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Abstract 

Background  Lumbago is a global disease that affects more than 500 million people worldwide. Bone marrow 
oedema is one of the main causes of the condition and clinical diagnosis is mainly made by radiologists manually 
reviewing MRI images to determine whether oedema is present. However, the number of patients with Lumbago has 
risen dramatically in recent years, which has brought a huge workload to radiologists. In order to improve the effi-
ciency of diagnosis, this paper is devoted to developing and evaluating a neural network for detecting bone marrow 
edema in MRI images.

Related work  Inspired by the development of deep learning and image processing techniques, we design a deep 
learning detection algorithm specifically for the detection of bone marrow oedema from lumbar MRI images. We 
introduce deformable convolution, feature pyramid networks and neural architecture search modules, and redesign 
the existing neural networks. We explain in detail the construction of the network and illustrate the setting of the 
network hyperparameters.

Results and discussion  The detection accuracy of our algorithm is excellent. And its accuracy of detecting bone 
marrow oedema reached up to 90.6% , an improvement of 5.7% compared to the original. The recall of our neural 
network is 95.1% , and the F1-measure also reaches 92.8% . And our algorithm is fast in detecting it, taking only 0.144 s 
per image.

Conclusion  Extensive experiments have demonstrated that deformable convolution and aggregated feature pyra-
mid structures are conducive for the detection of bone marrow oedema. Our algorithm has better detection accuracy 
and good detection speed compared to other algorithms.

Keywords  Lumbago MRI, Bone marrow oedema, Neural networks, Target detection

Introduction and background
Lumbago is one of the major global health problems, with 
a prevalence of 11–84% [1]. According to the Global Bur-
den of Disease, lumbago troubles over 500 million people 
in 2015, 17.3% higher than that in 2005, and it is one of 
the leading causes of disability in most countries [2]. The 
clinical assessment of lumbago involves taking a correct 
history and performing a thorough physical examination 
and imaging of the low back [3]. There are many causes 
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of lumbago, of which bone marrow oedema is the most 
common one. Bone marrow oedema in the lumbar region 
is mainly examined clinically by MRI. Typically, patients 
have MRI images of the lumbar region taken with medi-
cal equipment and these MRI images are described in a 
radiology report by a radiologist who are responsible for 
evaluating and tracking the lesion site quantitatively [4]. 
With the dramatic increase in the number of patients 
suffering from bone marrow oedema in recent years, the 
corresponding number of MRI images has also increased 
dramatically. The enormous workload of reviewing the 
images has put great pressure on the doctors concerned, 
making them more prone to misdiagnosis and missed 
diagnoses, which has caused great disturbance to doctors 
and patients’ recovery. As a result, new techniques are 
urgently needed to be applied to this field.

In this paper, we design a new neural network to detect 
bone marrow edema. Different from the general clas-
sification network, our network can not only accurately 
determine whether the MRI image is abnormal, but also 
accurately give the location of bone marrow edema. 
The paper is organized as follows. First, we discuss the 
research and application of deep learning in MRI image 
processing at present. Then, aiming at the problem of 
bone marrow edema detection, we introduce deform-
able convolution module and multilevel feature pyramid 
structure to improve the detection effect of neural net-
work, and introduce the latest neural structure search 
module to streamline the network. Then we proved the 
effectiveness of our improvement through a large num-
ber of experiments. Finally, we summarize and look for-
ward to the research work of this paper.

Related work
In recent years, with the progress of image processing 
technology, researchers have developed CAD (Com-
puter Aided Detection) systems, which are able to be 
partly automated in diagnostic process. At the same 
time, deep learning shines in the field of image process-
ing. The medical image detection based on deep learn-
ing has also made great progress. Different from the 
traditional methods, the deep learning method is based 
on the characteristics of images and targets to learn fea-
tures, which can effectively identify images and targets 
with different styles. At the same time, the deep learn-
ing algorithm is easier to design and deploy. Therefore, 
researchers actively apply the idea of deep learning to the 
field of medical images, including a large number of MRI 
image processing and analysis. For example, Liao et al. [5] 
proposed a neural network model for automatic detec-
tion of lung nodules by improving the U-net network. 
They added a 3D convolutional module to the U-net net-
work to increase the accuracy of detecting lung nodules 

in MRI images. Dezso Ribli et  al. [6] proposed a CAD 
system based on the Faster-R-CNN, which improved the 
network by employing a reactive propagation mecha-
nism with weight decay and a stochastic gradient descent 
mechanism, and it effectively improved the detection 
accuracy of malignant breast lesions. Huang Tao et  al. 
[7] designed a neural network specifically for grading the 
severity of pleural effusion. It effectively improved the 
accuracy of pleural effusion grading by designing three 
data processing methods and two loss functions. In the 
field of bone marrow disease detection, Klontzas et al. [8] 
designed a classification model based on CNN ensemble. 
They combined three kinds of CNN, VGG-16, Inception-
V3 and Inception-ResNet-V2, into a CNN ensemble. In 
their experiment, the AUC(Area Under Curve) of the 
model for detecting bone marrow diseases increased 
from 93.68 to 95.97% . And the detection effect of this 
CNN ensemble has reached the same or higher perfor-
mance of a radiologist. Lee et al. [9] develop a method for 
detecting bone marrow edema by MRI of the sacroiliac 
joints and a deep-learning network. It is found that the 
classification network based on ResNet18 has the best 
performance, which shows that the detection accuracy 
of bone marrow edema can reach 94.59% . Their research 
suggests that analysis based on deep learning can be an 
effective supplementary means for clinicians to diagnose 
bone marrow edema.

However, in the field of medical image processing, 
most of the work combined with deep learning focuses 
on image classification. Although the classification task 
can quickly identify the abnormal images, it can’t accu-
rately point out the abnormal positions on the images. 
For MRI images of lumbar region, there are many organs 
and tissues, which are similar to the features of bone 
marrow edema. Coupled with the diversity in the size and 
shape of bone marrow oedema, current network models 
perform poor effectiveness in detecting bone marrow 
oedema in MRI of the lumbar region. As shown in Fig. 1, 
bone marrow edema varies greatly on different MRI 
images. We can easily find out the bone marrow edema 
in Fig.  1a, while Fig.  1b–d needs more careful observa-
tion to find it. Moreover, the background elements in 
MRI images are very different due to the different slices, 
which will further reduce the accuracy of bone marrow 
edema detection. In general, there are three main prob-
lems with the detection of bone marrow oedema:

•	 Variable shape and size of bone marrow edema on 
MRI of the lumbar region. Conventional convolution 
networks are not effective in extracting irregular tar-
gets, especially bone marrow oedema.

•	 Lumbar MRI images contain a large amount of organ 
tissue, and bone marrow oedema has a high degree 
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of similarity to these. In such images, conventional 
feature extraction modules are unable to accurately 
extract the features of weak targets such as bone 
marrow oedema.

•	 MRI images taken by different models of equip-
ment can be significantly different. Conventional 
algorithms are generally only effective for fixed style 
images and are less effective in processing MRI 
images from different devices.

In order to solve these problems, we design a new neural 
network to detect bone marrow oedema in MRI images. 

Our work is inspired by the idea of the deformable con-
volution of DCN [10] networks. We replace the regular 
convolution and pooling modules of the feature extrac-
tion layer with deformable convolution and deform-
able RoI (Region of Interest) pooling modules, which 
can improve the detection ability of bone marrow edema 
targets with different shapes. In addition, on the basis of 
the FPN (Feature Pyramid Networks) optimization ideas 
in networks such as FPN [11], PA-Net [12], Libra R-CNN 
[13], SEPC-Neck [14], BIFPN [15] and OPANAS [16], our 
research introduces one single path feature aggregation 
module based on NAS (Neural Architecture Search) [17, 

Fig. 1  Different styles of MRI images and different shapes of bone marrow edema. a Easily distinguishable bone marrow oedema; b 
Indistinguishable bone marrow oedema; c Indistinguishable bone marrow oedema; d Indistinguishable bone marrow oedema
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18]. The module automatically searches for the optimal 
feature extraction module by means of 4 unique feature 
extraction paths. It improves the ability to extract smaller 
bone marrow oedema in MRI images. In addition to this, 
our algorithm inserts 2 special parameter-free informa-
tion paths, which can reduce the redundancy of the algo-
rithm and the phenomenon of overfitting. Because of 
the combination of the deformable convolution module 
and the NAS module, our algorithm is called DCNAS-
Net (Deformable Convolution and Neural Architecture 
Search Networks).

Methods
Structure of DCNAS‑Net
The structure of DCNAS-Net is shown in Fig. 2. DCNAS-
Net is structured with ResNet-50 as backbone, with the 
addition of the deformable convolution module in conv3-
conv5. Then it is followed by the NAS-FPN module. 
It constructs the automatic search space by means of 4 
unique information paths and 2 parameter-free informa-
tion paths. 6 paths form different connections between 
the backbone network and the detection head. It will 
form a complementary and efficient aggregation module. 
The output of the NAS-FPN is superimposed on the fea-
ture matrix of the backbone. Then there is the deform-
able RoI pool layer. Finally, a 1024-dimensional fully 
connected layer is accessed. The inference information is 
then returned to the original graph by prediction frames 
and predictive classification.

Deformable convolution and deformable RoI pooling 
layers
One of the factors why bone marrow edema is difficult 
to be detected in MRI images is its variable size and 
shape. The conventional convolution module is limited 

to a fixed ensemble structure and its convolution unit 
samples the input feature map at a fixed location. In addi-
tion, the pooling layer reduces the spatial resolution by 
a fixed ratio. Obviously, it lacks the internal mechanism 
for geometric transformations. Therefore, it performs 
poorly when detecting variable shaped targets, espe-
cially in cases such as bone marrow oedema. In general, 
expanding the data samples could solve this problem to 
some extent. However, due to the specific nature of medi-
cal data, it is impossible to collect a large amount of data. 
To address this problem we add the deformable convo-
lution and deformable RoI pooling layer module to the 
backbone network. The two modules can improve the 
ability of the backbone network to extract irregularly 
shaped features. The working mechanism of the deform-
able convolution is shown as Fig. 3. We add a 2D offset 
to the standard convolution module, which allows sam-
pling grids to be freely deformed and enables the neural 
network to adapt to the different shapes of the bone mar-
row oedema. The density of deformable convolution and 
its deformation mode depend on the input feature layer. 
Our research incorporates an additional layer of deform-
able convolution so that the offset of the features can be 
learned from the upper feature layer. The green dotted 
box in Fig. 3 shows the offset (black arrow) of the deform-
able convolution based on the standard convolution. And 
the blue dotted box in Fig. 3 indicates the feature extrac-
tion process in the upsampling process. In the training 
process, the feature extraction layer is activated by a sin-
gle activation unit located in the target area. The offset of 
features will be determined according to the location and 
shape of bone marrow edema. In Fig. 3, the feature off-
set will be more inclined to the upper left and lower right 
in the initial position of the activation unit. After several 

Fig. 2  Structure of the DCNAS-Net
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rounds of training, the output feature layer will be able to 
better learn the features of the bone marrow edema area.

And then it comes to the deformable RoI pooling 
layer [19, 20]. This module adds an offset after the RoI 
pooling layer, and the structure is useful for improv-
ing the accuracy of local positioning of targets. Both 
of these modules are lightweight modules. They can be 
inserted into a regular network by adding a small num-
ber of parameters and computational effort. The con-
struction of the deformable convolution module and 
the deformable RoI pooling layer are described below. 
A conventional convolution is built in two steps:

•	 Sampling the input feature mapping x using a regu-
lar grid R;

•	 Weighting and summing the sampled values.

Defining R as the size of the perceptual field, and taking 
a 3× 3 convolution as an example, with a convolution 
hole size of 1, we have

For p0 , each position of the input feature map y, we have

Where pn enumerates all the positions in R. In the 
deformable convolution, an offset �pn n = 1, 2, . . . ,N  
is added to the regular sampling grid R, and Eq. (2) 
becomes

The sampling grid samples at offset position pn +�pn . 
In most cases, the offset �pn is generally not an integer. 

(1)R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}

(2)y(p0) =
∑

p0∈R

w(p0)× x(p0 + pn)

(3)y(p0) =
∑

p0∈R

w(p0)× x(p0 + pn +�pn)

Then Eq. (3) can be implemented by bilinear difference 
as follows

Where p denotes any position in R, q is an enumeration 
of all integer positions in x. G(q, p) is a 2D bilinear inter-
polation kernel. It can be decomposed as the product of 
two 1D kernels as

Where g(a, b) = max
(

0, 1−
∣

∣a− b
∣

∣

)

 , it follows that 
G(q, p) is not equal to 0 for only a few q, so it does not 
consume many computational resources.

Deformable RoI pooling layer
The role of the RoI pooling layer [21] is to unify the fea-
ture matrices corresponding to RoI of different sizes into 
a fixed size bin for output. For a conventional RoI pooling 
layer, assuming that the input feature matrix is x, its size 
is w × h , p0 is its coordinate, and y(i, j) denotes the bin at 
(i, j), we have

Where nij denotes the number of pixels in the bin at posi-
tion (i, j). For the deformable pooling layer, we have

Typically, �p is also not an integer, so Eq. (7) can still be 
implemented with the bilinear difference of Eq. (4). In fact, 
the offsets in the deformable convolution and deformable 

(4)x(p) =
∑

q

G(q, p)×x(q)

(5)G(q, p) = g(qx, px)× g
(

qy, py
)

(6)y
(

i, j
)

=
∑

p∈bin(i,j)

x(p0 + p)/nij

(7)y
(

i, j
)

=
∑

p∈bin(i,j)

x
(

p0 + p+�pij
)

/nij

Fig. 3  Mechanism of deformable convolution. The cropped image is realized by python script, and it contains the bone marrow edema area
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RoI pooling layers can also be considered as parts of the 
network. It is obtained by adding an offset to the standard 
convolution, which in turn can also be learned end-to-end 
by back-passing of gradients. The size and position of the 
convolution kernels can be dynamically adjusted to the 
current target shape after adding the offset. The intuitive 
effect is that the sampling points of the convolutional ker-
nels at different locations will change adaptively accord-
ing to the shape of the bone marrow oedema, which can 
improve the detection accuracy.

NAS based feature aggregation module
MRI images of the lumbar region are generally domi-
nated by a grey background. Bone marrow oedema and 
some organ tissues,especially fatty tissues, are bright 
colors, which can make it difficult to identify bone mar-
row oedema. Even experienced radiologists take a few 
minutes to distinguish edema from other organs or tis-
sues. For conventional neural networks, as the convolu-
tion layer deepens, the features extracted by the shallow 
convolution take up very little weight in the subsequent 
feature layers. By the time the convolution reaches the 
final layer, it is no longer possible to read the semantic 
information in the shallow background. That makes it dif-
ficult for conventional networks to detect small targets. 
Several studies in recent years have confirmed that the 
introduction of new information paths in the FPN struc-
ture can build more effective detection heads. Among 
them, PAFPN introduces bottom-up information paths 
on top of FPN; Libra R-CNN uses Non-Local path mod-
ules and builds multi-level FPN structures with U-shaped 
structures to construct more effective detection modules; 
SPEC stacks four scale-equilibrium modules behind a 
classical FPN to enhance multi-scale correlation. Mean-
while, research on NAS being used to automatically 
search for detectors in FPN architectures is also under-
way. NAS-FCOS and Spine-Net [22] have achieved excel-
lent results after incorporating NAS. These prove that 
NAS architectures are effective. Inspired by the above 
studies our algorithm introduces four unique informa-
tion paths and two non-reference paths to construct a 
multi-level FPN structure. The optimal FPN combination 
module is automatically searched by the latest efficient 
NAS module. This effectively improves the accuracy of 
bone marrow oedema detection.

Methods for constructing 6 information paths

•	 Top-down information path The top-down informa-
tion path is similar to the classical FPN. Its structure 
is shown in Fig. 4a. We denote the output of the fea-
ture pyramid as Ft

2
, Ft

3
, Ft

4
, Ft

5
 , and then construct 

them in a top-down sequence. Each feature mapping 
Ft
i  is constructed by summing the input pyramid fea-

ture mapping Pi at the same level and the output fea-
tures Ft

i+1
 at a higher level, so that we have 

 Where U(·) denotes the upsampling function and 
Wt

i (i = 2, 3, 4, 5) are 3× 3 convolution module. 
However, note that for the higher-level features 
(i = 3, 4, 5) , Wt

i  is a conformable convolution mod-
ule, which can be better adapted to different pyrami-
dal accesses, while Wt

2
 is a regular convolution 

module.
•	 Bottom-up information path The structure of the 

bottom-up information path is shown as Fig.  4b, 
which is constructed in a similar way to the previous 
path. The outputs of the feature pyramid 
(

Fb
2
, Fb

3
, Fb

4
, Fb

5

)

 are constructed sequentially in a bot-
tom-up manner. We have 

 Where D(·) denotes the downsampling function. 
The convolution module of Wb

i  is the same as the 
top-down information path.

•	 Scale-balanced information path The scale-balanced 
information path is driven by SEPC, which superim-
poses a pyramidal convolution after the classical FPN 
structure to obtain the correlation among scales. 
Its structure is shown as Fig. 4c, where each feature 
matrix Fs

i  is obtained by superimposing the input fea-
ture matrices that are expected to be adjacent, so that 
we have 

 Where D(·) denotes the downsampling function. 
The convolution module of Wb

i  is the same as the 
top-down information path.

•	 Two-step fusion split information path The two-step 
fusion split information path is shown as Fig.  4d. 
Firstly, the higher and lower levels of the feature pyr-
amid information are each combined into αs and αt . 
We have 

 After obtaining the combined features and fusing 
them by overlay stitching, we have 

(8)Ft
i = Wt

i

⊗

(

U
(

Ft
i+1

)

+ Pi
)

(9)Fb
i = Wb

i

⊗

(

D
(

Fb
i−1

)

+ Pi

)

(10)
Fs
i = U

(

Ws
1

⊗

Pi+1

)

+Ws
0

⊗

Pi +Ws
−1

⊗

Pi−1

(11)αs = P4 +U(P5), αt = D(P2)+ P3

(12)
βs = W

f
s

⊗

CON (αs,D(αl)), βl = W
f
l

⊗

CON (U(α s) ,αl)



Page 7 of 12Song et al. BMC Medical Imaging           (2023) 23:45 	

 Where Wf
s  and Wf

l  is 3× 3 conformable convolu-
tion module, and CON (·) denotes the stitching along 
the channel dimension. After these operations, the 
feature map βs,βl carries the information from the 
fusion of features at all levels. Finally adapting it to a 
multiscale pyramidal feature map, we have 

•	 Null information paths and cross-connected infor-
mation paths Another characteristic of bone mar-
row oedema is its relatively concentrated location, 
so it is not necessary to use superimposed infor-
mation paths in its detection to extract too much 
location information. Our algorithm adds 2 unpar-
alleled information paths to reduce the complex-

(13)
F
f
2
= U(βl), F

f
3
= βl , F

f
4
= βs, F

f
5
= D(βs)

ity of the model. They are shown as Fig.  4e and f. 
The cross-connected path is used to perform direct 
mapping, while the null information path is used to 
eliminate redundant information paths. These two 
non-parametric information paths allow for a bet-
ter balance between accuracy and efficiency.

Construction of the NAS‑FPN model
In some recent studies, NAS has been applied to auto-
matically search for FPN structures, the most common 
of which is the Single Path One-Shot [23]structure, 
as shown in Fig.  5a. However, there is only one infor-
mation path between its nodes to connect and it has 
only sequential connections. From the information 

Fig. 4  4 message paths with parameters and 2 message paths without parameters. a Top-bootom information path; b Bootom-top information 
path; c Scale-balanced information path; d Two-step fusion split information path; e Null information path; f Cross-connected information path
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extraction point of view, an aggregated NAS can make 
more efficient use of the extracted information features.

The NAS-FPN is a fully connected DAG (directed 
acyclic graph). Each of its nodes represents an FPN 
with six different information paths connected between 
every two nodes. Where node P represents the feature 
matrix extracted from the backbone network and node 
O represents the final output feature matrix. In network 
training, our algorithm first constructs a super network 
containing all information paths, and then searches for 
the optimal sub-network through evolutionary algo-
rithm. The optimal sub-network represents the optimal 
combination of FPN that aggregate multiple informa-
tion paths. The optimal sub-network is searched by 
reasoning with previously trained weights rather than 
retraining the weights, so it is more efficient. In the 
experiments, we find that the model achieves the best 
results when N = 5 . When N > 5 , NAS-FPN can not 
increase the accuracy of the detection, but significantly 
decreases the speed of the detection. Therefore N = 5 
is used in the subsequent comparison experiments 
unless otherwise specified. In order to reduce the com-
plexity of the network, we reduce the output channels 
of the FPN from 256 to 112. The corresponding chan-
nels of the network detection head are also reduced 
from 256 to 112. It is found experimentally that these 
channel reductions have less impact on the network 
accuracy, but can significantly reduce the weight size of 

the network (see the ablation data in the next section 
for details).

Optimization of super‑net and loss functions of networks
The optimal subnetworks in Fig.  5b are searched by an 
evolutionary algorithm after completing the training 
of the super-net. That is, S subnets are first randomly 
selected from the super-net and the performance of each 
subnet is ranked by inferring the data from the valida-
tion set. Then the best k subnets start the “crossover” 
and “mutation” operations [24], and the new subnets are 
generated and the best subnet are selected after repeat-
ing the previous steps n times. The “crossover” refers to 
the crossover of two randomly selected subnetworks to 
generate a new subnet, and the “mutation” refers to the 
mutation of a random subnet boundary with probabil-
ity p to generate a new subnet. In our algorithm, S = 50 , 
k = 10 and p = 0.1 are set. To help the convergence of 
the model, this algorithm adds an L1 regularization func-
tion to the weights to balance the boundary losses. The 
total loss function is given by

Where Lcls is the corresponding loss for lesion classifica-
tion, which is the cross-entropy loss function; Lloc is the 
corresponding positioning loss function, which is the 
Smooth L1 loss function for Lloc ; µ is the hyperparameter 

(14)L = Lbbox + µL1 =
∑

(Lcls + Lloc)+ µL1

Fig. 5  a FPN super-net structure for SPOS b NAS-FPN search space super-net results
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of the regularisation function L1 , and the network was 
found to work best when µ was taken as 0.11 in the 
experiments.

Results and discussion
Experimental data and experimental parameters
No publicly dedicated dataset is available for detecting 
bone marrow oedema in lumbar MRI images. The data for 
the research is obtained from the relevant department of 
Tianjin Hospital, and the lumbar MRI image dataset was 
obtained from 72 anonymous patients between 2019 and 
2021. A total of 521 MRI images are screened, among 
which 416 images are placed in the training set and 105 
images are placed in the testing set. The dataset was anno-
tated according to the MS COCO [25] format, which was 
completed by three experienced radiologists. Our algo-
rithm was trained using stochastic gradient descent. The 
RTX8000 GPU is used for accelerated training, and all 
experiments are carried out on this device. The training 
parameter batch-size is set as 4, the learning rate is set as 
0.001, and a total of 30 training rounds were set. We used 
random flipping and random cropping as quality enhance-
ment methods. Flip the mirror image of the original image 
randomly with a probability of 0.5. And clip the image ran-
domly to 0.6–1.0 times of the original ones in size.

Ablation experiments
Ablation experiments are conducted to understand the 
contribution of each module in this paper’s algorithm. 
The ablation experiments use AP50 of the COCO evalu-
ation criteria as the evaluation metric. Besides, there are 
experimental data of recall and F1-measure as auxiliary 
verification data. Where AP50 and recall are the average 
of five cross-validation experiments. The training set and 
verification set of each cross-validation are not repeated. 
The subjects of the ablation experiments include the num-
ber of super net nodes N, the deformable convolutional 
and deformable RoI layers and the NAS-FPN module.

The number of super net nodes N represents the num-
ber of levels of the FPN structure. On the one hand, its 
size directly affects the performance of the network. 
On the other hand, a larger N represents more network 
parameters, which affects the training speed and the 
weights. The experimental results are shown in Table 1. 
After adding the NAS-FPN module, the value of AP50 
increases 3.4% at most from 84.9% . The recall of all exper-
iments remained above 91.2% . Meanwhile, F1-Measure 
has a maximum value of 91.0 when N = 5 . Also, the 
weight reduces 11.37 MB–56.88 MB. It proves the effec-
tiveness of the NAS-FPN module. However, when N ≥ 5 , 

Table 1  Effect of super net node N on precision and weight

Algorithms Number of
nodes N

AP50/% Recall/% F1/% Weight
size/MB

Single image 
detection
time/ms

Faster-RCNN
+FPN

– 84.9 91.7 88.2 322.54 161

Ours
(Faster-RCNN
+ NAS-FPN)

2 83.7 91.2 87.3 265.66 135

3 85.3 91.7 88.4 266.69 140

4 87.3 91.2 89.2 270.65 140

5 88.3 91.2 91.0 277.18 147

6 88.0 91.3 90.8 304.19 158

7 86.7 93.6 90.4 311.17 166

Table 2  Enhancement of effects by deformable and NAS-FPN modules

Algorithms Deformable
Conv

NAS-
FPN

AP50/% Recall/% F1/% Weight
size/MB

Single image 
detection
time/ms

Faster-
RCNN
+FPN

– – 84.9 91.7 88.2 322.54 161

Ours(Faster
-RCNN +
NAS-FPN)

√
– 85.7 90.4 88.0 327.10 140

–
√

88.3 91.2 91.0 277.18 147
√ √

90.6 95.1 92.8 275.21 144
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the AP50 and the F1-Measure are not increasing, but 
the weights still increase rapidly and the detection rate 
decreases. To balance precision and efficiency, subse-
quent experiments use the value of N = 5.

Deformable convolution modules and NAS‑FPN modules
In order to validate the improvement of the DCNAS 
structure on the detection of bone marrow oedema, 
we compare the performance of our algorithm with the 

Fig. 6  Comparison with other algorithms. The left side of each graph shows the results of our algorithm and the right side shows the results of 
other algorithms
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Faster-RCNN+FPN. As shown in Table  2, when the 
deformable convolution module is added, AP50 improves 
from 84.9 to 85.7% , and the detection time is reduced to 
140ms per image. When the NAS-FPN module is added, 
AP50 improves to 88.3% . When the DCNAS module is 
added, AP50 improves to 90.6% and the detection time 
becomes 144ms per image, while the parameter weight 
is reduced from 322.54 MB to 275.21 MB compared to 
the unaltered network. When the deformable convolu-
tion and NAS-FPN are added, recall is also increased to 
95.1% , and F1-Measure is increased to 92.8% . The experi-
mental results show that the deformable module and 
NAS-FPN are effective.

Algorithm comparison and analysis
In order to verify the effectiveness of the algorithm in this 
paper, the research performs comparative experiments 
with existing algorithmic models for target examina-
tion. Including classical networks such as Faster-RCNN-
ResNet101, Retina-Net [26], SSD [27], Yolo V3 [28] and 
Yolo X [29]and some improved detection networks such 
as Carafe [30], Hernet [31], and PAFPN. The results are 
shown in Table 3 and Fig. 6.

As can be seen from Table 3, our algorithm has the best 
accuracy and F1-Measure for bone marrow oedema detec-
tion. and our algorithm also has good detection recall and 
speed. And our network weight is only 275.21 MB, which 
means it can be more easily deployed in the detection 
equipment of clinical medicine. Of course, it might be pos-
sible to use other lightweight network backbones with less 
weight. As can be seen from Fig. 6, our algorithm is able 
to detect bone marrow oedema in different styles of MRI 
images with few missed and false detections.

At present, the research on the detection of bone 
marrow edema in MRI images mainly focuses on CNN 

classification model. For example, Klontzas et  al. [8] 
designed a CNN ensemble to detect bone marrow edema 
in bone joints. The accuracy of this ensemble for classi-
fication tasks is 82.18–93.68% . Lee et al. [9] designed an 
optimization model based on ResNet18, which is used 
to detect bone marrow edema in sacroiliac joints. But 
this network also belongs to the category of image clas-
sification, and the detection accuracy of their model 
in the experiment is 93.55% . Unlike their research, our 
work belongs to target detection. Our optimized neu-
ral network can not only classify abnormal MRI images 
accurately, but also give the location information of bone 
marrow edema as accurately as possible. This can better 
provide clinicians with reference information for auxil-
iary diagnosis. By now, there is almost no target detec-
tion model for bone marrow edema in MRI images. This 
is where our research leads. Compared with the classical 
target detection models, our model has achieved excel-
lent results.

Conclusion
Based on the Faster-RCNN, we redesigned part of the 
backbone network and the feature pyramid module. 
Extensive experiments have demonstrated that our 
algorithm can accurately detect bone marrow oedema 
in MRI images. At the same time, our algorithm bal-
ances accuracy and detection efficiency, and can also 
be relatively easy to deploy on hospital detection equip-
ment. Therefore, our work has practical clinical impli-
cations and can be used as a diagnostic aid for doctors. 
In principle, our work can be used not only for the 
detection of bone marrow oedema, but also for the 
detection of other pathologies. In particular, the appli-
cation of MRI images as a background for detection has 
good prospects. We will continue to design new dedi-
cated networks and carry out new experiments in col-
laborating laboratories.
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