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Abstract
Background In clinical practice, reducing unnecessary biopsies for mammographic BI-RADS 4 lesions is crucial. The 
objective of this study was to explore the potential value of deep transfer learning (DTL) based on the different fine-
tuning strategies for Inception V3 to reduce the number of unnecessary biopsies that residents need to perform for 
mammographic BI-RADS 4 lesions.

Methods A total of 1980 patients with breast lesions were included, including 1473 benign lesions (185 women 
with bilateral breast lesions), and 692 malignant lesions collected and confirmed by clinical pathology or biopsy. The 
breast mammography images were randomly divided into three subsets, a training set, testing set, and validation 
set 1, at a ratio of 8:1:1. We constructed a DTL model for the classification of breast lesions based on Inception V3 and 
attempted to improve its performance with 11 fine-tuning strategies. The mammography images from 362 patients 
with pathologically confirmed BI-RADS 4 breast lesions were employed as validation set 2. Two images from each 
lesion were tested, and trials were categorized as correct if the judgement (≥ 1 image) was correct. We used precision 
(Pr), recall rate (Rc), F1 score (F1), and the area under the receiver operating characteristic curve (AUROC) as the 
performance metrics of the DTL model with validation set 2.

Results The S5 model achieved the best fit for the data. The Pr, Rc, F1 and AUROC of S5 were 0.90, 0.90, 0.90, and 
0.86, respectively, for Category 4. The proportions of lesions downgraded by S5 were 90.73%, 84.76%, and 80.19% for 
categories 4 A, 4B, and 4 C, respectively. The overall proportion of BI-RADS 4 lesions downgraded by S5 was 85.91%. 
There was no significant difference between the classification results of the S5 model and pathological diagnosis 
(P = 0.110).

Conclusion The S5 model we proposed here can be used as an effective approach for reducing the number of 
unnecessary biopsies that residents need to conduct for mammographic BI-RADS 4 lesions and may have other 
important clinical uses.
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Background
Recent data demonstrate that female breast cancer 
accounted for approximately 11.7% of the total number 
of new cancer cases worldwide in 2020 and has surpassed 
lung cancer as the most commonly diagnosed cancer, 
with an estimated 2.3  million new cases [1]. Mammog-
raphy is an important imaging tool for breast cancer 
screening and diagnosis in clinical practice. In the fifth 
edition of the American College of Radiology’s Breast 
Imaging Reporting and Data System (BI-RADS) updated 
in 2013, BI-RADS category 4 lesions have a high likeli-
hood of being diagnosed as cancer (2–95%) and can be 
further divided into three subcategories: 4  A (malig-
nancy probability:>2–10%), 4B (malignancy probability: 
>10–50%), and 4 C (malignancy probability: >50%–<95%) 
[2]. The fifth edition of the BI-RADS recommends that 
“biopsy should be performed in the absence of clinical 
contraindication” for category 4 lesions [3]. Microcal-
cifications play an important role in the subclassifica-
tion of breast lesions; however, their judgement differs 
widely among physicians, particularly among residents 
in training. This practice may lead to unnecessary biopsy 
of a large percentage of BI-RADS category 4 lesions and 
impose a certain degree of economic burden and addi-
tional pressure on the patient [4]. Thus, there is signifi-
cant room for improvement in reducing unnecessary 
biopsies [5], and a new method that has higher specificity 
than classical methods is required to address this issue.

Deep transfer learning (DTL) is an effective strategy for 
adapting a pretrained neural network to a new domain. In 
contrast to traditional conventional visual image analysis, 
effective image features are automatically learned and 
extracted by DTL. Active research has been conducted 
on the application of DTL in terms of disease detection 
[6], classification [7–9] and evaluation of the response to 
different treatments [10, 11].

Montaha et al. [12] proposed a BreastNet18 model 
based on the fine-tuned VGG16 for diagnosing breast 
cancer from enhanced mammography images. The 
results showed that the BreastNet18 model reached a 
training accuracy of 96.72%, a validating accuracy of 
97.91%, and a test accuracy of 98.02%. It has been dem-
onstrated in this study that a high correct classification of 
breast cancer was achieved when dealing with a limited 
number of complex medical images.

In another study, Mahmood et al. [13] applied Con-
vNet + SVM model to differentiate breast masses in 
mammography images, and the model performed best 
with a discriminative training accuracy of 97.7%, contrary 
to this, VGG16 method yielded 90.2%, 93.5% for VGG19, 
63.4% for GoogLeNet, 82.9% for MobileNetV2, 75.1% for 

ResNet50, and 72.9% for DenseNet121. They concluded 
that the proposed model’s improvement and validation 
are appropriated in conventional pathological practices 
that conceivably reduce the pathologist’s strain in pre-
dicting clinical outcomes by analyzing patients’ mam-
mography images. Nevertheless, advanced pretraining 
strategies are important for deep learning-based classifi-
cation tasks [14].

In this study, we constructed a DTL model for the iden-
tification of breast lesions based on Inception V3, and 
different fine-tuning strategies were used to improve its 
performance. We focused on the potential value of the 
fine-tuned model in reducing the number of unnecessary 
biopsies that residents must perform for mammographic 
BI-RADS 4 lesions.

Methods
Mammography
Digital mammographic examinations were performed 
using a Senographe 2000D system (GE Healthcare). 
Automatic exposure mode was chosen, and the tube volt-
age was set to 34  kV. Standard craniocaudal (CC) and 
mediolateral oblique (MLO) positions were assumed by 
all patients; all glandular breast tissue was included, and 
bilateral symmetry was considered. The institutional 
review board approved this retrospective study and 
waived the requirement for informed consent. We con-
firm that all methods were performed in accordance with 
the relevant guidelines and regulations.

Study population
The study population consisted of patients admitted to 
our hospital between January 1, 2016, and June 30, 2021. 
All patients had complete pathological and mammogra-
phy data. A total of 1980 patients with breast lesions were 
included, including 1473 benign lesions (185 women with 
bilateral breast lesions), and 692 malignant lesions col-
lected and confirmed by clinical pathology or biopsy. The 
data are summarized in Table 1. Patients in the malignant 
group (55.39 ± 11.57 years) had a higher mean age than 
those in the benign group (41.64 ± 10.78 years) (P < 0.05).

Data preparation
Training and testing sets
Ultimately, 4330 images from 1980 patients were 
obtained, including 2946 (68.04%) benign images (and 
1384 (31.96%) malignant images. These images were 
randomly divided into the training set (2358 benign and 
1108 malignant), testing set (294 benign and 138 malig-
nant), and validation set 1 (294 benign and 138 malig-
nant) at a ratio of 8:1:1. Data augmentation (rotation 
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range 60°, shear range 0.2, zoom range 0.2, horizontal 
flip, vertical flip) was performed to increase the num-
ber of images in the training and testing sets before the 
beginning of training.

Validation set 2
Another 362 patients, diagnosed with BI-RADS 4 cat-
egory lesions by 5 residents, were used as the validation 
set. Of these, 151 patients were classified into category 
4 A, 105 into category 4B, and 106 into category 4 C. All 
residents were trained according to the fifth edition of 
the BI-RADS mammography criteria. All selected lesions 
were mass-like and were single lesions (lesions in either 
the left or right breast). Validation Set 2 was used to test 
the robustness of the DTL model. Two images (CC and 
MLO) for each lesion were used, and if one of the two 
images was classified correctly, we considered the patient 
to be classified correctly.

DTL diagram
The computer used to run the model contained an 
Intel(R) Core (TM) i7-10700  F CPU with an ASUS 
GeForce RTX 2060 6G GPU. The Python programming 
language (Python Software Foundation, version 3.6) was 
used for our analysis, and Keras (version 2.2.4) with Ten-
sorFlow (version 2.0) was used in the backend. All other 
processes were turned off while the program was run-
ning. The DTL model based on a pretrained deep learn-
ing network model (Inception V3, imported from Keras) 
is shown in Fig. 1. The training and testing processes of 
the DTL model were recorded using a computer.

We used binary cross-entropy as our loss function 
and the stochastic gradient descent (SGD) optimizer to 
minimize the loss, with an epoch parameter of 1000. In 
addition, the learning rate was 0.001, and the activation 
functions were ReLU and sigmoid, defined in Eqs. 1 and 
2:

 
Relu (x) = f (x) =

{
max(0, x), x ≥ 0

0, x < 0
 (1)

 
Sigmoid (x) = f (x) =

1
1 + e−x

 (2)

The data analysis process is divided into three parts: 
image network feature extraction, data training and test-
ing, and validation of the DTL model.

Fine-tuning strategy
We fine-tuned a total of 11 layers, they were Mixed 
0 ~ Mixed 10 layers, activated parameters correspond-
ing to these layers are from 6 to 536 to 21 802 784. We 
sought to improve the performance of the Inception V3 
model by devising 11 preset fine-tuning strategies. The 
parameters of the neural network were activated and 
participated in the model training process, whereas the 

Table 1 Clinical information of the patients
Pathological diagnosis Lesions Percent (%) Age (years)
Malignant lesions 55.39 ± 11.57

Invasive ductal carcinoma 587 84.83

Intraductal carcinoma 68 9.83

Invasive lobular carcinoma 13 1.88

Mucinous carcinoma 15 2.17

Lymphoma 3 0.43

Papillary carcinoma 6 0.87

Total 692 100.00

Benign lesions 41.64 ± 10.78

Cyst 144 9.78

Adenosis 228 15.48

Fibroadenoma 940 63.82

Chronic inflammation 61 4.14

Intraductal papilloma 88 5.97

Lobular tumor 12 0.08

Total 1473 100.00

Fig. 1 DTL diagram. The format of the input images was BMP. The process is divided into three parts: image neural network feature extraction, model 
training and testing, and model validation. The selected optimizer was the “Adam” optimizer, learning rate was 0.0001
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parameters of the layers that were kept frozen were not 
involved in training the model (Fig.  2). We selected the 
parameter convergence and generalization capacity as 
the primary outcome measures for the DTL models. A 
visualization of the activation heatmap in the DTL model 
is shown in Fig.  3. Activation heatmap were made as 
described in reference [15].

Network performance evaluation
To compare the performance of each model, five perfor-
mance indices were calculated as metrics in this study: 
accuracy (Ac), precision (Pr), recall rate (Rc), F1 score 
(F1), and area under the receiver operating characteristic 
curve (AUROC).

Fig. 2 Schematic diagram of fine-tuning strategies for Inception V3. There were eleven fine-tuning strategies in total. Note: Trainable params, the number 
of trainable parameters. Trainable layer: activated layers of the neural network. Non-trainable layer: frozen layers
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Ac =

TP + TN
TP + TN + FP + FN

 (3)

 
Pr =

TP
TP + FP

 (4)

 
Rc =

TP
TP + FN

 (5)

 
F1 =

2 × Ac × Rc
Ac + Rc

 (6)

In our study, positive and negative cases were assigned 
to the malignant and benign groups, respectively. Hence, 
true positive (TP) and true negative (TN) represent the 
numbers of correctly diagnosed malignant and benign 
lesions, respectively, while False positive (FP) and false 
negative (FN) indicate the number of incorrectly diag-
nosed malignant lesions and benign lesions, respectively.

Statistical analysis
Statistical analysis was performed using SPSS 23.0 
statistical software (IBM). The age of the patients is 

represented as mean ± standard deviation (−
x  ± s). One-

way analysis of variance (ANOVA) was used to analyze 
the variance between the two groups. We compared fre-
quencies by Chi-square test. Statistical significance was 
set at P < 0.05.

Results
Results for the training and testing sets
The results showed that the accuracy of the training set 
reached 100.00% for all fine-tuning strategies after 1000 
epochs; however, only strategy 5 achieved the best test 
accuracy of 82.16%. As the number of epochs for the 
training set increased, the training loss value decreased 
for all fine-tuning strategies. During the testing process, 
the test loss tended to increase for all fine-tuning strate-
gies except S5. This result suggests that of the fine-tun-
ing models, only S5 converged. We found that the test 
accuracy (82.16%) of S5 was the highest of all fine-tuning 
strategies, further illustrating that the S5 model was a 
better fit than the other models. Next, 10-fold cross-val-
idation was employed to evaluate the S5 model. We were 
surprised that the sizes of all H5 files saved by the 11 fine-
tuning strategies were the same. Furthermore,

Fig. 3 Class activation heatmap for a malignant lesion. a: input mammographic image; the white arrow shows a benign breast lesion. b: Heatmap of 
(a)c: Fusion image of a and (b) The large intensity of activation in the breast lesion reinforcement region is evident from the heatmap, which may reflect 
the difference between benign and malignant breast lesions identified by the convolutional neural network. The lesion was pathologically confirmed as 
a fibroadenoma
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as the number of parameters participating in the model 
training process increased, the time consumption also 
tended to increase.

Validation results for the fine-tuning strategies
The lesions of 362 patients diagnosed with BI-RADS 
4 were subjected to histopathology; of these, 294 were 
diagnosed with benign tumours, and 68 were diagnosed 
with malignant lesions. The overall malignancy rate (i.e., 
positive predictive value (PPV) of histopathology) was 
18.78%; according to subcategory, the rates were 9.93% 
(15/151) for category 4  A, 21.90% (23/105) for category 
4B and 28.30% (30/106) for category 4 C. The proportion 
of lesions downgraded by the S5 model was 85.91% for 
category 4 and 90.73%, 84.76% and 80.19% for categories 
4  A, 4B and 4  C, respectively. There was a statistically 
significant difference in the proportions of downgraded 
BI-RADS 4 A-C lesions; the proportion was significantly 
lower for 4 A than for 4B and 4 C (P < 0.05). There was no 
statistically significant difference in the BI-RADS 4 lesion 
classification between S5 and histopathology (P = 0.110). 
There was no statistically significant difference in the 
proportions of downgraded lesions among the five resi-
dents (P = 0.110). There was a statistically significant dif-
ference in the PPV for histopathology for 4  A, 4B and 
4 C lesions; the PPV for histopathology was significantly 
lower for 4 A than for 4B and 4 C lesions (P < 0.05). Fur-
ther details are provided in Table 2.

The classification report of the S5 model in validation 
set 2 is presented in Table 3. The Pr, Rc, F1, and AUROC 
values of the S5 model with validation set 2 were 0.90, 
0.90, 0.90, and 0.86, respectively. The AUROCs of the 
DTL model for 4 A, 4B, and 4 C lesions were 0.80, 0.89, 
and 0.85, respectively.

Discussion
A standard procedure has been developed to manage 
breast lesions in the BI-RADS atlas, which mandates 
providing a BI-RADS assessment category based on the 
most suspicious imaging features [3]. BI-RADS assess-
ment categories inform clinicians about the possibility 
of malignancy and how to manage breast lesions, and it 
is important for radiology residents to understand the 
lexicon so that they can effectively communicate breast 
imaging findings depicted on mammography [16].

Our data showed that the PPV for histopathology for 
4  A, 4B, and 4  C lesions was 9.93% (15 of 151) 21.90% 
(23 of 105) and 28.30% (30 of 106), respectively. The 
PPVs for 4 A and 4B were within the specified BI-RADS 
malignancy ranges, but the PPV for 4  C lesions was 
much lower than the corresponding malignancy range 
(50–95%), which could be due to the limited amount of 
data. In clinical practice, the diagnosis of BI-RADS cat-
egory 4 can be influenced by the clinical experience of Ta
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the radiologist, particularly that of residents, who limited 
experience makes them more inclined to over diagnose 
on the initial mammographic images. The overall PPV 
for histopathology for validation set 2 (362 patients) was 
18.78%, which is lower than the values reported in the lit-
erature [17], indicating that the residents tended to over 
diagnose the lesions in validation set 2. A method for 
downgrading BI-RADS category 4 lesions could further 
reduce the number of unnecessary biopsies for benign 
lesions as well as the financial burden on patients and 
medical resources can also be saved.

Continuous improvements in computer hardware and 
deep learning algorithms have helped AI make significant 
achievements in the field of medical auxiliary diagno-
sis. The transfer learning method is a validated tool for 
adapting a pretrained neural network to a new domain, 
particularly one with a smaller dataset. For example, in 
the field of medical image classification for rare and 
emerging diseases. The study of Zhou et al. [18] showed 
that Inception V3 model can effectively predict clinically 
negative axillary lymph node metastasis. A recent study 
assessed the diagnostic performance of six deep con-
volutional neural networks in classifying breast micro-
calcifcation in screening mammograms, result showed 
that the ResNet-101 model yielded a higher Ac (81.54%) 
than that of Inception V3(77.69%) [19]. Alom et al. [20] 
adopted the inception recurrent residual convolutional 
neural network model to classify the pathological picture 
of breast cancer and achieved a classification accuracy 
of 97.51%. Another study showed that the application 
of Inception V3 to meningioma apparent diffusion coef-
ficient (ADC) maps provided high diagnostic accuracy 
results, with an AUROC of 0.94 [21]. However, some 
studies reported different findings, with Inception V3 
achieving relatively low accuracies. For example, in the 
diagnosis of retinitis pigmentosa, the accuracy was only 
68.00%, which was lower than that of Xception (80.00%) 
and Inception Resnet V2 (75.00%) [22].

These data suggest that the results of Inception V3 can 
differ for different datasets. The results of another arti-
cle gave us confidence. Zhang et al. [23] adopted Incep-
tionV3 model to investigate its diagnostic efficiency in 
breast cancer in ultrasound images, result showed the 
AUC (0.913) of the InceptionV3 model was larger than 
that (0.846) obtained by sonographers. Our study showed 
that the accuracy of the default Inception V3 model 
(S0) was only 74.05% in our dataset. After fine-tuning 
using S5, the model achieved an accuracy of 82.16%.
This indicates that in our dataset, the training param-
eters of Inception V3 were not optimal, and use of only 
some of the parameters yielded the best results. This is 
inconsistent with the results reported by Singh et al. [24], 
who found that in the detection of critical enteric feed-
ing tube malpositioning on radiography, the pretrained 

Inception V3, which had an AUROC of 0.87, performed 
significantly better than the untrained Inception V3, with 
an AUROC of 0.60. Hence, there is room to further opti-
mize and improve the performance of Inception V3, but 
this requires more training data and the exploration of 
new and more feasible fine-tuning methods. Of course, a 
quality control program based on machine learning algo-
rithms is also important [25]. We expect to conduct such 
research in the future. Wang et al. [26] use a modified 
Inception-v3 architecture to assist radiologists in breast 
cancer classification in automated breast ultrasound 
imaging, their method achieved an AUROC value of 0.95, 
for which the sensitivity and specificity were 88.60% and 
87.6%, respectively.

One study showed that deep learning-based mammo-
gram calcification detection systems show high sensitiv-
ity and stability, which may help to reduce the miss rate 
for calcifications (especially in suspicious images)  [27]. 
The results of the present study showed that the propor-
tion of lesions downgraded by the S5 model was 85.91% 
for category 4 and 90.73%, 84.76% and 80.19% for cate-
gories 4  A, 4B and 4  C, respectively. There was no sta-
tistically significant difference in the BI-RADS 4 lesion 
classification between the S5 model and histopathology, 
which illustrates that the S5 model has the potential to 
improve the accuracy of mammography-based breast 
disease diagnosis in clinical settings. This is consistent 
with the results reported by Zhao et al. [28], who showed 
that with the help of deep learning software, the speci-
ficity, overall diagnostic performance, and interobserver 
agreement of the residents greatly improved, suggesting 
that the software can be used as an adjunctive tool for 
residents, downgrading 4a lesions to possibly benign and 
reducing unnecessary biopsies.

Our data also showed that there was a statistically sig-
nificant difference in the proportions of downgraded 
BI-RADS 4  A-C lesions; specifically, there were signifi-
cantly fewer downgraded 4  A lesions (90.73%) than 4 B 
(84.76%) and 4  C lesions (80.19%). This illustrates that 
for category 4 A, the likelihood of overdiagnosis is higher 
than that for 4B and 4  C in clinical practice. There are 
numbers of possible reasons for this observation. Archi-
tectural distortion and calcification morphology are the 
most significantly associated findings with the use of 
category 4 subdivisions [3, 17]. There are two points to 
note for category 4  A: ①Similar to adenomas, this cate-
gory may include a partially (< 75%) circumscribed solid 
mass. ②Coarse heterogeneous microcalcifications have 
a 7% likelihood of malignancy. Fine pleomorphic and 
amorphous calcifications have a 13–29% likelihood of 
malignancy and are typical signs of BI-RADS 4B. Fine 
linear and branching calcifications have a 53% likelihood 
of malignancy and support the diagnosis of 4 C. There-
fore, we believe that identification of the signs of 4 A is 
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relatively difficult for residents to master, while the signs 
of 4B and 4 C are relatively easy to grasp.

Several limitations of this pilot study must be acknowl-
edged. First, the number of images in the training set 
was relatively small, particularly due to the lack of rare 
lesions. Our training dataset also may not represent the 
entire population of breast disease patients, which may 
impact the accuracy of the DTL model. Therefore, fur-
ther analysis with additional data is necessary to fully test 
the robustness of the DTL model. Second, during routine 
diagnostic procedures, clinical evaluation, breast ultra-
sound, and magnetic resonance imaging are performed 
in addition to mammography. However, only static mam-
mographic images were used in our study. Third, the high 
performance achieved by our proposed model is based 
on the premise of high-quality mammographic images. 
In clinical practice, poor-quality images from other hos-
pitals may reduce the performance of the DTL model. 
Therefore, high-quality mammographic images obtained 
using standard procedures are highly warranted. A future 
study might require multicentre collaboration to obtain 
a sufficiently large series of data to train and test the 
neural network [29]. In terms of the time consumption, 
the training time increased with the number of train-
able parameters. However, this time consumption is 
acceptable.

Conclusion
An Inception V3 model with the S5 strategy can be 
used as an effective approach for downgrading mam-
mographic BI-RADS 4 lesions, enabling the avoidance 
of artificial subjective factors and reducing the number 
of unnecessary biopsies. However, this DTL model may 
need further refinement before it can be used in clini-
cal practice. In this study, we demonstrated its potential 
value for future clinical applications.

Abbreviations
AUROC  area under the receiver operating characteristic curve
CNN  convolutional neural network
ROC  receiver operating characteristic
DTL  deep transfer learning
BI-RADS  Breast Imaging Reporting and Data System
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PPV  positive predictive value
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