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to predict benign and malignant PI-RADS v2.1
category 3 lesions: a retrospective multi-center
study
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Abstract

Purpose To develop machine learning-based radiomics models derive from different MRI sequences for distinction
between benign and malignant PI-RADS 3 lesions before intervention, and to cross-institution validate the generaliza-
tion ability of the models.

Methods The pre-biopsy MRI datas of 463 patients classified as PI-RADS 3 lesions were collected from 4 medical
institutions retrospectively. 2347 radiomics features were extracted from the VOI of T2WI, DWI and ADC images. The
ANOVA feature ranking method and support vector machine classifier were used to construct 3 single-sequence
models and 1 integrated model combined with the features of three sequences. All the models were established in
the training set and independently verified in the internal test and external validation set. The AUC was used to com-
pared the predictive performance of PSAD with each model. Hosmer—lemeshow test was used to evaluate the degree
of fitting between prediction probability and pathological results. Non-inferiority test was used to check generaliza-
tion performance of the integrated model.

Results The difference of PSAD between PCa and benign lesions was statistically significant (P=0.006), with the
mean AUC of 0.701 for predicting clinically significant prostate cancer (internal test AUC=0.709 vs. external valida-
tion AUC=10.692, P=0.013) and 0.630 for predicting all cancer (internal test AUC=0.637 vs. external validation
AUC=0.623, P=0.036). T2WI-model with the mean AUC of 0.717 for predicting csPCa (internal test AUC=0.738
vs. external validation AUC=0.695, P=0.264) and 0.634 for predicting all cancer (internal test AUC=0.678 vs.
external validation AUC=0.589, P=0.547). DWI-model with the mean AUC of 0.658 for predicting csPCa (internal
test AUC=0.635 vs. external validation AUC=0.681, P=0.086) and 0.655 for predicting all cancer (internal test
AUC=0.712 vs. external validation AUC=0.598, P=0.437). ADC-model with the mean AUC of 0.746 for predicting
csPCa (internal test AUC=0.767 vs. external validation AUC=0.724, P=0.269) and 0.645 for predicting all cancer
(internal test AUC =0.650 vs. external validation AUC =0.640, P=0.848). Integrated model with the mean AUC of
0.803 for predicting csPCa (internal test AUC=0.804 vs. external validation AUC=0.801, P=0.019) and 0.778 for pre-
dicting all cancer (internal test AUC=10.801 vs. external validation AUC=0.754, P=0.047).
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Conclusions The radiomics model based on machine learning has the potential to be a non-invasive tool to distin-
guish cancerous, noncancerous and csPCa in PI-RADS 3 lesions, and has relatively high generalization ability between

different date set.
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Introduction
Prostate cancer (PCa) is a global public health problem
that threatens human health and life, which causes great
harm to the male genitourinary system [1]. According
to statistics from the American Cancer Research Asso-
ciation and the National Cancer Institute in 2019, PCa
has become one of the most common malignant tumors
in the world, accounting for the second most common
malignancy in men [2]. Prostate Imaging Reporting and
Data System (PI-RADS v2.1) published by American
College of Radiology in 2019, represents a standard-
ized method for assessing and reporting prostate MRI,
which categorizes prostate lesions into different classes
to reflect their relative likelihood of clinically significant
prostate cancer (csPCa) [3]. PI-RADS 3 lesions included
benign lesions and malignant lesions with different inva-
siveness and due to the absence of a clear tendency diag-
nosis for PI-RADS 3 lesions, there is a great variability
in the practice patterns of different institutions (from
conservative treatment, imaging follow-up to targeted
biopsy), expense and potential clinical results [4]. Studies
on evaluating the possibility of csPCa in targeted biop-
sies among PI-RADS 3 lesions have reported that cancer
diagnosis rates range from 5 to 30%, and most studies
have suggested that the likelihood of eventual diagno-
sis of csPCa is relatively low[5-7]. Therefore, accurately
judging the benign and malignant lesions is helpful to
reduce the pain caused by unnecessary biopsies.

Imaging monitoring without intervention for PI-RADS
3 lesions will undoubtedly reduce unnecessary biopsies.
However, this method may lead to omission or delay in
the diagnosis of csPCa lesions, resulting in irreversible
consequences for patients. There is still controversy over
whether to intervene in this “amphibolous lesions”[8],
and the small but not insignificant proportion of lesions
that represent csPCa, it is critical that a more detailed
classification of the PI-RADS 3 lesions will benefit
patients from biopsies and more aggressive treatment.
Radiomics can convert images to higher-dimensional
data, extract a large number of phenotypic features, and
evaluate the biological behavior of tumor noninvasively
through machine learning (ML) algorithms. It has been
widely used in the diagnosis, invasiveness evaluation
and clinical decision-making of PCa[9-11]. The number
of radiomics studies focusing on PI-RADS 3 lesions is
limited. Only two single-center studies have previously

assessed the role of radiomics characteristics to detect
cancer in these “equivocal lesions” However, there are
doubts about the universality and wide applicability of
radiomics models in the absence of multi-institution tri-
als. Therefore, the purpose of this work was to construct
a ML-based radiomics model, which combined T2WI,
DWI and ADC radiomics features, through a multi-
center retrospective case—control study to validate its
performance in differentiating PI-RADS 3 lesions from
benign to malignant and in further risk stratification.

Materials and methods

Study design

This retrospective multi-agency study was approved by
the ethics review committee of each participating institu-
tion and exempted from the need for informed consent
of the patient. Four medical centers have signed data
sharing agreements for data exchange (2021; Approval
No. 262). All prostate MRI images from January 2018
to December 2019 were exported from each participat-
ing unit’s PACS system. We summarized the data of each
hospital, and there were a total of 2259 cases. 96 cases
were excluded due to the absence of dynamic contrast
enhanced MRI (DCE-MRI) and lack of pathological data,
then the remaining 2163 cases were divided into two
parts and graded according to PI-RADS v2.1 multipara-
metric MRI criteria [3] by two radiologists with 3 years
of experience in prostate MRI diagnosis, who were blind
to pathological findings when reading. While interpret-
ing the images, two radiologists recorded the location of
each lesion using the anatomical fan map recommend by
PI-RADS v2.1 to correspond to the lesion described by
the pathological results. At an interval of two weeks after
the first assessment, the procedure was repeated by two
readers and reviewed by a senior radiologist proficient in
MRI diagnosis of the urinary system. When there was any
dispute over the interpretion, the three discussed it until
consensus was reached. Of the 2163 cases with final score
results, 876 cases (40.5%) were classified as PI-RADS
1 and 2, 792 cases (36.6%) were classified as PI-RADS
scores 4 and 5, and the remaining 495 cases (22.9%) were
conferer with PI-RADS 3. Then, all PI-RADS 3 cases were
selected for analysis, of which 32 were excluded based on
the following criteria: (1) PI-RADS 3 lesions coexisted
with other categories of lesions or doesn’t match the tar-
geted biopsy results; (2) prior to MRI examination, they
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had received intervention such as biopsy, surgery or
hormone therapy; (3) lack of any clinical characteristics
of the patient or poor image quality. Finally, 463 eligible
patients were recruited and MRI images of each patient
showed only one lesion.

All the screened cases were divided into two groups
according to the supplier of scanning equipment. The
first group included institutions 1-3 with a total of 383
patients, which were examined with 3.0 T superconduct-
ing MRI scanner (MAGNETOM Skyra, Germany) and
equipped with 8-channel phased array body coils to col-
lect signals. The second group consists of institution 4,
with a total of 80 patients using a Dutch Philips Ingenia
3.0 T MRI scanner, the receiving coil was a 32-channel
body phased array coil. The scanning sequences included
T1WI, axial T2WI (no fat-saturated), sagittal T2WI,
DWI (b=100, 1000, 1500, 2000 s/mm?) and DCE-MRL
The ADC value was calculated by a single exponential
signal attenuation model based on the DWI images with
b=100 and 1000 s/mm? During DCE scanning, 15 to 20
slices were scanned once, the scanning time resolution
was 5.8 s, 64 phases were scanned, and the scanning time
was 7 min. After the end of the third dynamic scanning
phase, contrast agent gadolinium meglumine pentanoate
was injected intravenously at the injection rate of 3 ml/s
and the dose of 0.1 mmol/kg. MRI scan parameters are
described in Table 1. The cases of the first group were
randomly divided into training set (n=268) and internal
test set (n=115) according to the proportion of 7:3. The
second group of cases was used as an external validation
set (n=280) to evaluate the extensibility of the model. Fig-
ure 1 provides a flowchart that includes patient selection
and case assignment.

Targeted biopsy and histopathology

MRI-TRUS fusion targeted sample was performed
with Hitachi real-time ultrasonic multi-image fusion
navigation system (RVS), and the machine model was

Table 1 MRI protocols for both vender
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HIVISIONNoblus/TopicPath. The suspicious lesions
were sampled by MRI-TRUS fusion biopsy and system-
atic biopsy under the guidance of TRUS within 4 weeks
after the MRI examination. Before the fusion biopsy,
the original data of prostate MRI in DICOM format
were introduced into the main body of RVS ultrasound.
MRI images were fused with TRUS images after gen-
eral anesthesia, and anatomical markers such as urethra
orifica, urethra, mullerian or ejaculatory duct cyst were
matched with MRI sagittal images on the same section.
T2WI, DWI, or DCE images with significant abnormal
signals were selected to mark the target lesions in the
cross-sectional MRI, while the same ultrasound sites
were labeled (convex array scan), and then switched
to sagittal images to further confirm the synchroniza-
tion of MRI and ultrasound. After confirming favour-
able synchronization of MRI-TRUS images, the sagittal
plane of prostate was taken by TRUS, and the target
lesion marked with “+” was found. Under the guidance
of puncture stent, the 18G disposable puncture gun was
used to insert needle through perineum and the punc-
ture gun was fired close to the target center. Then, the
axial plane scan was converted to confirm that the nee-
dle track enters the target. 2—4 needles were punctured
for each suspicious focus. After the targeted sample,
12-needle systematic biopsy was conducted through
perineum under the guidance of TRUS, and all the
pathological specimens were marked in detail accord-
ing to each partition and fixed with 10% formaldehyde
for pathological examination.

The pathological results were evaluated by urological
pathologist independently of the MRI results, and the
location and boundary of the lesions were recorded to
ensure that they correspond to the suspicious lesions
on MRI images. The grade grouping and Gleason score
of the lesions were determined according to the 2014
ISUP guidelines. csPCa was defined as ISUP grade 2
or higher (Gleason=23+4 or higher), and pathological

MRI vendor sequence Siemens Skyra 3.0 T MR scanner (Germany)

Philips Ingenia 3.0 T MR scanner (Netherlands)

T1WI AxialT2WI SagittIT2WI DWI T1WI AxialT2wI SagittiIT2WI DWI
TR(ms) 680.0 6980.0 3900.0 5000.0 556.0 3000.0 4978.0 6000.0
TE(ms) 13.00 104.00 89.00 72.00 8.00 100.00 100.00 77.00
Slice thickness(mm) 5.0 3.0 3.0 3.0 5.0 3.0 1.5 3.0
Slice gap(mm) 0.50 0.00 045 0.00 0.00 0.00 0.15 0.00
Matrix 384 x 384 384 x 384 384 x 384 130 x 130 276 x 406 240 x 161 276 x 238 124 x 121
FOV(mm x mm) 380 x 380 200 x 200 200 x 200 288 x 288 249 x 415 220 x 220 240 x 180 220 x 220
NSA 1 2 3 2 1 3 2 2

TR repetition time; TE echo time; NSA number of signal averaged; TIWIT1 weighted imaging; T2WI T2 weighted imaging; DWI Diffusion Weighted Imaging
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Patients undergoing prostate MRI at 4
hospitals between January 2018 and

December 2019 (n=2259)

Eliminated the following patients:
» DCE-MRI was absent (n = 35) or lack of
pathological data (n = 61)

PI-RADS score of each patient was provided

by 3 radiologists (n=2163)

The following patients were excluded:
PI-RADS score 1-2 (n=876) , PI-RADS score 4-5 (n=792)
PI-RADS 3 lesion coexist with other types of lesions (n=18)
Biopsy or treatment prior to MRI (n=11)
Poor image quality or incomplete clinical data (n=3)

The accepted MRI diagnosis with PI-RADS

V2.1 category 3 (n=463)

Group 1: Data set from Siemens (n=383) and
were distributed in a 7:3 ratio

Internal test set
(n=115)

Training set
(n=268)

Fig. 1 Flow diagram on methods of this study

results with GS=3+3 (ISUP grade 1) were defined as
clinically insignificant PCa (ciPCa) [12].

Focus segmentation

Subsequent radiomics analysis were performed based
on axial T2WI, DWI (b=2000 s/mm?) and ADC
images in our study. The different target images of
the same patient were spatially matched using Elastix
software package (v.4.10, 13. Using T2WI images as
reference, DWI and ADC images were registered suc-
cessively. Lesion segmentation was performed jointly
by two radiologist involved in imaging evaluation using
ITK-SNAP 3.8.0 software (http://www.itksnap.org/).
The two handlers drew the region of interest (ROI)
layer by layer on T2WI sequence to get the volume of
interest (VOI) of the tumor, then copy it to DWI and
ADC images to ensure the consistency of VOI sketches
in different sequences. After preprocessing, visually
verified was performed by a professor with experi-
ence in prostate MRI diagnosis (more than 10 years) to
ensure that the location and extent of the lesions shown
on MRI strictly matched the corresponding pathologi-
cal description.

Group 2: Data set from Philips (n=80)

> Group 2 datas as external validation set (n=80)

MRI image preprocessing and feature extraction

Before the feature calculation, the images of each patient
were standardized separately to improve the texture rec-
ognition rate. Firstly, the T2WI, DWI and ADC images
of each patient were resampled to a voxel size of 1 x 1 x 1
cm?® to standardize the voxel spacing. Then the voxel
intensity discretization was accomplished by setting the
bin width to 25 to reduce imaging noise and standard-
ize the intensity. Finally, through Z-score Normalization
for different sequence of each case, which can reduce the
influence of the inconsistency of image parameters on
the variation of radiomics features, the voxel intensity
was transformed into a distribution with 0 as the mean
and 1 as the standard deviation.

The open source radiomics software FeAture Explorer
(FAE v0.4.0), which based on pyradiomics package, was
used to extract features from the VOI of each sequence
[14]. According to the 8 texture analysis methods pro-
vided by the software, a total of 2347 radiomics features
were extracted from ROI files: (1) 46 first-order gray
statistics; (2) 38 shape-based features; (3) 70 Gray Level
Co-occurrence Matrices (GLCM); (4) 20 Gray Level
Run Length Matrices (GLRLM); (5) 42 Gray Level Size
Zone Matrices (GLSZM); (6) 36 Gray Level Dependence
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Matrices (GLDM); and (7) 17 Neighborhood Gray Tone
Difference Matrices (NGTDM). (8) The original images
were transformed by Wavelet Transform, and 2078
wavelet features are extracted in three spatial directions.
The repeatability of intra- and inter-observer of lesion
segmentation was based on the repeatability of feature
extraction. 30 patients were randomly selected and the
clinical data were blinded. The two doctors performed
VOI segmentation and feature extraction again. The
intra- and inter-observer repeatability of feature extrac-
tion was evaluated by intergroup correlation coefficient
(ICC). If the intra-group and inter-group correlation
coefficient is greater than 0.75, it is considered that the
ROI drawing has acceptable stability.

Feature selection and classifier modeling

In this study, we focus on two results: (1) distinguish any
cancer lesions from benign lesions, (2) and further pre-
dict csPCa occurrence in all cases. In order to solve the
problem of sample imbalance in the training set, this
study used the synthetic minority oversampling tech-
nique (SMOTE) to oversample the positive samples
to balance with negative samples. Internal test set and
external validation set did not perform this process [15].
The number of radiomics features was much larger than
the number of samples, which may increase the risk of
overfitting. This risk was reduced by feature selection to
reduce the number of features. In present study, Z-score
Normalization was first used to normalize the feature
matrix, each feature vector was subtracted from the mean
value and divided by the standard deviation to eliminate
the order of magnitude otherness between different fea-
tures. The radiomics features with variance of 0 were
eliminated, and then the data dimension was reduced to
remove the redundant features with average Spearman
absolute correlation coefficient>0.9. After eliminated
redundant features, the analysis of variance (ANOVA)
algorithm was used to sort the features, and only the
top 20 features were retained. These features with incre-
ments from 1 to 20 were then input into the support vec-
tor machine (SVM) classifier. For different sequences,
T2WI, DWI and ADC feature matrices were modeled
respectively (called T2WI-model, DWI-model and ADC-
model), and then the features of the three sequences were
combined for modeling analysis (call integrated model).
While established models to identify csPCa, the features
of the first group of cases were re-integrated, mean that,
the benign lesions and ciPCa were divided into the same
label with their features. Then the reconstituted cases
was divided into training set (n=268) and internal test
set (n=115) according to the proportion of 7:3, and the
generalization ability of the model was verified on the

Page 5 of 13

external valitation set. All the experiments above were
run in FeAtureExplorer.

Statistical analysis

Demographic datas were compared by chi-square test
and independent t-test. According to whether it con-
formed to the normal distribution, the quantitative data
were expressed as average (+standard deviation) or
median (quartile range), P<0.05 was considered statisti-
cally significant. Prediction models were inspected on
the internal test and external validation sets. The receiver
operating characteristic (ROC) curve was analyzed and
the area under the ROC curve (AUC) was quantified to
evaluate their performance in distinguishing cancer from
benign lesions. Hosmer—lemeshow test was used to eval-
uate the degree of fitting between the predicted results of
the integrated model and the histopathological results,
and drawn the calibration diagram to visually display
the results. In order to evaluate the generalization abil-
ity of the model, the non-inferior test was used to check
whether the AUC of the external validation set is not
lower than that of in the internal test set. R software (ver-
sion 4.1.0, www. Rproject. org) was uesd for non-inferior-
ity testing, the predefined acceptable threshold value was
set to 0.1. Through the non-inferiority test of each model,
the P-value was obtained, when P<0.05, it indicates that
the model has good versatility.

Results

Clinical characteristics included age, prostate specific
antigen (PSA), prostate volume (PV) and PSA-density
(PSAD). The mean age, PSA, PV and PSAD of patients
were 62.6+8.2 years, 8.92 (6.78-14.26) ng/mL, 35.23
(27.24-42.59) mL and 0.22 (0.17-0.84) ng/mL? respec-
tively. Of the 463 PI-RADS 3 lesions, 311 (67.2%) were
benign and 152 (32.8%) were PCa lesions, of which 11.2%
(52/463) were ciPCa (ISUP grade 1), 21.6% (100/463)
were csPCa (47 ISUP grade 2, 20 ISUP grade 3, 23 ISUP
grade 4, 10 ISUP grade 5). PSAD in benign lesion group
and PCa group were 0.17 (0.09-0.41) and 0.39 (0.16—
1.08), respectively (P=0.006). There was no difference
in the distribution of PCa and csPCa between different
institutions (P=0.502, 0.173). From the 463 PI-RADS 3
lesions, there were 216 peripheral zone lesions (46.7%)
with 79 PCa (48 csPCa and 31 ciPCa) and 247 transi-
tion zone lesions (53.3%) with 73 PCa (52 csPCa and
21ciPCa). The patient’s demographic and clinical datas
were shown in Table 2.

In the intra- and inter-observer consistency test, the
intra-observer ICCs range was 0.77-0.90, and the inter-
observer ICCs range was 0.80-0.87, indicated that the
repeatability of feature extraction was fine. Spearman
correlation test results of the top 20 features screened



Jin et al. BMC Medical Imaging (2023) 23:47 Page 6 of 13
Table 2 The patient’s demographic and clinical datas among benign lesion and prostate cancer

Benign lesion Prostate cancer P-value
Number of cases, n (%) 311 (67.2%) 152 (32.8%)
Ages (years), mean [SD] 615+11.7 66.7+59 0.079?
PSA (ng/mL), median (IQR) 8.37 (6.45-11.07) 9.12 (7.05~1834) 0.083°
PV (mL), median (IQR) 37.65 (2843 ~44.29) 34.72 (26.35~41.28) 0.425°
PSAD (ng/mL?), median (IQR) 0.17(0.09~041) 0.39(0.16~1.08) 0.006°
Biopsy results, n
ISUP grade 1 (ciPCa) 52
ISUP grade 2 47
ISUP grade 3 20
ISUP grade 4 23
ISUP grade 5 10
Lesion location, n (%) 0.747°
Peripheral zone 137 (29.6%) 79 (17.1%)
Transition zone 174 (37.6%) 73 (15.7%)

PSA prostate specific antigen; PV prostate volume; PSAD PSA-density; ciPCa clinically insignificant prostate cancer

2 Independent t-test; °Chi-square test

by ANOVA were represented by feature heatmap
(Fig. 2). While constructed the integrated model, 6 and
5 features were screened to distinguish benign from
malignant lesions and to further identify csPCa in all
lesions. The name of the features and the correspond-
ing coefficient are shown in Fig. 3.

The accuracy of PSAD in identifying csPCa of PI-
RADS 3 lesions was 0.652 and 0.650 in internal test
and external validation set, respectively, and the mean
AUC value was 0.701 (internal test AUC =0.709, exter-
nal valitation AUC=0.692, P=0.013). The accuracy of
the model in distinguishing benign and malignant PI-
RADS 3 lesions in internal test and external validation

A C E G I K M 0 Q S

set was 0.583 and 0.575, respectively, with mean AUC
of 0.630.

The accuracy of T2WI-model in identifying csPCa of
PI-RADS 3 lesions was 0.774 and 0.763 in internal test
and external validation set, respectively, and the mean
AUC value was 0.717 (internal test AUC =0.738, external
valitation AUC=0.695, P=0.264). The accuracy of the
model in distinguishing benign and malignant PI-RADS
3 lesions in internal test and external validation set was
0.643 and 0.650, respectively, with mean AUC of 0.634.

The accuracy of DWI-model in identifying csPCa of
PI-RADS 3 lesions was 0.730 and 0.813 in internal test
and external validation set, respectively, and the mean

A C E G I K M O O S

Fig. 2 Determine the number of features used to construct the prediction model for differential diagnosis between benign and malignant lesions

(a) and further identification csPCa in cancer lesions (b)
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Fig. 3 Feature names and coefficients in models for differential diagnosis between benign and malignant lesions (a) and further identification

csPCain all lesions (b)

AUC value was 0.658 (internal test AUC =0.635, exter-
nal validation AUC =0.681, P=0.086). The accuracy of
the model in distinguishing benign and malignant PI-
RADS 3 lesions in internal test and external validation
set was 0.730 and 0.638, respectively, with mean AUC
of 0.655.

The accuracy of ADC-model in identifying csPCa of
PI-RADS 3 lesions was 0.739 and 0.775 in internal test
and external validation set, respectively, and the mean
AUC value was 0.746 (internal test AUC =0.767, external
validation AUC=0.724, P=0.269). The accuracy of the
model in distinguishing benign and malignant PI-RADS
3 lesions in internal test and external validation set was
0.565 and 0.613, respectively, with mean AUC value of
0.645.

The integrated model based on three single-sequence
radiomics features, and its accuracy in identifying csPCa
was 0.748 in internal test set and 0.863 in external vali-
dation set. The mean AUC value was 0.803 (internal
test AUC=0.804, external validation AUC=0.801,
P=0.019). The accuracy of the model in distinguishing
benign and malignant PI-RADS 3 lesions in internal test
and external validation set was 0.748 and 0.763, respec-
tively, with mean AUC of 0.778. The results of Hosmer—
Lemeshow test showed that the prediction results of the
integrated model for all PCa and csPCa in the internal
test and the external validation set had a high coincidence

rate with the observed risks (P=0.073 vs. 0.082 for PCa;
P=0.224 vs. 0.647 for csPCa, respectively).

The results of each model for distinguishing benign
and malignant PI-RADS 3 lesions are shown in Table 3,
and the corresponding ROC curves are shown in Fig. 4.
The effectiveness of each model in identifying csPCa are
compared in Table 4, and the corresponding ROC curves
are shown in Fig. 5. The pathological calibration scatter
plots of the prediction results of the integrated model are
shown in Fig. 6.

Discussion

This study shows that radiomics models based on ML
algorithm, which used T2WI, DWI and ADC radiom-
ics features, can achieve upper-moderate accuracy when
predicting any cancer and csPCa in PI-RADS v2.1 3
lesions, and the performance of integrated model is bet-
ter than that of all single-sequence models, which indi-
cates that only based on the simplex radiomics feature
may be limited in distinguishing significant tumors from
benign or inert lesions, and the combination of multi-
ple features is well complementary. However, it is worth
noting that the performance of all models in predicting
csPCa is better than that of models in predicting all can-
cers. Therefore, our results also show that the heteroge-
neity of csPCa is more obvious than that of ciPCa, and it
is easier to be recognized in ML progress.
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Table 3 The performance of each model for predicting any tumors in PI-RADS 3 lesions

Modality Training set Internal test set External validation set Mean AUC*  Pvalue
AUC ACC SEN SPE AUC ACC SEN  SPE AUC ACC SEN SPE

T2WI-model 0811 0784 0614 0867 0678 0643 0842 0545 0589 0650 0500 0722 0634 0.547

DWI-model 0717 0735 0557 0822 0712 0730 0684 0753 0598 0638 0616 0648 0.655 0437

ADC-model 0840 0780 0773 0783 0650 0565 0921 0390 0640 0613 0654 0593 0645 0.848

Integrated-model 0855 0.746 0920 0661 0801 0748 0763 0740 0754 0763 0846 0722 0778 0.047

PSAD-model 0660 0623 0761 0556 0637 0583 0763 0494 0623 0575 0846 0444 0630 0.036

T2WIT2 weighted imaging; DWI diffusion weighted imaging; ADC apparent diffusion coefficient; PSAD PSA-density; AUC area under the receiver operating
characteristic curve; ACC accuracy; SEN sensitivity; SPE specificity
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Fig.4 The ROC curves of PSAD and four models in predicting any tumor in PI-RADS 3 lesions. a training set, b internal test set, ¢ external validation

set

Several additional indicators have been introduced to
predict the need for biopsy in patients with PI-RADS
3, including lesion size, PV, ADC, PSA and PSAD, but

the published results do not fully prove the relationship
between these indicators and the risk of csPCa appear-
ance [16-19]. For example, quantitative ADC values can
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Table 4 The performance of each model for predicting csPCa in all PI-RADS 3 lesions

modality Training set Inner test set External validation set Mean AUC*  Pvalue
AUC ACC SEN SPE AUC ACC SEN  SPE AUC ACC SEN SPE

T2WI-model 0740 0668 0793 0633 0738 0774 0680 0800 0695 0763 0706 0778 0717 0.264

DWI-model 0798 0802 0690 0833 0635 0730 0440 0811 0681 0813 0471 0905 0658 0.086

ADC-model 0805 0784 0655 0819 0767 0739 0760 0733 0724 0775 0588 0825 0746 0.269

Integrated-model 0854 0.828 0741 0852 0804 0748 0800 0733 0801 0863 0647 0921 0803 0.019

PSAD-model 0724 0634 0793 0590 0709 0652 0840 0600 0692 0650 0765 0619 0701 0.013

csPCa clinically significant prostate cancer; T2WIT1 weighted imaging; DWI diffus
area under the receiver operating characteristic curve; ACC accuracy; SEN sensitivi

*Mean AUC =[AUC(Internal test set) + AUC(External validation set)]/2
The P-values from the non-inferiority tests

ion weighted imaging; ADC apparent diffusion coefficient; PSAD PSA-density; AUC

ity; SPE specificity

a o —— b
, 7
7/
/7

0.8 - 0.8 -
o o
o o
= 0.6 = 0.6
2 2
= =
2 0.4 - ’ 2 0.4 -
[} 7 [} J' 7
n T T2Wi‘model (AUC = 0.740) n {-T2wimodel (AUC = 0.738)

0.2 41 7~ DWI-model (AUC = 0.798) 024 DWI-model (AUC = 0.635)

' f—/ADC-model (AUC = 0.805) ‘ +ADC-model (AUC = 0.767)
= Intergrated-model (AUC = 0.854) — Intergrated-model (AUC = 0.804)
PSAD-model (AUC = 0.724) i PSAD-model (AUC = 0.709)
00 T T T 1 00 T T 1 1
000 025 050 0.75 1.00 000 025 050 075 1.00
C 1-Specificity (FPR) 1-Specificity (FPR)
1.0

o
o]
1
N
N
AN

_ I .
[h'd ’
o J,I I_| ,
= 0.6 - 7
> J ’
= l- Vs
2 ’
2 0.4 4 .
[ /7
n 2Wiimodel (AUC = 0.695)
02 - DWI-model (AUC = 0.681)
' +ADC-model (AUC = 0.724)
7~ Intergrated-model (AUC = 0.801)
0.0 } PSAD-model (AUC = 0.692)
. 1 T T 1

0.00 0.25 0.50 0.75 1.00

1-Specificity (FPR)

Fig.5 The ROC curves of PSAD and four models in predicting csPCa in PI-RADS 3 lesions. a training set, b internal test set, ¢ external validation set

help detect carcinoma while avoiding biopsies that are
negative [20]. However, another study showed that the
difference of median ADC values in PI-RADS 3 lesions
was not statistically significant [18]. Zhang et al. [21]

showed that age, PSAD, lesion zone and ADC value were
Independent predictors for differentiating csPCa and
non-csPCa. Used PSAD as a benchmark, this study com-
pared the diagnostic efficacy of radiomics and clinical
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Fig. 6 The calibration plots of joint model in predicting all PCa (a, b) and csPCa ¢, d in PI-RADS 3 lesions. (a, c)internal test set, b, d external

validation set

indicators, and the results showed that the mean AUC of
integrated model was higher than that of PSAD (0.803 vs.
0.701), and accuracy was greatly improved, indicating the
superiority of radiomics as a valuable alternative to more
simple and already recognized quantitative parameters.
In recent years, radiomics studies have mainly focused
on tumor detection, prediction of PI-RADS score and
Gleason grade, evaluation of tumor extra-capsular exten-
sion and therapeutic response, which have shown simi-
lar performance as PI-RADS [22, 23]. However, there are
few studies use radiomics to assisted diagnose PI-RADS
3 lesions, and lack multi-center studies to validate the
generalization ability of the model. Our results show that
the single-sequence model is less efficient in both inter-
nal test and external validation set, with the lowest mean
AUC for T2WI radiomics features, which is similar to the
results of Lim et al. [24]. They constructed a model based
on XGBoost algorithm to predict any cancer or csPCa
in PI-RADS 3 lesions, and AUC performed by T2WI
features for all types of tumor was 0.608 and 0.547 for
¢sPCa, lower than 0.642 and 0.684 of ADC features. Hec-
tors et al. reconfirmed that model with T2W1I radiomics
features had a low ability to diagnose csPCa (AUC =0.76)

[25]. However, the radiomics features of ADC and DW1I
images were not included as controls in their study.
Our results are lower than those of Hou et al. [26], who
extracted features from T2WI, DWI and ADC images,
constructed a one-step ML model and a regression analy-
sis model integrated radiomics score, and improved the
risk stratification method for identifying csPCa in PI-
RADS 3 lesions with AUC reached 0.74-0.89.

There are several design differences between this study
and previous studies, which may explain the conflicts in
results with Hou and Hectors. In contrast to these stud-
ies, our study used MRI datas from two vendors in four
medical units. Different MRI scanners are equipped with
different software and hardware, and these differences
mean that scanners may not obtain images with the same
intensity distribution [27-29]. This is why we performed
resampling, gray discretization and Z-score normaliza-
tion prior to radiomics feature extraction. In order to
demonstrate that image standardization can reduce the
distraction of multi-center datas on the performance
and generalization ability of machine learning model, an
independent external validation set was set up to evalu-
ate the model’s performance, which cases was provided
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by a different supplier from the testing set. The models
constructed by Hou et al. and Hectors et al. were trained
and tested only in their respective institutions, which
limited extensibility. For example, quantitative values of
DWI and ADC may be affected by variabilities between
different scanners, imaging parameters, and patients,
which caused the repeatability controversial. The lower
accuracy of our study may be due to the fact that datas
from multiple centers were integrated together and the
number of PCa contributed by each participating unit
was different, leading to differences in the distribution of
cases. In order to ensure consistency between the com-
bined data set and the distribution of cases in a single
center, Lim et al. conducted a subgroup analysis of larger
disease-causing institutions, but was unable to confirm
this conjecture. Our study used non-inferiority test to
evaluate the model’s generalization ability, which was not
available in other studies. Although we failed to prove
that the AUC of all single-sequence radiomics featuers in
the external validation set was not lower than that in the
internal test set (P>0.05). However, the diagnostic accu-
racy and sensitivity of the integrated model in external
validation set are higher than that of the internal test set,
and the AUC in external validation set was not inferior
to the AUC in internal test set (P<0.05), indicating that
the integrated model has certain generalization ability in
different date sets. In addition, Ji et al. [30] constructed
a comprehensive model combinie age, PSA and radiom-
ics features, suggested that combin clinical features can
improve the generalization ability of radiomics model.
Different reference standards may also be one of the rea-
sons for the different results. In Hou et al. ’s study, a sub-
set of included lesions lacked pathological diagnosis, and
the clinical significance of tumor foci was only inferred
based on follow-up imaging results and/or PSA changes
after empirical treatment. This limits the reliability of the
model’s results for predicting a subset of clinically sig-
nificant cancers, some of which were misclassified when
they could have been monitored closely [31].

For the single-sequence model, radiomics features
extracted from DWI/ADC sequence have better perfor-
mance than T2WTI features in distinguishing between
benign and malignant lesions. This is consistent with the
research of Hou et al. In anther similar study, the most
important feature for detecting tumor in PI-RADS 3
lesions was based on ADC images [32]. The changes of
diffusion of water molecules in tissues were monitored
by DWTI images, reflecting the changes of cell volume and
number in epithelium, stroma and luminal space [33].
PCa is high cellular tissue, which restricts the diffusion
to some extent due to the blocking of the random move-
ment of water molecules in the tumor. The degree of dif-
fusion limitation is positively correlated with the tumor
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grade, invasiveness and stage [34]. ML can quantify sub-
tle changes in the diffusion motion of water molecules in
the DWI/ADC diagram, which makes diffusion imaging
perform better than other sequences to evaluate the PCa.

There are several limitations in this study. First, this is
a retrospective case—control study with a relatively small
sample size, especially for a small number of csPCa with
uneven distribution between groups, may be at risk of
over-fitting when training models, which limits the eval-
uation of the accuracy in predicting malignant tumor.
Second, The imaging-pathology correlation was based on
targeted biopsy pathology. However, part of the biopsies
occurred before the release of PI-RADS v2.1, resulting
in differences between the lesions indicated by targeted
biopsies and the PI-RADS 3 lesions after reassessment.
A retrospective correlation with pathology could only be
possibly with radical prostatectomy specimens. Third,
the location of the lesion, such as peripheral and transi-
tional zones, or poorly defined areas, was not taken into
account. Due to the differences between peripheral zones
and transition zones, modeling for each region may affect
model performance. Finally, it was not discussed whether
the clinical factors combined with radiomics features
can provide additional diagnostic value for PI-RADS 3
lesions.

Conclusion

The ML-based radiomics model achieved an encouraging
performance in differentiating PI-RADS 3 lesions from
benign to malignant and distinguishing significant or
indolent tumors, which has certain application value to
assist clinical decision making, and provides a new direc-
tion for the management of patients with controversial
MRI diagnosis and helps to reduce unnecessary biopsies
while improving the detection rate of csPCa.
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