample population. We recommend that future 
investigations assess the proposed prognostic model 
among a large multicenter-recruited patient population, 
and validate the results in an external independent vali-
dation cohort.

Conclusion
18F-FDG PET/CT based radiomics models implemented 
with machine learning algorithms can significantly 
improve the clinical prediction of progress and increased 
clinical benefits providing prospects for clinical prognos-
tic stratification for precision treatment as well as new 
research areas.
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