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Abstract 

Purpose To develop machine learning-based radiomics models derive from different MRI sequences for distinction 
between benign and malignant PI-RADS 3 lesions before intervention, and to cross-institution validate the generaliza-
tion ability of the models.

Methods The pre-biopsy MRI datas of 463 patients classified as PI-RADS 3 lesions were collected from 4 medical 
institutions retrospectively. 2347 radiomics features were extracted from the VOI of T2WI, DWI and ADC images. The 
ANOVA feature ranking method and support vector machine classifier were used to construct 3 single-sequence 
models and 1 integrated model combined with the features of three sequences. All the models were established in 
the training set and independently verified in the internal test and external validation set. The AUC was used to com-
pared the predictive performance of PSAD with each model. Hosmer–lemeshow test was used to evaluate the degree 
of fitting between prediction probability and pathological results. Non-inferiority test was used to check generaliza-
tion performance of the integrated model.

Results The difference of PSAD between PCa and benign lesions was statistically significant (P = 0.006), with the 
mean AUC of 0.701 for predicting clinically significant prostate cancer (internal test AUC = 0.709 vs. external valida-
tion AUC = 0.692, P = 0.013) and 0.630 for predicting all cancer (internal test AUC = 0.637 vs. external validation 
AUC = 0.623, P = 0.036). T2WI-model with the mean AUC of 0.717 for predicting csPCa (internal test AUC = 0.738 
vs. external validation AUC = 0.695, P = 0.264) and 0.634 for predicting all cancer (internal test AUC = 0.678 vs. 
external validation AUC = 0.589, P = 0.547). DWI-model with the mean AUC of 0.658 for predicting csPCa (internal 
test AUC = 0.635 vs. external validation AUC = 0.681, P = 0.086) and 0.655 for predicting all cancer (internal test 
AUC = 0.712 vs. external validation AUC = 0.598, P = 0.437). ADC-model with the mean AUC of 0.746 for predicting 
csPCa (internal test AUC = 0.767 vs. external validation AUC = 0.724, P = 0.269) and 0.645 for predicting all cancer 
(internal test AUC = 0.650 vs. external validation AUC = 0.640, P = 0.848). Integrated model with the mean AUC of 
0.803 for predicting csPCa (internal test AUC = 0.804 vs. external validation AUC = 0.801, P = 0.019) and 0.778 for pre-
dicting all cancer (internal test AUC = 0.801 vs. external validation AUC = 0.754, P = 0.047).
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Conclusions The radiomics model based on machine learning has the potential to be a non-invasive tool to distin-
guish cancerous, noncancerous and csPCa in PI-RADS 3 lesions, and has relatively high generalization ability between 
different date set.

Keywords Radiomics, Clinically significant prostate cancer, PI-RADS 3, Machine learning

Introduction
Prostate cancer (PCa) is a global public health problem 
that threatens human health and life, which causes great 
harm to the male genitourinary system [1]. According 
to statistics from the American Cancer Research Asso-
ciation and the National Cancer Institute in 2019, PCa 
has become one of the most common malignant tumors 
in the world, accounting for the second most common 
malignancy in men [2]. Prostate Imaging Reporting and 
Data System (PI-RADS v2.1) published by American 
College of Radiology in 2019, represents a standard-
ized method for assessing and reporting prostate MRI, 
which categorizes prostate lesions into different classes 
to reflect their relative likelihood of clinically significant 
prostate cancer (csPCa) [3]. PI-RADS 3 lesions included 
benign lesions and malignant lesions with different inva-
siveness and due to the absence of a clear tendency diag-
nosis for PI-RADS 3 lesions, there is a great variability 
in the practice patterns of different institutions (from 
conservative treatment, imaging follow-up to targeted 
biopsy), expense and potential clinical results [4]. Studies 
on evaluating the possibility of csPCa in targeted biop-
sies among PI-RADS 3 lesions have reported that cancer 
diagnosis rates range from 5 to 30%, and most studies 
have suggested that the likelihood of eventual diagno-
sis of csPCa is relatively low[5–7]. Therefore, accurately 
judging the benign and malignant lesions is helpful to 
reduce the pain caused by unnecessary biopsies.

Imaging monitoring without intervention for PI-RADS 
3 lesions will undoubtedly reduce unnecessary biopsies. 
However, this method may lead to omission or delay in 
the diagnosis of csPCa lesions, resulting in irreversible 
consequences for patients. There is still controversy over 
whether to intervene in this “amphibolous lesions”[8], 
and the small but not insignificant proportion of lesions 
that represent csPCa, it is critical that a more detailed 
classification of the PI-RADS 3 lesions will benefit 
patients from biopsies and more aggressive treatment. 
Radiomics can convert images to higher-dimensional 
data, extract a large number of phenotypic features, and 
evaluate the biological behavior of tumor noninvasively 
through machine  learning (ML)  algorithms. It has been 
widely used in the diagnosis, invasiveness evaluation 
and clinical decision-making of PCa[9–11]. The number 
of radiomics studies focusing on PI-RADS 3 lesions is 
limited. Only two single-center studies have previously 

assessed the role of radiomics characteristics to detect 
cancer in these “equivocal lesions”. However, there are 
doubts about the universality and wide applicability of 
radiomics models in the absence of multi-institution tri-
als. Therefore, the purpose of this work was to construct 
a ML-based radiomics model, which combined T2WI, 
DWI and ADC radiomics features, through a multi-
center retrospective case–control study to validate its 
performance in differentiating PI-RADS 3 lesions from 
benign to malignant and in further risk stratification.

Materials and methods
Study design
This retrospective multi-agency study was approved by 
the ethics review committee of each participating institu-
tion and exempted from the need for informed consent 
of the patient. Four medical centers have signed data 
sharing agreements for data exchange (2021; Approval 
No. 262). All prostate MRI images from January 2018 
to December 2019 were exported from each participat-
ing unit’s PACS system. We summarized the data of each 
hospital, and there were a total of 2259 cases. 96 cases 
were excluded due to the absence of dynamic contrast 
enhanced MRI (DCE-MRI) and lack of pathological data, 
then the remaining 2163 cases were divided into two 
parts and graded according to PI-RADS v2.1 multipara-
metric MRI criteria [3] by two radiologists with 3 years 
of experience in prostate MRI diagnosis, who were blind 
to pathological findings when reading. While interpret-
ing the images, two radiologists recorded the location of 
each lesion using the anatomical fan map recommend by 
PI-RADS v2.1 to correspond to the lesion described by 
the pathological results. At an interval of two weeks after 
the first assessment, the procedure was repeated by two 
readers and reviewed by a senior radiologist proficient in 
MRI diagnosis of the urinary system. When there was any 
dispute over the interpretion, the three discussed it until 
consensus was reached. Of the 2163 cases with final score 
results, 876 cases (40.5%) were classified as PI-RADS 
1 and 2, 792 cases (36.6%) were classified as PI-RADS 
scores 4 and 5, and the remaining 495 cases (22.9%) were 
conferer with PI-RADS 3. Then, all PI-RADS 3 cases were 
selected for analysis, of which 32 were excluded based on 
the following criteria: (1) PI-RADS 3 lesions coexisted 
with other categories of lesions or doesn’t match the tar-
geted biopsy results; (2) prior to MRI examination, they 
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had received intervention such as biopsy, surgery or 
hormone therapy; (3) lack of any clinical characteristics 
of the patient or poor image quality. Finally, 463 eligible 
patients were recruited and MRI images of each patient 
showed only one lesion.

All the screened cases  were divided into two groups 
according to the supplier of scanning equipment. The 
first group included institutions 1–3 with a total of 383 
patients, which were examined with 3.0 T superconduct-
ing MRI scanner (MAGNETOM Skyra, Germany) and 
equipped with 8-channel phased array body coils to col-
lect signals. The second group consists of institution 4, 
with a total of 80 patients using a Dutch Philips Ingenia 
3.0  T MRI scanner, the receiving coil was a 32-channel 
body phased array coil. The scanning sequences included 
T1WI, axial T2WI (no fat-saturated), sagittal T2WI, 
DWI (b = 100, 1000, 1500, 2000 s/mm2) and DCE-MRI. 
The ADC value was calculated by a single exponential 
signal attenuation model based on the DWI images with 
b = 100 and 1000 s/mm2. During DCE scanning, 15 to 20 
slices were scanned once, the scanning time resolution 
was 5.8 s, 64 phases were scanned, and the scanning time 
was 7 min. After the end of the third dynamic scanning 
phase, contrast agent gadolinium meglumine pentanoate 
was injected intravenously at the injection rate of 3 ml/s 
and the dose of 0.1  mmol/kg. MRI scan parameters are 
described in Table  1. The cases of the first group were 
randomly divided into training set (n = 268) and internal 
test set (n = 115) according to the proportion of 7:3. The 
second group of cases was used as an external validation 
set (n = 80) to evaluate the extensibility of the model. Fig-
ure 1 provides a flowchart that includes patient selection 
and case assignment.

Targeted biopsy and histopathology
MRI-TRUS fusion targeted sample was performed 
with Hitachi real-time ultrasonic multi-image fusion 
navigation system (RVS), and the machine model was 

HIVISIONNoblus/TopicPath. The suspicious lesions 
were sampled by MRI-TRUS fusion biopsy and system-
atic biopsy under the guidance of TRUS within 4 weeks 
after the MRI examination. Before the fusion biopsy, 
the original data of prostate MRI in DICOM format 
were introduced into the main body of RVS ultrasound. 
MRI images were fused with TRUS images after gen-
eral anesthesia, and anatomical markers such as urethra 
orifica, urethra, mullerian or ejaculatory duct cyst were 
matched with MRI sagittal images on the same section. 
T2WI, DWI, or DCE images with significant abnormal 
signals were selected to mark the target lesions in the 
cross-sectional MRI, while the same ultrasound sites 
were labeled (convex array scan), and then switched 
to sagittal images to further confirm the synchroniza-
tion of MRI and ultrasound. After confirming favour-
able synchronization of MRI-TRUS images, the sagittal 
plane of prostate was taken by TRUS, and the target 
lesion marked with “ + ” was found. Under the guidance 
of puncture stent, the 18G disposable puncture gun was 
used to insert needle through perineum and the punc-
ture gun was fired close to the target center. Then, the 
axial plane scan was converted to confirm that the nee-
dle track enters the target. 2–4 needles were punctured 
for each suspicious focus. After the targeted sample, 
12-needle systematic biopsy was conducted through 
perineum under the guidance of TRUS, and all the 
pathological specimens were marked in detail accord-
ing to each partition and fixed with 10% formaldehyde 
for pathological examination.

The pathological results were evaluated by urological 
pathologist independently of the MRI results, and the 
location and boundary of the lesions were recorded to 
ensure that they correspond to the suspicious lesions 
on MRI images. The grade grouping and Gleason score 
of the lesions were determined according to the 2014 
ISUP guidelines. csPCa was defined as ISUP grade 2 
or higher (Gleason = 3 + 4 or higher), and pathological 

Table 1 MRI protocols for both vender

TR repetition time; TE echo time; NSA number of signal averaged; T1WI T1 weighted imaging; T2WI T2 weighted imaging; DWI Diffusion Weighted Imaging

MRI vendor sequence Siemens Skyra 3.0 T MR scanner (Germany) Philips Ingenia 3.0 T MR scanner (Netherlands)

T1WI AxialT2WI SagittlT2WI DWI T1WI AxialT2WI SagittlT2WI DWI

TR(ms) 680.0 6980.0 3900.0 5000.0 556.0 3000.0 4978.0 6000.0

TE(ms) 13.00 104.00 89.00 72.00 8.00 100.00 100.00 77.00

Slice thickness(mm) 5.0 3.0 3.0 3.0 5.0 3.0 1.5 3.0

Slice gap(mm) 0.50 0.00 0.45 0.00 0.00 0.00 0.15 0.00

Matrix 384 × 384 384 × 384 384 × 384 130 × 130 276 × 406 240 × 161 276 × 238 124 × 121

FOV(mm × mm) 380 × 380 200 × 200 200 × 200 288 × 288 249 × 415 220 × 220 240 × 180 220 × 220

NSA 1 2 3 2 1 3 2 2
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results with GS = 3 + 3 (ISUP grade 1) were defined as 
clinically insignificant PCa (ciPCa) [12].

Focus segmentation
Subsequent radiomics analysis were performed based 
on axial T2WI, DWI (b = 2000 s/mm2) and ADC 
images in our study. The different target images of 
the same patient were spatially matched using Elastix 
software package (v.4.10, 13. Using T2WI images as 
reference, DWI and ADC images were registered suc-
cessively. Lesion segmentation was performed jointly 
by two radiologist involved in imaging evaluation using 
ITK-SNAP 3.8.0 software (http:// www. itksn ap. org/). 
The two handlers drew the region of interest (ROI) 
layer by layer on T2WI sequence to get the volume of 
interest (VOI) of the tumor, then copy it to DWI and 
ADC images to ensure the consistency of VOI sketches 
in different sequences. After preprocessing, visually 
verified was performed by a professor with experi-
ence in prostate MRI diagnosis (more than 10 years) to 
ensure that the location and extent of the lesions shown 
on MRI strictly matched the corresponding pathologi-
cal description.

MRI image preprocessing and feature extraction
Before the feature calculation, the images of each patient 
were standardized separately to improve the texture rec-
ognition rate. Firstly, the T2WI, DWI and ADC images 
of each patient were resampled to a voxel size of 1 × 1 × 1 
 cm3 to standardize the voxel spacing. Then the voxel 
intensity discretization was accomplished by setting the 
bin width to 25 to reduce imaging noise and standard-
ize the intensity. Finally, through Z-score Normalization 
for different sequence of each case, which can reduce the 
influence of the inconsistency of image parameters on 
the variation of radiomics features, the voxel intensity 
was transformed into a distribution with 0 as the mean 
and 1 as the standard deviation.

The open source radiomics software FeAture Explorer 
(FAE v0.4.0), which based on pyradiomics package, was 
used to extract features from the VOI of each sequence 
[14]. According to the 8 texture analysis methods pro-
vided by the software, a total of 2347 radiomics features 
were extracted from ROI files: (1) 46 first-order gray 
statistics; (2) 38 shape-based features; (3) 70 Gray Level 
Co-occurrence Matrices (GLCM); (4) 20 Gray Level 
Run Length Matrices (GLRLM); (5) 42 Gray Level Size 
Zone Matrices (GLSZM); (6) 36 Gray Level Dependence 

Fig. 1 Flow diagram on methods of this study

http://www.itksnap.org/
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Matrices (GLDM); and (7) 17 Neighborhood Gray Tone 
Difference Matrices (NGTDM). (8) The original images 
were transformed by Wavelet Transform, and 2078 
wavelet features are extracted in three spatial directions. 
The repeatability of intra- and inter-observer of lesion 
segmentation was based on the repeatability of feature 
extraction. 30 patients were randomly selected and the 
clinical data were blinded. The two doctors performed 
VOI segmentation and feature extraction again. The 
intra- and inter-observer repeatability of feature extrac-
tion was evaluated by intergroup correlation coefficient 
(ICC). If the intra-group and inter-group correlation 
coefficient is greater than 0.75, it is considered that the 
ROI drawing has acceptable stability.

Feature selection and classifier modeling
In this study, we focus on two results: (1) distinguish any 
cancer lesions from benign lesions, (2) and further pre-
dict csPCa occurrence in all cases. In order to solve the 
problem of sample imbalance in the training set, this 
study used the synthetic minority oversampling tech-
nique (SMOTE) to oversample the positive samples 
to balance with negative samples. Internal test set and 
external validation set did not perform this process [15]. 
The number of radiomics features was much larger than 
the number of samples, which may increase the risk of 
overfitting. This risk was reduced by feature selection to 
reduce the number of features. In present study, Z-score 
Normalization was first used to normalize the feature 
matrix, each feature vector was subtracted from the mean 
value and divided by the standard deviation to eliminate 
the order of magnitude otherness between different fea-
tures. The radiomics features with variance of 0 were 
eliminated, and then the data dimension was reduced to 
remove the redundant features with average Spearman 
absolute correlation coefficient ≥ 0.9. After eliminated 
redundant features, the analysis of variance (ANOVA) 
algorithm was used to sort the features, and only the 
top 20 features were retained. These features with incre-
ments from 1 to 20 were then input into the support vec-
tor machine (SVM) classifier. For different sequences, 
T2WI, DWI and ADC feature matrices were modeled 
respectively (called T2WI-model, DWI-model and ADC-
model), and then the features of the three sequences were 
combined for modeling analysis (call integrated model). 
While established models to identify csPCa, the features 
of the first group of cases were re-integrated, mean that, 
the benign lesions and ciPCa were divided into the same 
label with their features. Then the reconstituted cases 
was divided into training set (n = 268) and internal test 
set (n = 115) according to the proportion of 7:3, and the 
generalization ability of the model was verified on the 

external valitation set. All the experiments above were 
run in FeAtureExplorer.

Statistical analysis
Demographic datas were compared by chi-square test 
and independent t-test. According to whether it con-
formed to the normal distribution, the quantitative data 
were expressed as average (± standard deviation) or 
median (quartile range), P < 0.05 was considered statisti-
cally significant. Prediction models were inspected on 
the internal test and external validation sets. The receiver 
operating characteristic (ROC) curve was analyzed and 
the area under the ROC curve (AUC) was quantified to 
evaluate their performance in distinguishing cancer from 
benign lesions. Hosmer–lemeshow test was used to eval-
uate the degree of fitting between the predicted results of 
the integrated model and the histopathological results, 
and drawn the calibration diagram to visually display 
the results. In order to evaluate the generalization abil-
ity of the model, the non-inferior test was used to check 
whether the AUC of the external validation set is not 
lower than that of in the internal test set. R software (ver-
sion 4.1.0, www. Rproject. org) was uesd for non-inferior-
ity testing, the predefined acceptable threshold value was 
set to 0.1. Through the non-inferiority test of each model, 
the P-value was obtained, when P < 0.05, it indicates that 
the model has good versatility.

Results
Clinical characteristics included age, prostate specific 
antigen (PSA), prostate volume (PV) and PSA-density 
(PSAD). The mean age, PSA, PV and PSAD of patients 
were 62.6 ± 8.2  years, 8.92 (6.78–14.26) ng/mL, 35.23 
(27.24–42.59) mL and 0.22 (0.17–0.84) ng/mL2, respec-
tively. Of the 463 PI-RADS 3 lesions, 311 (67.2%) were 
benign and 152 (32.8%) were PCa lesions, of which 11.2% 
(52/463) were ciPCa (ISUP grade 1), 21.6% (100/463) 
were csPCa (47 ISUP grade 2, 20 ISUP grade 3, 23 ISUP 
grade 4, 10 ISUP grade 5). PSAD in benign lesion group 
and PCa group were 0.17 (0.09–0.41) and 0.39 (0.16–
1.08), respectively (P = 0.006). There was no difference 
in the distribution of PCa and csPCa between different 
institutions (P = 0.502, 0.173). From the 463 PI-RADS 3 
lesions, there were 216 peripheral zone lesions (46.7%) 
with 79 PCa (48 csPCa and 31 ciPCa) and 247 transi-
tion zone lesions (53.3%) with 73 PCa (52 csPCa and 
21ciPCa). The patient’s demographic and clinical datas 
were shown in Table 2.

In the intra- and inter-observer consistency test, the 
intra-observer ICCs range was 0.77–0.90, and the inter-
observer ICCs range was 0.80–0.87, indicated that the 
repeatability of feature extraction was fine. Spearman 
correlation test results of the top 20 features screened 
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by ANOVA were represented by feature heatmap 
(Fig. 2). While constructed the integrated model, 6 and 
5 features were screened to distinguish benign from 
malignant lesions and to further identify csPCa in all 
lesions. The name of the features and the correspond-
ing coefficient are shown in Fig. 3.

The accuracy of PSAD in identifying csPCa of PI-
RADS 3 lesions was 0.652 and 0.650 in internal test 
and external validation set, respectively, and the mean 
AUC value was 0.701 (internal test AUC = 0.709, exter-
nal valitation AUC = 0.692, P = 0.013). The accuracy of 
the model in distinguishing benign and malignant PI-
RADS 3 lesions in internal test and external validation 

set was 0.583 and 0.575, respectively, with mean AUC 
of 0.630.

The accuracy of T2WI-model in identifying csPCa of 
PI-RADS 3 lesions was 0.774 and 0.763 in internal test 
and external validation set, respectively, and the mean 
AUC value was 0.717 (internal test AUC = 0.738, external 
valitation AUC = 0.695, P = 0.264). The accuracy of the 
model in distinguishing benign and malignant PI-RADS 
3 lesions in internal test and external validation set was 
0.643 and 0.650, respectively, with mean AUC of 0.634.

The accuracy of DWI-model in identifying csPCa of 
PI-RADS 3 lesions was 0.730 and 0.813 in internal test 
and external validation set, respectively, and the mean 

Table 2 The patient’s demographic and clinical datas among benign lesion and prostate cancer

PSA prostate specific antigen; PV prostate volume; PSAD PSA-density; ciPCa clinically insignificant prostate cancer
a Independent t-test; bChi-square test

Benign lesion Prostate cancer P-value

Number of cases, n (%) 311 (67.2%) 152 (32.8%)

Ages (years), mean [SD] 61.5 ± 11.7 66.7 ± 5.9 0.079a

PSA (ng/mL), median (IQR) 8.37 (6.45–11.07) 9.12 (7.05 ~ 18.34) 0.083a

PV (mL), median (IQR) 37.65 (28.43 ~ 44.29) 34.72 (26.35 ~ 41.28) 0.425a

PSAD (ng/mL2), median (IQR) 0.17 (0.09 ~ 0.41) 0.39 (0.16 ~ 1.08) 0.006a

Biopsy results, n

ISUP grade 1 (ciPCa) 52

ISUP grade 2 47

ISUP grade 3 20

ISUP grade 4 23

ISUP grade 5 10

Lesion location, n (%) 0.747b

Peripheral zone
Transition zone

137 (29.6%)
174 (37.6%)

79 (17.1%)
73 (15.7%)

Fig. 2 Determine the number of features used to construct the prediction model for differential diagnosis between benign and malignant lesions 
(a) and further identification csPCa in cancer lesions (b)
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AUC value was 0.658 (internal test AUC = 0.635, exter-
nal validation AUC = 0.681, P = 0.086). The accuracy of 
the model in distinguishing benign and malignant PI-
RADS 3 lesions in internal test and external validation 
set was 0.730 and 0.638, respectively, with mean AUC 
of 0.655.

The accuracy of ADC-model in identifying csPCa of 
PI-RADS 3 lesions was 0.739 and 0.775 in internal test 
and external validation set, respectively, and the mean 
AUC value was 0.746 (internal test AUC = 0.767, external 
validation AUC = 0.724, P = 0.269). The accuracy of the 
model in distinguishing benign and malignant PI-RADS 
3 lesions in internal test and external validation set was 
0.565 and 0.613, respectively, with mean AUC value of 
0.645.

The integrated model based on three single-sequence 
radiomics features, and its accuracy in identifying csPCa 
was 0.748 in internal test set and 0.863 in external vali-
dation set. The mean AUC value was 0.803 (internal 
test AUC = 0.804, external validation AUC = 0.801, 
P = 0.019). The accuracy of the model in distinguishing 
benign and malignant PI-RADS 3 lesions in internal test 
and external validation set was 0.748 and 0.763, respec-
tively, with mean AUC of 0.778. The results of Hosmer–
Lemeshow test showed that the prediction results of the 
integrated model for all PCa and csPCa in the internal 
test and the external validation set had a high coincidence 

rate with the observed risks (P = 0.073 vs. 0.082 for PCa; 
P = 0.224 vs. 0.647 for csPCa, respectively).

The results of each model for distinguishing benign 
and malignant PI-RADS 3 lesions are shown in Table 3, 
and the corresponding ROC curves are shown in Fig. 4. 
The effectiveness of each model in identifying csPCa are 
compared in Table 4, and the corresponding ROC curves 
are shown in Fig. 5. The pathological calibration scatter 
plots of the prediction results of the integrated model are 
shown in Fig. 6.

Discussion
This study shows that radiomics models based on ML 
algorithm, which used T2WI, DWI and ADC radiom-
ics features, can achieve upper-moderate accuracy when 
predicting any cancer and csPCa in PI-RADS v2.1 3 
lesions, and the performance of integrated model is bet-
ter than that of all single-sequence models, which indi-
cates that only based on the simplex radiomics feature 
may be limited in distinguishing significant tumors from 
benign or inert lesions, and the combination of multi-
ple features is well complementary. However, it is worth 
noting that the performance of all models in predicting 
csPCa is better than that of models in predicting all can-
cers. Therefore, our results also show that the heteroge-
neity of csPCa is more obvious than that of ciPCa, and it 
is easier to be recognized in ML progress.

Fig. 3 Feature names and coefficients in models for differential diagnosis between benign and malignant lesions (a) and further identification 
csPCa in all lesions (b)
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Several additional indicators have been introduced to 
predict the need for biopsy in patients with PI-RADS 
3, including lesion size, PV, ADC, PSA and PSAD, but 

the published results do not fully prove the relationship 
between these indicators and the risk of csPCa appear-
ance [16–19]. For example, quantitative ADC values can 

Table 3 The performance of each model for predicting any tumors in PI-RADS 3 lesions

T2WI T2 weighted imaging; DWI diffusion weighted imaging; ADC apparent diffusion coefficient; PSAD PSA-density; AUC  area under the receiver operating 
characteristic curve; ACC  accuracy; SEN sensitivity; SPE specificity
* Mean AUC = [AUC(Internal test set) + AUC(External validation set)]/2

The P values from the non-inferiority tests

Modality Training set Internal test set External validation set Mean AUC* P value

AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE

T2WI-model 0.811 0.784 0.614 0.867 0.678 0.643 0.842 0.545 0.589 0.650 0.500 0.722 0.634 0.547

DWI-model 0.717 0.735 0.557 0.822 0.712 0.730 0.684 0.753 0.598 0.638 0.616 0.648 0.655 0.437

ADC-model 0.840 0.780 0.773 0.783 0.650 0.565 0.921 0.390 0.640 0.613 0.654 0.593 0.645 0.848

Integrated-model 0.855 0.746 0.920 0.661 0.801 0.748 0.763 0.740 0.754 0.763 0.846 0.722 0.778 0.047

PSAD-model 0.660 0.623 0.761 0.556 0.637 0.583 0.763 0.494 0.623 0.575 0.846 0.444 0.630 0.036

Fig. 4 The ROC curves of PSAD and four models in predicting any tumor in PI-RADS 3 lesions. a training set, b internal test set, c external validation 
set
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help detect carcinoma while avoiding biopsies that are 
negative [20]. However, another study showed that the 
difference of median ADC values in PI-RADS 3 lesions 
was not statistically significant [18]. Zhang et  al. [21] 

showed that age, PSAD, lesion zone and ADC value were 
Independent  predictors for differentiating csPCa and 
non-csPCa. Used PSAD as a benchmark, this study com-
pared the diagnostic efficacy of radiomics and clinical 

Table 4 The performance of each model for predicting csPCa in all PI-RADS 3 lesions

csPCa clinically significant prostate cancer; T2WI T1 weighted imaging; DWI diffusion weighted imaging; ADC apparent diffusion coefficient; PSAD PSA-density; AUC  
area under the receiver operating characteristic curve; ACC  accuracy; SEN sensitivity; SPE specificity

*Mean AUC = [AUC(Internal test set) + AUC(External validation set)]/2

The P-values from the non-inferiority tests

modality Training set Inner test set External validation set Mean AUC* P value

AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE

T2WI-model 0.740 0.668 0.793 0.633 0.738 0.774 0.680 0.800 0.695 0.763 0.706 0.778 0.717 0.264

DWI-model  0.798 0.802 0.690 0.833 0.635 0.730 0.440 0.811 0.681 0.813 0.471 0.905 0.658 0.086

ADC-model 0.805 0.784 0.655 0.819 0.767 0.739 0.760 0.733 0.724 0.775 0.588 0.825 0.746 0.269

Integrated-model 0.854 0.828 0.741 0.852 0.804 0.748 0.800 0.733 0.801 0.863 0.647 0.921 0.803 0.019

PSAD-model 0.724 0.634 0.793 0.590 0.709 0.652 0.840 0.600 0.692 0.650 0.765 0.619 0.701 0.013

Fig. 5 The ROC curves of PSAD and four models in predicting csPCa in PI-RADS 3 lesions. a training set, b internal test set, c external validation set
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indicators, and the results showed that the mean AUC of 
integrated model was higher than that of PSAD (0.803 vs. 
0.701), and accuracy was greatly improved, indicating the 
superiority of radiomics as a valuable alternative to more 
simple and already recognized quantitative parameters.

In recent years, radiomics studies have mainly focused 
on tumor detection, prediction of PI-RADS score and 
Gleason grade, evaluation of tumor extra-capsular exten-
sion and therapeutic response, which have shown simi-
lar performance as PI-RADS [22, 23]. However, there are 
few studies use radiomics to assisted diagnose PI-RADS 
3 lesions, and lack multi-center studies to validate the 
generalization ability of the model. Our results show that 
the single-sequence model is less efficient in both inter-
nal test and external validation set, with the lowest mean 
AUC for T2WI radiomics features, which is similar to the 
results of Lim et al. [24]. They constructed a model based 
on XGBoost algorithm to predict any cancer or csPCa 
in PI-RADS 3 lesions, and AUC performed by T2WI 
features for all types of tumor was 0.608 and 0.547 for 
csPCa, lower than 0.642 and 0.684 of ADC features. Hec-
tors et al. reconfirmed that model with T2WI radiomics 
features had a low ability to diagnose csPCa (AUC = 0.76) 

[25]. However, the radiomics features of ADC and DWI 
images were not included as controls in their study. 
Our results are lower than those of Hou et al. [26], who 
extracted features from T2WI, DWI and ADC images, 
constructed a one-step ML model and a regression analy-
sis model integrated radiomics score, and improved the 
risk stratification method for identifying csPCa in PI-
RADS 3 lesions with AUC reached 0.74–0.89.

There are several design differences between this study 
and previous studies, which may explain the conflicts in 
results with Hou and Hectors. In contrast to these stud-
ies, our study used MRI datas from two vendors in four 
medical units. Different MRI scanners are equipped with 
different software and hardware, and these differences 
mean that scanners may not obtain images with the same 
intensity distribution [27–29]. This is why we performed 
resampling, gray discretization and Z-score normaliza-
tion prior to radiomics feature extraction. In order to 
demonstrate that image standardization can reduce the 
distraction of multi-center datas on the performance 
and generalization ability of machine learning model, an 
independent external validation set was set up to evalu-
ate the model’s performance, which cases was provided 

Fig. 6 The calibration plots of joint model in predicting all PCa (a, b) and csPCa c, d in PI-RADS 3 lesions. (a, c)internal test set, b, d external 
validation set
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by a different supplier from the testing set. The models 
constructed by Hou et al. and Hectors et al. were trained 
and tested only in their respective institutions, which 
limited extensibility. For example, quantitative values of 
DWI and ADC may be affected by variabilities between 
different scanners, imaging parameters, and patients, 
which caused the repeatability controversial. The lower 
accuracy of our study may be due to the fact that datas 
from multiple centers were integrated together and the 
number of PCa contributed by each participating unit 
was different, leading to differences in the distribution of 
cases. In order to ensure consistency between the com-
bined data set and the distribution of cases in a single 
center, Lim et al. conducted a subgroup analysis of larger 
disease-causing institutions, but was unable to confirm 
this conjecture. Our study used non-inferiority test to 
evaluate the model’s generalization ability, which was not 
available in other studies. Although we failed to prove 
that the AUC of all single-sequence radiomics featuers in 
the external validation set was not lower than that in the 
internal test set (P > 0.05). However, the diagnostic accu-
racy and sensitivity of the integrated model in external 
validation set are higher than that of the internal test set, 
and the AUC in external validation set was not inferior 
to the AUC in internal test set (P < 0.05), indicating that 
the integrated model has certain generalization ability in 
different date sets. In addition, Ji et  al. [30] constructed 
a comprehensive model combinie age, PSA and radiom-
ics features, suggested that combin clinical features can 
improve the generalization ability of radiomics model. 
Different reference standards may also be one of the rea-
sons for the different results. In Hou et al. ’s study, a sub-
set of included lesions lacked pathological diagnosis, and 
the clinical significance of tumor foci was only inferred 
based on follow-up imaging results and/or PSA changes 
after empirical treatment. This limits the reliability of the 
model’s results for predicting a subset of clinically sig-
nificant cancers, some of which were misclassified when 
they could have been monitored closely [31].

For the single-sequence model, radiomics features 
extracted from DWI/ADC sequence have better perfor-
mance than T2WI features in distinguishing between 
benign and malignant lesions. This is consistent with the 
research of Hou et  al. In anther similar study, the most 
important feature for detecting tumor in PI-RADS 3 
lesions was based on ADC images [32]. The changes of 
diffusion of water molecules in tissues were monitored 
by DWI images, reflecting the changes of cell volume and 
number in epithelium, stroma and luminal space [33]. 
PCa is high cellular tissue, which restricts the diffusion 
to some extent due to the blocking of the random move-
ment of water molecules in the tumor. The degree of dif-
fusion limitation is positively correlated with the tumor 

grade, invasiveness and stage [34]. ML can quantify sub-
tle changes in the diffusion motion of water molecules in 
the DWI/ADC diagram, which makes diffusion imaging 
perform better than other sequences to evaluate the PCa.

There are several limitations in this study. First, this is 
a retrospective case–control study with a relatively small 
sample size, especially for a small number of csPCa with 
uneven distribution between groups, may be at risk of 
over-fitting when training models, which limits the eval-
uation of the accuracy in predicting malignant tumor. 
Second, The imaging-pathology correlation was based on 
targeted biopsy pathology. However, part of the biopsies 
occurred before the release of PI-RADS v2.1, resulting 
in differences between the lesions indicated by targeted 
biopsies and the PI-RADS 3 lesions after reassessment. 
A retrospective correlation with pathology could only be 
possibly with radical prostatectomy specimens. Third, 
the location of the lesion, such as peripheral and transi-
tional zones, or poorly defined areas, was not taken into 
account. Due to the differences between peripheral zones 
and transition zones, modeling for each region may affect 
model performance. Finally, it was not discussed whether 
the clinical factors combined with radiomics features 
can provide additional diagnostic value for PI-RADS 3 
lesions.

Conclusion
The ML-based radiomics model achieved an encouraging 
performance in differentiating PI-RADS 3 lesions from 
benign to malignant and distinguishing significant or 
indolent tumors, which has certain application value to 
assist clinical decision making, and provides a new direc-
tion for the management of patients with controversial 
MRI diagnosis and helps to reduce unnecessary biopsies 
while improving the detection rate of csPCa.
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