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Abstract 

Background  A variety of external factors might seriously degrade PET image quality and lead to inconsistent results. 
The aim of this study is to explore a potential PET image quality assessment (QA) method with deep learning (DL).

Methods  A total of 89 PET images were acquired from Peking Union Medical College Hospital (PUMCH) in China 
in this study. Ground-truth quality for images was assessed by two senior radiologists and classified into five grades 
(grade 1, grade 2, grade 3, grade 4, and grade 5). Grade 5 is the best image quality. After preprocessing, the Dense 
Convolutional Network (DenseNet) was trained to automatically recognize optimal- and poor-quality PET images. 
Accuracy (ACC), sensitivity, specificity, receiver operating characteristic curve (ROC), and area under the ROC Curve 
(AUC) were used to evaluate the diagnostic properties of all models. All indicators of models were assessed using five-
fold cross-validation. An image quality QA tool was developed based on our deep learning model. A PET QA report 
can be automatically obtained after inputting PET images.

Results  Four tasks were generated. Task2 showed worst performance in AUC,ACC, specificity and sensitivity among 
4 tasks, and task1 showed unstable performance between training and testing and task3 showed low specificity in 
both training and testing. Task 4 showed the best diagnostic properties and discriminative performance between 
poor image quality (grade 1, grade 2) and good quality (grade 3, grade 4, grade 5) images. The automated quality 
assessment of task 4 showed ACC = 0.77, specificity = 0.71, and sensitivity = 0.83, in the train set; ACC = 0.85, specific-
ity = 0.79, and sensitivity = 0.91, in the test set, respectively. The ROC measuring performance of task 4 had an AUC of 
0.86 in the train set and 0.91 in the test set. The image QA tool could output basic information of images, scan and 
reconstruction parameters, typical instances of PET images, and deep learning score.

Conclusions  This study highlights the feasibility of the assessment of image quality in PET images using a deep 
learning model, which may assist with accelerating clinical research by reliably assessing image quality.
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Background
Molecular imaging of positron emission tomography/
computed tomography (PET/CT) has played an impor-
tant role in nuclear medicine, such as noninvasive 
tumor diagnostic staging [1], efficacy evaluation [2], and 
research and development of new drugs [3]. However, 
high noise levels, missing or incomplete data, motion 
artifacts, inadequate preparation of patients, intrave-
nous injection failure, improper placement, and scan-
ning equipment miss-calibration might lead to the poor 
data quality of images and wrong conclusions [4], and the 
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typical images with insufficient level quality are shown 
in Fig. 1. Therefore, the clinical image quality control of 
PET/CT is essential for excluding the clinical images with 
poor quality resulting from any problematic processes 
and avoiding bias in nuclear medicine medical quality 
management.

The current traditional clinical image quality evalua-
tions in PET/CT rely on the subjective evaluation with 
naked eyes following the suggestions in literature [5–7], 
in which mean liver standardized uptake value  normal-
ized by lean body mass (SULs) are expected to be within 
1.0 to 2.2 (and mean liver standardized uptake values 
(SUVs) within 1.3 to 3.0) [5], and blood pool SUL meas-
urements are expected to close 1.2 (and blood pool SUVs 
around 1.6) [5–7]. However, visual judgment is time-
consuming, which is impractical for the evaluation of 
large-batch images[8]. For artificial quality control, some 
mistakes in settings of acquisition parameters are easy 
to be ignored. For example, the statistics are reduced, 
caused by the shortening of acquisition time [9]. More-
over, there is still a lack of objective and unified stand-
ards for artificial visual evaluation, and level differences 
in doctors can easily lead to evaluation bias. Therefore, 
a robust, minimally biased, and fully automated PET/
CT QA protocol is urgently needed. Convolutional neu-
ral networks (CNN) are a good option for the automatic 
medical image QA domain since they can robustly learn 
features without knowing a priori.

It is reported that the deep learning CNN technology 
has been used in different image quality automatically 

assessment systems, including optical coherence tomog-
raphy (OCT) images [10], retinal images [11], diabetic 
retinopathy screening [12], high-frequency ultrasound 
images [13], CT images [14] and 3D T1-weighted brain 
MRI images [15]. However, there is still limited research 
on DL in the automatic control of clinical image quality 
for PET/CT. In a study, two different CNN algorithms 
were combined to assess spatial misalignment com-
pared to a standard template, and the signal-to-noise 
ratio (SNR) difference compared to 200 static quality 
controlled 18F-fluorodopa (FDOPA) PET brain images 
from three different PET/CT scanners, in which 100% 
accurate QA classification was reported [16]. However, 
the 18F-FDOPA PET brain images are invalid to the qual-
ity control for full-body scans, and 18F-FDOPA is at the 
preclinical stage rather than 18F-FDG practical in clini-
cal application. Another preprint shows Elisabeth took 
EARL standards as a reference and first reported CNN 
to determine the image quality of a PET torso image, but 
it is worth mentioning that they utilized only 2D slices 
instead of 3D volumes of the whole.

The quality evaluation of clinical images in PET/CT 
is one of the main tasks of the National Nuclear Medi-
cine Quality Control Center in China, where the fully 
automatic quality control protocol for clinical images in 
PET/CT is still not available. To solve this problem, we 
carried out a series of studies on the quality evaluation of 
PET/CT clinical images. The contributions of this work 
are summarized as follows. First, the important charac-
teristic parameters were extracted from the original data, 

Fig.1  Typical 18F-FDG PET/CT images with insufficient level quality: a imaging of severe brown fat, b intravenous extravasation, c mismatch from 
external patient movement, d tissue over-attenuation from improper placement
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and a quality control process was designed. Then, based 
on the principle of quintuples and the visual judgment 
of clinical doctors, a deep learning model for automatic 
quality control for clinical images in PET/CT was con-
structed, which has the characteristics of multiple param-
eters generated and large quantities of data required 
to avoid over-fitting during the training process. This 
approach pays attention to automated quality assessment 
based on deep learning, which can automatically assess 
the quality of PET images, and aims to contribute to the 
improvement of workflow, better optimization of image 
acquisition, and enhancing physician efficiency. Finally, 

combined with the DL-based image quality assessment 
model, the final QA report will include basic image infor-
mation, scan and reconstruction parameters, a typical 
PET imaging example, and deep learning score.

Methods
Study design
The workflow of this study is presented in Fig.  2. This 
study included four major parts: (i) image acquisition, (ii) 
image preprocessing, (iii) modal training and cross-vali-
dation, and (iv) evaluation.

Fig.2  The workflow for this study
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Images
In this project, PET images previously obtained during 
the clinical assessment of various diseases were used to 
create the datasets utilized for this study. This project 
contains 89 PET images in clinical routine examination 
recruited retrospectively from the Peking Union Medical 
College Hospital (PUMCH) in China. The images were 
taken using a whole-body PET/CT scanner (Polostar 
NM680, SinoUnion Healthcare, Beijing, China), and the 
scanning conditions and parameters are set to be consist-
ent. The PET scanning protocol details were listed as fol-
lows. The imaging agent 18F-fluorodeoxyglucose (FDG) 
was produced by PUMCH, with a PH value is about 7.0 
and radiochemical purity > 95%. All image acquisition 
was carried out in a resting state in a quiet and dimly lit 
room. According to their weight, the patients were given 
0.15 mci/kg intravenous injections of 18F-FDG for a calm 
rest for 45–60 min. PET scan used 5–6 beds, 2 min per 
bed position, and the layer thickness was 5 mm. The PET 
images were attenuated by CT data and reconstructed by 
the ordered-subsets expectation maximization (OSEM) 

algorithm with 10 subsets and 3 iterations, and 4.5-mm 
full width at half maximum (FWHM) Gaussian post-
filtering. The matrix size of all PET reconstructions was 
192 × 192, with a pixel size of 3.15 mm × 3.15 mm. Finally, 
the reconstructed PET images were transmitted to the 
post-processing platform.

A total of 71 PET images were selected for the training 
set for this model. The validation set was composed of 18 
images for evaluating model performance. The ground-
truth quality for images was conducted by two radi-
ologists (with longer than 10  years of experience) with 
disagreements resolved by a third independent expert 
rad and classified into one of five grades (grade 1, grade 2, 
grade 3, grade 4, and grade 5). Grade 5 is the best image 
quality. This reference standard complies with the situ-
ation assessed by the following quality criteria based on 
5-point Likert scales [17–19] and is detailed in Table  1. 
The number of images from grade 1 to grade 5 was 
21(23.6%), 23(25.8%), 12(13.5%), 16(18.0%), 17 (19.1%). 
Typical examples from each grade are shown in Fig. 3.

Image preprocessing
Image preprocessing included several operations and 
was conducted using Python (version 3.8.8) and MONAI 
(version 0.8.1) software. Firstly, Z -scores were used to 
normalize the scores, which had a normal distribution 
(99% of data had Z -scores between − 2 and 2). Secondly, 
all images were resampled to 128 × 128 × 256 pixels and 
256 × 256 × 256 pixels, which were exported as input 
images. Thirdly, to increase the amount of training data, 
we used some transformations of the original training 
images [20]. Horizontal mirroring, rotations through ran-
dom angles (± 10 degrees), gamma correction, and elastic 
deformation were used to produce new synthetic images 
[21, 22]. In addition, each PET image was resampled to 

Table 1  A description of quality annotation standards

Quality label Description

Grade 1 Inability to distinguish organs and tissue structures or 
obvious streak artifacts

Grade 2 The outline of the organ structure is not clear, or there 
are a few artifacts

Grade 3 The outline of the organ structure is relatively clear, and 
the lesions can be displayed

Grade 4 The outline of the organ structure is clear and free of 
artifacts

Grade 5 Anatomical contours are displayed clearly and without 
artifacts

Fig.3  Examples of images with different qualities, including: a grade 1, b grade 2, c grade 3, d grade 4, and e grade 5
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isotropic spacing using linear interpolation to perform 
the model training or testing [23].

Deep learning
Deep learning (DL) is a relatively new approach and is 
one branch of machine learning. DL has been ubiqui-
tously applied in medical image analysis. The purpose of 
this study is to solve a five-class polyp classification prob-
lem. While, due to the very limited number of each grade, 
it is likely to cause bias and affect the accuracy of DL. 
Therefore, we merge data from five grades into two-class.

Finally, we generated four tasks, taking into account 
the resample of images and the quantity of each grade. 

Detailed information about each specific task in this 
study was described in Table 2.

Dense convolutional network (DenseNet)
DenseNet connects each layer to every other layer in a 
feed-forward fashion. Thus, DenseNet has several com-
pelling advantages: they alleviate the vanishing gradi-
ent problem, strengthen feature propagation, encourage 
feature reuse, and substantially reduce the number of 
parameters [24]. The overall architecture is shown in 
Fig. 4. A deep DenseNet with three dense blocks, where 
each dense block was multiple stacks of convolution, 
batch normalization, and ReLU activation layers. The lay-
ers between two adjacent blocks are referred to as transi-
tion layers and change feature map sizes via convolution 
and pooling.

Model training
This model also uses a 5 × 5 convolutional kernel, which 
has been shown to improve performance. The deep learn-
ing model was trained on the framework of Pytorch 1.10.1 
version and an NVIDIA Quadro P3200 graphics card 

Table 2  Grouping criteria for each task

Task Resample Class

Task1 128*128*256 1/2/3–4/5

Task2 256*256*256 1/2/3–4/5

Task3 128*128*256 1/2–3/4/5

Task4 256*256*256 1/2–3/4/5

Fig.4  An illustration of the architecture of the deep learning-based model. Residual blocks for a DenseNet and b Dense Block
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(NVIDIA, Santa Clara, CA) with 5  GB memory. A five-
fold cross-validation with 80% training and 20% validation 
from each independent training was chosen to avoid bias 
in the data set (Additional file 1: Table S1 lists the distri-
bution of data in training and validation sets for each fold 
of the cross-validation. Table  3 shows the image quality 
distribution for each of the different tasks using fivefold 

cross-validation in the training set and validation set.). The 
whole process is repeated 5 times such that all folds are 
used in the testing phase, and the average performance on 
the testing folds is computed as an unbiased estimate of 
the overall performance of the model, as shown in Fig. 5. 
In addition, the training loss function was binary cross-
entropy. The optimizer was the Adam optimizer with a 
learning rate of 10−5 . We set training iteration as 250 and 
run 1000 epochs on both the training set and testing set. 
We select polyLR as the learning rate, whose initial learning 
rate is 0.01.

Model performance
The automated classification in this study contains two 
classes, and we tested different multi-label classification 
algorithms. In this setting, the model classification perfor-
mance is assessed in each class. Two-class model perfor-
mance was determined by measuring the sensitivity (Sen), 
specificity (Spe), and accuracy (ACC) of all the introduced 
approaches. These parameters were calculated using Eqs. 
[25–28], where TP, TN, FP, and FN represent true positive, 
true negative, false positive, and false negative. Evaluation 
metrics were defined as follows:

(1)accuracy =
TP+TN

TP+TN+FP+FN

(2)specificity =
TN

TN+FP

(3)sensitivity =
TP

TP+FN

Table 3  Distribution of image quality in training and validation 
sets for different tasks

Task fold Grade Train (n) Validation (n)

1&2 0 1/2/3 44 12

4/5 27 6

1 1/2/3 43 13

4/5 28 5

2 1/2/3 48 8

4/5 23 10

3 1/2/3 44 12

4/5 27 6

4 1/2/3 45 11

4/5 27 6

3&4 0 1/2 36 8

3/4/5 35 10

1 1/2 34 10

3/4/5 37 8

2 1/2 37 7

3/45 34 11

3 1/2 35 9

3/4/5 36 9

4 1/2 24 10

3/4/5 38 7

Fig.5  Training and validation workflow of each DL model for grade classification
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Performance was also evaluated via a receiver operat-
ing characteristic (ROC) curve. The area under the ROC 
Curve (AUC) is a general measure of the accuracy of a 
diagnostic test [29].

PET QA report
An image QA tool was developed combining the DL-
based image quality evaluation model. First, the PET/CT 
images were inputted into the QA tool, where the image 
statistics are gathered for statistics control, and regis-
tration is performed to examine the motion artifacts in 
the images. Next, the input images were evaluated using 
the deep learning PET image quality assessment model. 
Finally, the report will give the results of the image qual-
ity assessment (Good or Poor). The final output includes 
basic image information, scan and reconstruction param-
eters, typical instances of PET images, and deep learn-
ing score. The basic information in the output report 
includes patient information (such as age, gender, height, 
and weight), examination information (such as drug 
injected, time of injection, the dose of injection, time of 
injection), and equipment.

Results
Deep learning performance
The programming and computations were performed 
using a computer with a CPU of an Intel(R) Xeon(R) Sil-
ver 4110 @ 2.10 GHz processor and Tesla V100 GPU sup-
port. The proposed method was tested on PET images 
with four different tasks. The performance indexes in the 
evaluation of each task were reported based on the sen-
sitivity, specificity, ACC, and AUC. We train all tasks by 
using the same training and testing strategy.

Figure 6 displays the ACC, AUC, sensitivity, and speci-
ficity for the four tasks over the fivefold cross-validation 
experiment in the training and testing data set. It can 
be seen that task 1 has the best overall performance 
(ACC = 0.87, Spe = 0.85, Sen = 0.90, AUC = 0.94), followed 
by task 4 in the training set. However, the specificity of 
task 4 was relatively poor at 0.71. Performances of task 
3 were similar to task4, even the ACC, AUC, and sensi-
tivity can outperform them on task 4. While the specific-
ity for task 3 is far too low at 0.54. In terms of grouping 
conditions, tasks 3 and 4 both classify grades 1 and 2 as 
a group with poor image quality, and classify grades 3, 4, 
and 5 as a group with good image quality. Therefore, we 
think that perhaps this way of grouping images may have 
relatively low specificity. With the results of the valida-
tion group, we found that only the performance of task 4 
can still maintain satisfactory results, and even improve 
the specificity to 0.8. Disappointingly, the performance of 
task 1 on the validation set dropped overall (ACC = 0.74, 

Spe = 0.77, Sen = 0.75, AUC = 0.79), and the model was 
relatively less stable. Based on the above results, we 
believe that task 4 is the model with the best comprehen-
sive performance among the 4 tasks.

Task 4 classifies the poor and optimal image qual-
ity successfully. Therefore, we describe here in detail 
the indicators of task 4, including all results in fivefold 
cross-validation. During five cross-fold validation, the 
best task was the task4 which reported an average AUC 
performance of 0.86, with a standard deviation of 0.06. 
The best-performing model of task 4 was used for sub-
sequent analysis and had an AUC on the internal test set 
of 0.92. Task 4 showed a sensitivity of 0.91 and specific-
ity of 0.80 for distinguishing between poor image qual-
ity (grade 1, grade 2) and optimal quality (grade 3, grade 
4, grade 5) images. The overall accuracy of our classifier 
was calculated to be 0.85 for poor image quality images 
versus optimal quality images. The performance of each 
fold was reported in Table  4. The performance of the 
task4 was analyzed using ROC (Fig. 7), and the confusion 
is shown in Fig. 8.

Case report
The PET QA report can be obtained after the user 
inputs PET images. Typical classification results of fun-
dus images are shown in Fig. 9, which shows the report 
of a poor quality of image generated by listmode data in 
reconstruction with one-third statistics. This reduction 
leads to an ultimately poor image quality assessed by a 
senior physician, which is consistent with the quality con-
trol report automatically generated by the quality rating 
system, confirming the usefulness of the PET image qual-
ity rating system. The typical instances of PET images 
and deep learning score in the case report can intuitively 
feedback the quality of images for the physicians who 
take charge of patient management. The scan needs to 
be repeated if the deep learning score shows poor result, 
such as Fig.  9. Moreover, the basic image information 
and scan and reconstruction parameters would guide the 
technicians to avoid the same failure in the repeated scan.

Discussion
Since the quality of PET images is essential for fur-
ther accurate data analysis, in this study, an architec-
ture based on a deep DenseNet was evaluated for the 
assessment of image quality in PET images. We com-
pared four tasks and verified their ability to assess the 
quality of PET images, respectively. Finally, we found 
that task 4 achieved the best performance in identify-
ing poor image quality (grade 1, grade 2) versus opti-
mal quality (grade 3, grade 4, grade 5) images where 
the images with grade 3 were also confirmed by three 
physicians and they were qualified in disease diagnosis. 
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Fig.6  ACC, AUC, sensitivity and specificity results over fivefold cross validation experiment in training (a) and testing (b). For task1, in the train set, 
AUC = 0.94, ACC = 0.87, specificity = 0.86, and sensitivity = 0.90. In the test set, AUC = 0.79, ACC = 0.74, specificity = 0.75, and sensitivity = 0.77. For 
task 2, in the train set, AUC = 0.51, ACC = 0.45, specificity = 0.35, and sensitivity = 0.62. In the test set, AUC = 0.51, ACC = 0.58, specificity = 0.45, and 
sensitivity = 0.73. For task 3, in the train set, AUC = 0.83, ACC = 0.74, specificity = 0.54, and sensitivity = 0.95. In the test set, AUC = 0.79, ACC = 0.67, 
specificity = 0.42, and sensitivity = 0.95. For task 4, in the train set, AUC = 0.86, ACC = 0.77, specificity = 0.71, and sensitivity = 0.83. In the test set, 
AUC = 0.91, ACC = 0.85, specificity = 0.79, and sensitivity = 0.91
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Task4 can provide rapid image classification and clini-
cally relevant image features that can be used to pro-
vide feedback on image quality. Furthermore, the 
proposed deep learning model demonstrates the abil-
ity to classify images into two specified quality grades, 
which can be further applied to a quality control sys-
tem to assist the automatic recognition of poor-quality 
images in the future. Thus, we developed a QA tool that 
uses the aforementioned deep learning method. The 
PET QA report obtained after inputting PET images 
can describe the information related to image quality in 
detail, which could help doctors to have a more com-
prehensive understanding of image quality.

Quality control of all medical images is critical, includ-
ing PET images. To date, the research on the quality 
control of medical images mostly focuses on the ultra-
sound image, retinal images, ultra-widefield fluores-
cein angiography (UWFA), or OCT [10, 15, 16, 30–32]. 
There are few reports on quality control of PET images 
and implementing PET quality control platforms. Cur-
rently, PET image quality was assessed by manually 
drawing a sphere of hepar and comparing the mean liver 
intensity value across patients. However, this manual 
method consumes a lot of handling manpower and time. 
Herein, we propose a novel method for PET image qual-
ity assessment based on deep learning. Although only 
a few studies have addressed attempted to achieve PET 

Table 4  Performance of different folds for task 4

AUC, area under the ROC Curve

Train Validation

Cross-fold Accuracy Specificity Sensitivity AUC​ Accuracy Specificity Sensitivity AUC​

0 0.85 0.78 0.91 0.93 0.83 0.75 0.90 0.79

1 0.69 0.71 0.68 0.78 0.83 0.90 0.75 0.93

2 0.76 0.68 0.85 0.89 0.94 0.86 1.00 0.99

3 0.83 0.80 0.86 0.89 0.89 0.89 0.89 0.96

4 0.81 0.68 0.92 0.84 0.77 0.60 1.00 0.93

Average 0.79 0.73 0.85 0.86 0.85 0.80 0.91 0.92

Fig.7  ROC curve for the training and validation set of task 4 for grade classification



Page 10 of 13Zhang et al. BMC Medical Imaging           (2023) 23:75 

image quality assessment based on deep learning, their 
inadequacies and shortcomings make them difficult to 
exert greater value in clinical applications. Elisabeth et al. 
[33] performed two CNNs trained to automatically iden-
tify EARL compliant images and separate if an image is 
meeting older or newer EARL standards. In their study, 
the two-dimensional image slices were used as input 

to the CNN and not the 3D information of the whole 
image. As we all know, the number of training data was 
enlarged by using 2D slices, thereby possibly increasing 
the classification performance of deep learning models. 
However, compared with 3D information of the image, 
2D slices lose a lot of image-related information, which 
will lead to deviations in the accuracy of image quality 

Fig.8  Confusion matrices and classification performance measures in task 4
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assessment results. In order to avoid this situation, our 
study chose to input the 3D data into the model utilizing 
as much useful information as possible to complete the 
image quality assessment. In addition, we input the 3D 
whole-body PET image into the model, which can reflect 
the overall quality of the image compared with the local 
image. Thomas et al. [34] developed an automated pipe-
line for user-friendly and reproducible analysis of images 
with the aim of automating all processing steps up to the 
statistical analysis of measures derived from the final out-
put images. Unfortunately, this study only analyzed brain 

images. In addition, the validation of each radiotracer 
accuracy was performed with differing ROI and using dif-
ferent methods for calculating parametric values. These 
differences mean that it is not possible to quantitatively 
compare their method accuracy for each radiotracer. This 
is enough to prove that better generalization can only be 
obtained by analyzing all aspects of the image rather than 
just a certain part. In further work, in addition to deep 
learning scoring, our study will comprehensively con-
sider various factors and design a working flow of PET 

Fig.9  Case from PET QA Report where the poor quality of image assessed failed
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clinical imaging quality control to provide a step-by step 
evaluation of each key information point for physicians.

However, there were several important limitations of 
the present study that should be acknowledged. First, all 
whole-body PET images were obtained on a single PET-
CT scanner. In the future, the reproducibility of this deep 
learning model should be tested across different scan-
ners. Second, the data for this study were collected from 
the headless upper body. Therefore, PET data, including 
brain scans, will be considered in the follow-up investi-
gation. Finally, the number of PET images in this study 
is relatively small, which limited the model’s ability to 
incorporate more data from either cohort. What’s more, 
there remains considerable data bias between different 
image quality grades. We did not validate our model in 
an external validation dataset. Additionly, image quality 
ratings are only made by three senior physicians, which 
would bias the results of assessment. To further refine 
our model and test the efficacy, we next will collaborate 
with clinics and other hospitals to collect more images to 
increase the number of PET images per grade, and also 
collaborate with more experienced physicians to make 
the rating more credible. In addition, when the number of 
images is large enough, we will try to perform five classi-
fications and strive to achieve a more detailed division of 
image quality. We believe that concerted efforts in terms 
of data quantity and quality are needed in Densely Con-
nected Convolutional Networks to make our deep learn-
ing model successful. Further, the value of this model for 
PET image quality assessment will be verified in clinical 
practice.

Conclusion
In conclusion, this study highlights the feasibility of the 
assessment of image quality in PET images using a deep 
learning model. This method not only provides auto-
mated image selection for clinical PET image review but 
also provides feedback to image quality, which may assist 
with accelerating clinical research by reliably assessing 
image quality.
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