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Abstract 

Background Although the morphological changes of sella turcica have been drawing increasing attention, the 
acquirement of linear parameters of sella turcica relies on manual measurement. Manual measurement is laborious, 
time‑consuming, and may introduce subjective bias. This paper aims to develop and evaluate a deep learning‑based 
model for automatic segmentation and measurement of sella turcica in cephalometric radiographs.

Methods 1129 images were used to develop a deep learning‑based segmentation network for automatic sella 
turcica segmentation. Besides, 50 images were used to test the generalization ability of the model. The performance 
of the segmented network was evaluated by the dice coefficient. Images in the test datasets were segmented by the 
trained segmentation network, and the segmentation results were saved in binary images. Then the extremum points 
and corner points were detected by calling the function in the OpenCV library to obtain the coordinates of the four 
landmarks of the sella turcica. Finally, the length, diameter, and depth of the sella turcica can be obtained by calcu‑
lating the distance between the two points and the distance from the point to the straight line. Meanwhile, images 
were measured manually using Digimizer. Intraclass correlation coefficients (ICCs) and Bland–Altman plots were used 
to analyze the consistency between automatic and manual measurements to evaluate the reliability of the proposed 
methodology.

Results The dice coefficient of the segmentation network is 92.84%. For the measurement of sella turcica, there 
is excellent agreement between the automatic measurement and the manual measurement. In Test1, the ICCs of 
length, diameter and depth are 0.954, 0.953, and 0.912, respectively. In Test2, ICCs of length, diameter and depth are 
0.906, 0.921, and 0.915, respectively. In addition, Bland–Altman plots showed the excellent reliability of the automated 
measurement method, with the majority measurements differences falling within ± 1.96 SDs intervals around the 
mean difference and no bias was apparent.

Conclusions Our experimental results indicated that the proposed methodology could complete the automatic 
segmentation of the sella turcica efficiently, and reliably predict the length, diameter, and depth of the sella turcica. 
Moreover, the proposed method has generalization ability according to its excellent performance on Test2.
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Background
The sella turcica (ST) is a saddle-shaped structure in the 
middle cranial fossa on the intracranial surface of the 
sphenoid bone, which can be readily recognized in lateral 
cephalometric radiographs. ST is routinely used to evalu-
ate cranial morphology and determine the relationship 
of the maxilla and mandible with each other or the cra-
nial base [1]. The anterior border of ST is the tubercu-
lum sellae and the posterior border is the dorsum sellae. 
In orthodontics, the sella point, which is located at the 
center of ST, is one of the most widely applied cranial 
landmarks for cephalometric analysis [2]. During embry-
ological development, ST area is the key site for cranial 
and maxillofacial development. The neural crest cells 
migrate from ST to the fronto, nasal and maxillary devel-
opmental fields, and are involved in the formation and 
development of the anterior part of the pituitary gland, 
ST, and teeth. This makes morphometrics of ST a good 
source of additional diagnostic information related to 
pituitary pathology, dental abnormalities or various syn-
dromes that affect the craniofacial region [3].

In the field of stomatology, the study of the morpholog-
ical changes of ST have been drawing increasing atten-
tion from stomatologists. Several studies conducted on 
the association between variation in ST morphology and 
skeletal malocclusions [4–6]. Some authors have per-
formed the morphometric analysis of ST in populations 
of different races, ages, and genders, to identify possi-
ble race, age, and gender correlation with ST size [2, 7]. 
Other studies have explored whether genetic syndromes 
involving the craniofacial complex and the presence of 
dental abnormalities are associated with abnormal radi-
ographic ST morphology [8–10]. All the studies men-
tioned above include the same essential step: measuring 
the morphology of ST.

Linear measurements such as length, depth, and diam-
eter were the most common parameters to assess the 
morphology of ST. This morphological method to meas-
ure the linear size of ST was first proposed by Silverman 
[11] and is still used in current studies. Observers usu-
ally manually measure these linear parameters using digi-
tal calipers or measurement software. However, manual 
measurement is a time-consuming and laborious task. In 
addition, both inter-observer and intra-observer variabil-
ities are prone to exist during the measurement process. 
These disadvantages of manual measurement will hinder 
the study of ST morphology, so it is necessary to provide 
a convenient automatic measurement tool.

Deep learning, a powerful emerging branch of artificial 
intelligence technology, has made many achievements in 
medical image processing in recent years. Qin Ye et  al. 
developed a deep learning-based system for automatic 
patellar height measurements using knee radiographs 

[12]. Woo et al. [13] developed a deep learning algorithm 
for semi-automated unidirectional CT measurement 
of lung lesions. Ahmad et al. [14] proposed a very light-
weight convolutional neural network (CNN) to extract 
the liver region from CT scan images. And some other 
studies are based on deep learning algorithms, such as 
automatic segmentation and measurement of vertebral 
[15–17], automatic measurement of eyelid morphology 
[18, 19], and automatic measurement of hip joints [20], 
etc. This study aims to develop and evaluate a deep learn-
ing-based model for automatic segmentation and meas-
urement of ST in cephalometric radiographs.

Methods
Development environment
In our experiments, we use NVIDIA RTX 3090 graphics 
processing units to help accelerate deep learning training. 
The deep learning development environment was done 
through Python 3.7.11 and Pytorch 1.10.2 framework in 
Windows 10 operating system.

Datasets
The X-ray images we use were obtained from the PACS in 
the Imaging Department of Guiyang Hospital of Stoma-
tology. In the process of data collection, the morpho-
logical characteristics of ST on each image were carefully 
observed. Images that clearly showed the morphological 
characteristics of ST were included in the study, while 
those of poor quality were excluded. After the screen-
ing, cephalometric radiographs of 1129 patients were 
included in the study, constituting our experimental 
datasets. The 1129 X-ray images were exported from 
the PACS system and saved in JPG format. The size of 
each image is 2884 × 2304 pixels, and each pixel’s size is 
0.1 × 0.1  mm. 110 images were randomly selected from 
1129 images as a test dataset, named Test1.The remaining 
1019 X-ray images were randomly divided into two sets: 
918 images were used as the training dataset to train the 
deep learning network for automatic ST segmentation, 
and 101 images were used as the verification dataset.

In addition, from the 400 X-ray images in the 2015 ISBI 
public dataset, 50 images were selected that could clearly 
show the morphology of the ST. The 50 images constitute 
dataset Test2 as the second test dataset to test the gen-
eralization ability of the proposed method. The original 
format of the 50 images was BMP, which was converted 
into JPG format in this study. The size of the images was 
1935 × 2400 pixels, and each pixel’s size is 0.1 × 0.1 mm.

Automated morphological measurements for the 
ST were performed on Test1’s 110 images and Test2’s 
50 images. The images in the test dataset are input the 
trained deep learning network, the region of the ST in 
each image is automatically segmented, and an algorithm 
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is designed to achieve automatic morphological measure-
ments of the ST on the segmentation results.

Definitions of measures
The method of measuring the linear dimensions of ST 
was first proposed by Silverman [11]. There are four land-
marks on the contour of the ST: 1. The tuberculum sella 
(TS), which is the anterior point of the contour of the 
ST; 2. The dorsum sella (DS), which is the highest point 
of posterior wall of the ST; 3. The base of the pituitary 
fossa (BPF), which is the deepest point on the floor of the 
pituitary fossa; 4. The anteroposterior diameter (ADP), 
which is the furthest point on the posterior inner wall of 
the fossa [2]. Based on these four landmarks, Silverman 
defined three linear parameters (Length, Diameter and 
Depth) to describe the morphology of the ST.

The length of the ST is the distance from TS to DS. The 
anteroposterior diameter of the ST is the distance from 
TS to ADP. The depth of the ST is the vertical distance 
from BPF to a straight line formed by TS and DS connec-
tions. The positions of the four landmarks of the ST in 
the image and the specific definitions of the three linear 
parameters as shown in Fig. 1.

Preprocessing
Preprocessing is a vital part of image segmentation, and 
many studies add a preprocessing phase before training 
deep learning models [21–23]. In this study, all images 
are preprocessed before training the network for auto-
matic ST segmentation. There are three main preproc-
essing operations. The first preprocessing operation is 
to extract the region of interest (ROI). The size of the 
original image was 2884 × 2340 pixels, but the ST as the 
target for segmentation only occupied a small area of the 

whole image. Therefore, the region containing the ST 
was extracted from the image, and irrelevant background 
was removed. By calling the function in OpenCV library, 
the ROI is extracted based on pixel coordinate param-
eters. The pixel coordinate parameters are “image [y0:y1, 
x0, x1]”, where (x0, y0) is the top-left coordinate of ROI, 
and(x1, y1) is the bottom-right coordinate of ROI. There 
are two reasons why pixel coordinates can be used to 
extract ROI. One reason is that the cephalometric radi-
ographs taken with the same device are generally of the 
same size. Another reason is that although the morphol-
ogy of the ST varies from person to person, the relative 
position of the ST in the cephalometric radiographs does 
not change much. Therefore, as long as the appropriate 
pixel coordinate parameters are set, the ROI can be eas-
ily and quickly extracted by traversing all images in the 
dataset using OpenCV. For our dataset, we set the pixel 
coordinate parameters to [500:900, 1200:1600], traversed 
and processed all the images in our dataset by calling 
functions in OpenCV. For Test2 selected in the public 
dataset, we changed the pixel coordinate parameters to 
[800:1200, 600:1000]. The ROI of all images was quickly 
extracted and accurately included the ST. The size of ROI 
is 400 × 400 pixels. The second preprocessing operation 
is histogram equalization. The purpose of this operation 
is to enhance the contrast of the image and make the 
morphological structure of the ST clearer in the image. 
The third preprocessing operation is median filtering, 
which aims to remove noise from the image. The median 
filtering can not only remove some isolated noise points 
in the image, but also maintain the image details. In our 
experiment, the “ksize” of median filtering was set to 5. 
After preprocessing, all images are 400 × 400 pixels in 
size. Figure 2 shows an example of image preprocessing.

Fig. 1 Dimensions of Sella Turcica. A An original X‑ray image. The structure in the red box is the ST. B The region of the ST. TS, DS, ADP, and BPF were 
the four landmarks of ST, line a is Length, line b is Diameter, and line c is Depth
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Annotations

1. Manual segmentation of ST

The main researcher used Labelme (version 5.0.1), a 
common program for labeling images, to manually seg-
ment the ST. After annotation, a corresponding mask will 
be generated for each image, as shown in Fig.  3. In the 
X-ray images, ST appears as a nest bounded by a circular 
white line. The ST in the image is manually segmented 
along the white line. The specific rules of annotation are 
as follows: take TS as the starting point and DS as the 
ending point, draw along the inner edge of the white line, 
and then connect DS and TS. Finally, the closed region 
formed is the segmented ground truth. All images were 
annotated by the same researcher, and an experienced 
orthodontist was invited to review the annotation results 
to ensure the reliability of ground truth. Disputed images 
are discussed and re-labeled.

2. Manual measurement of linear parameters

Digimizer is an easy-to-use image analysis software 
package that allows precise manual measurements. X-ray 
images in Test1 and Test2 were manually measured using 
Digimizer (version 5.4.4), and the Length, Diameter, 
and Depth of ST of each image were obtained. The 110 
images in Test1 and 50 images in Test2 were measured 
three times by the same observer, with an interval of two 
weeks between each measurement. The average value of 
the three measurements was taken as the final manual 
measurement result, which was used as the “gold stand-
ard” to check the reliability of the automated measure-
ment method proposed in this study.

Training U‑net for automatic segmentation of ST
U-net is a Fully Convolution Network (FCN) mainly com-
posed of convolutional layers, pooling layers, transposed 
convolutional layers, skip connections, and nonlinear 

Fig. 2 An example of image preprocessing. A An original X‑ray image. B Result of extracting ROI. C Result of histogram equalization and median 
filtering

Fig. 3 An example of image annotation. A ST was manually segmented and annotated using Labelme. B Corresponding mask
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activation function ReLU. U-net is widely used to medical 
image segmentation, and its U-shaped structure has the 
advantages of combining context information and fast 
training speed [24]. In this study, 1019 images and their 
corresponding masks were input into the U-net model 
for training and validation. The input images have been 
preprocessed and the size of each image is 400 × 400. The 
BCEWithLogitsLoss loss function was adopted and the 
RMSprop optimizer was used in all training processes. 
The learning rate is set to be 0.00001 with call back func-
tion ReduceLROnPlateau, batch size of 8, and epochs of 
50. The trained U-net model can realize automatic seg-
mentation of ST, as shown in Fig. 4.

Dice coefficient, a typical evaluating indicator to verify 
the automated image segmentation model [15], was used 
to evaluate the segmentation performance in this study. 
The dice coefficient is defined as follows:

Here A is a set representing the ground truth and B rep-
resents the computed segmentation [25]. The model with 
the best segmentation performance on the verification 

(1)Dice =
2|A ∩ B|

|A|+|B|

dataset was saved as the best model. The images in Test1 
and Test2 are preprocessed before being input into the 
segmentation network, and the size of each image is 
400 × 400. The ST of all images in Test1 and Test2 was 
automatically segmented by the best model, and the 
binary segmentation results are saved.

Postprocessing
There may be some small noise spots in the automatic 
segmentation results, which will affect the position-
ing of the landmarks on the ST. Therefore, before auto-
matic measurement, the binary image generated by the 
segmentation network needs to be further processed to 
remove the noise spots in the binary images. Because the 
ST is unique in the cephalometric radiographs and only 
a few segmentation results have small noise points, the 
method that only preserves the maximum connected 
region can be used for postprocessing the segmenta-
tion results. The postprocessing operation first uses 
the “findCountours” function in the OpenCV library to 
detect the boundaries of all separate objects in the binary 
images, and then only preserves the single boundary with 
the maximum number of pixels inside. Finally, after the 

Fig.4 The U‑net model for automatic segmentation of ST

Fig.5 Example of postprocessing. A Input image. B Result of segmentation. The spot surrounded by red circle is the noise point in the 
segmentation result. C Result of postprocessing
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postprocessing operation, the noise spots in the binary 
images were removed, and the only white connected 
region was the corresponding ST. Figure  5 shows an 
example of postprocessing. Based on these postprocessed 
binary images, the automatic morphological measure-
ment of ST was further carried out.

Automatic measurement of linear parameters
According to the labeling rules of manual segmentation 
of ST, the four landmarks of ST are located on the con-
tour of the segmentation result. The morphological oper-
ation in the OpenCV library was used to automatically 
locate the four landmarks on binary images. The binary 
images were generated by the automatic segmentation 
network and post-processed. After locating the four 
landmarks of the ST, the Length, Diameter and Depth of 
the ST can be obtained by simple distance calculation.

1. Location of landmarks

ADP and BPF were located by detecting the extremum 
points of the contour. Firstly, the “findCountours” func-
tion was used to detect the contour of the binary image, 
and the coordinates of all contour points can be obtained. 
Then the coordinates of the top, bottom, left and right 
extremum points of the contour can be calculated in the 
set of contour points. Among the four extremum points, 
the left-most point is ADP, and the bottom-most point is 
BPF. The detected ADP and BPF are marked on the image 
and their corresponding pixel coordinates are returned.

TS and DS are located by the Shi-Tomasi corner point 
detection algorithm. According to the position charac-
teristics of DS and TS in binary images, it can be found 
that these two points belong to corner points. Shi-
Tomasi corner point detection can be realized by call-
ing the “goodFeaturesToTrack” function in the OpenCV 
library. However, it should be noted that the segmenta-
tion results generated by the segmentation network are 

saved in the form of binary images, in which the edge 
of the white connected region representing the ST is 
serrated. In corner point detection, it is easy to iden-
tify the serrations on the edge as corner points, result-
ing in the wrong positioning of DS and TS. Therefore, 
when locating TS and DS, we first use the Gaussian fil-
tering algorithm to smooth the image and then carry 
out corner points detection on the smoothed image. In 
addition, setting the proper parameters of the “good-
FeaturesToTrack” function is also critical to locating DS 
and TS points correctly. Through many experiments, 
it was found that when maxCorners, qualityLevel, 
minDistance, and blocksize of the “goodFeaturesTo-
Track” function are set to 3, 0.01, 40, and 5, TS and DS 
in almost all images will be correctly detected. In the 
OpenCV coordinate system, the origin of coordinates 
0(0, 0) is in the upper left corner of the image. In this 
study, the two corner points with the smallest ordinate 
were screened out from the detected corner points, and 
then the abscissa of the two points was compared. The 
point with the larger abscissa is TS, and the point with 
the smaller abscissa is DS. TS and DS were marked in 
the image and their corresponding pixel coordinates 
were returned. The four landmarks of ST automatic 
positioning on binary images are shown in Fig. 6.

2. Distance calculation

After automatically locating the four landmarks of 
the ST, we obtained their pixel coordinates, denoted 
as TS

(

x1, y1
)

 , DS
(

x2, y2
)

 , ADP x3, y3  , and BPF
(

x4, y4
)

 . 
Next, the values of the linear parameters of ST can be 
easily calculated based on the formula for the distance 
between two points and the formula for the distance 
from the point to the line. The length of the ST can be 
obtained by calculating the distance between TS and 
DS, the diameter of the ST can be obtained by calculat-
ing the distance between TS and ADP, and the depth 

Fig.6 Examples of automatic positioning of landmarks on binary images
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of the ST can be obtained by calculating the vertical 
distance from BPF to a straight line formed by TS and 
DS connections. The specific calculation formula is as 
follows:

The scale (R) was determined by its ratio of actual 
diameter to pixel diameter. In this study, the value of R is 
0.1. The scale was used to convert the pixel distances of 
ST measurements into the actual distance in millimeters.

Statistical analyses
The segmentation performance of ST was evaluated by 
dice coefficient. Intraclass correlation coefficients (ICCs) 
and Bland–Altman plots were used to evaluate the reli-
ability of the proposed automatic measurement method. 
The results of manual and automatic measurements for 
all images in Test1 and Test2 were recorded in Excel. 
The ICCs of the manual and automatic measurements 
were calculated using SPSS (version 26). ICC is a popu-
lar indicator used to assess agreement between quantita-
tive measurements taken from different observers, with 
a value between 0 and 1 [26]. It was considered moder-
ate agreement if 0.41 < ICC ≤ 0.60, substantial agree-
ment if 0.60 < ICC ≤ 0.80, and excellent agreement if 
0.80 < ICC ≤ 1.00 [19]. Bland–Altman analysis is a way 

(2)Length =

√

(x2 − x1)
2 +

(

y2 − y1
)2

× R

(3)Diameter =

√

(x3 − x1)
2 +

(

y3 − y1
)2

× R

(4)

Depth =

∣

∣

(

y1 − y2
)

x4 + (x2 − x1)y4 + x1y2 − y1x2
∣

∣

√

(

y2 − y1
)2

+ (x2 − x1)
2

× R

to visually demonstrate consistency using graphics [27]. 
GraphPad Prism (version 9.0.0) was used to plot Bland–
Altman plots to show the agreement between automatic 
and manual measurements of ST linear parameters.

Results
Performance of automatic segmentation
In this study, the U-net was trained by using 918 images 
in the training dataset until there was no more improve-
ment in the dice coefficient. The loss curve and dice 
coefficient curve during the training of U-net model are 
shown in Fig.  7. It can be seen from the training graph 
that in the 1–3 epochs, the convergence rate of loss is 
fast, and dice coefficient has exceeded 0.9. With more 
epochs, dice coefficient improved slightly.

After the training of 50 epochs, the segmentation net-
work achieved 93.44% dice coefficient on the training 
dataset and 92.84% dice coefficient on the validation 
dataset. The models that perform best on the validation 
dataset were used to segment the images in the test data-
set. The segmentation network can complete automatic 
segmentation of an image in half a second. Figure 8 pre-
sents multiple input images from the testing dataset, 
the ground truth acquired through manual annotation, 
the visual results of image segmentation with the seg-
mentation network, and the predicted ST segmentation 
results.

Reliability of automatic measurement
110 images from Test1 and 50 images from Test2 were 
measured, the results of manual and automatic measure-
ment of linear parameters of ST were shown in Table 1, 
and measurement data were expressed as “mean ± stand-
ard deviation”.

Fig.7 The training graph of the U‑net model. A Training loss and Validation loss. B Training dice coefficient and Validation dice coefficient
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According to the statistical analysis, the results 
obtained manually by the Digimizer and the results 
obtained automatically by the proposed method are in 
excellent agreement. For all images in Test1, the ICCs 
of Length obtained by manual and automatic measure-
ments were 0.954, the ICCs of Diameter obtained by 
manual and automatic measurements were 0.953, and the 
ICCs of Depth obtained by manual and automatic meas-
urements were 0.912. Similarly, excellent agreement was 
achieved in Test2, with ICCs of 0.906 for Length, 0.921 
for Diameter, and 0.915 for Depth. Bland–Altman analy-
sis also showed excellent agreement, with most of the 
measured differences within the 95% limits of agreement, 
as shown in Fig. 9. For Test1, the 95% limits of agreement 
(LoA) were − 0.955 to 0.819 mm for Length, − 0.808 to 
0.593  mm for Diameter and − 0.998 to 0.668  mm for 
Depth. For Test2, the 95% limits of agreement (LoA) were 
− 0.717 to 1.017 mm for Length, − 0.638 to 0.849 mm for 
Diameter, and − 0.899 to 0.666 mm for Depth.

Discussion
In this preliminary study, we proposed and evaluated a 
novel method for automatic segmentation and measure-
ment of ST based on the deep learning algorithm. Firstly, 

U-net was trained with labeled images in the training 
dataset to generate a segmentation network that could 
perform automatic segmentation of ST efficiently. The 
trained segmentation network automatically segmented 
the images in the test datasets, and the segmentation 
results were saved in the form of binary images. Then, 
the function in the OpenCV library was called to auto-
matically locate the four landmarks of the ST on the 
binary images and return their coordinates. Finally, the 
linear parameters of the ST were obtained by calculating 
the distance between two points and the distance from 
a point to the line. The proposed method can simulta-
neously obtain the length, diameter, and depth of ST in 
one second, and the results obtained automatically are in 
excellent agreement with those obtained manually using 
Digimizer. The good performance on Test2 shows that 
the proposed methodology presented generalization abil-
ity. This automatic measurement method is efficient and 
reliable in measuring ST on cephalometric radiographs 
and it is a powerful tool to promote the study of ST mor-
phology. In addition, this study firstly segmented the 
image, then located the landmarks based on the segmen-
tation results, and finally realized automatic measure-
ment through distance calculation, which may provide 
new ideas for automatic measurement of other medical 
images.

There are a few studies on automatic segmentation and 
measurement of ST based on deep learning. Shakya et al. 
proposed a novel technique using convolutional neural 
network (CNN) architectures for automatic segmenta-
tion of sella turcica (ST) on cephalometric radiographic 
image dataset [28]. Their study compared training 
and prediction results of the selected models: VGG19, 
ResNet34, InceptionV3, and ResNext50. The dice coef-
ficients are 0.7794, 0.7487, 0.4714, 0.4363, respectively. 
The dice coefficient obtained by our proposed method 
was 0.9284. Although the dataset we use is different from 
Shakya’s, our method gets higher dice coefficients than 
theirs. In addition, our study is the first to achieve auto-
matic measurement of the length, depth, and diameter of 
the ST, and obtain reliable measurement results.

ST plays an important suggestive role in helping clini-
cians predict patients’ craniofacial development, assess 
craniofacial morphological characteristics, and find 
abnormal or pathological changes in the pituitary gland. 
Therefore, it is of great significance to study the morpho-
logical changes and growth rules of ST. The evaluation of 
ST morphology is inseparable from the measurement of 
linear parameters of ST. With the development of science 
and technology, the tools for measuring ST are improv-
ing. In the early years, researchers used tracing paper to 
outline the ST and then used digital calipers to measure 
the linear parameters of the ST [29, 30]. In recent years, 

Fig.8 Examples of automatic segmentation results

Table 1 Measurement results of linear parameters of ST

Data Measurement Length 
(mm)

Diameter 
(mm)

Depth (mm)

Test1(110) Manual 10.52 ± 1.54 12.69 ± 1.22 8.57 ± 1.07

Automatic 10.45 ± 1.47 12.58 ± 1.21 8.41 ± 1.08

Test2(50) Manual 8.66 ± 0.1 10.45 ± 0.97 6.83 ± 0.97

Automatic 8.81 ± 1.12 10.55 ± 0.1 6.71 ± 1.02
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some digital measurement software greatly facilitates the 
researchers to measure ST [31, 32]. However, manual 
measurement, whether by tracing paper or digital soft-
ware, is time-consuming and laborious, and is prone to 
inter-observer and intra-observer deviation. Deep learn-
ing algorithm has made many achievements in the field 
of medical image processing in recent years, which pro-
vides the possibility for automatic measurement of ST. 
We developed a reliable automatic measurement tool 
based on deep learning for automatic segmentation and 

measurement of ST. According to data on the size of ST 
reported in the literature. It typically ranges from 4 to 
12 mm for the vertical and from 5 to 16 mm for the anter-
oposterior dimension [33]. The measurement results of 
this study are consistent with the data of previous stud-
ies, which demonstrates the accuracy of our measure-
ment results.

There are some limitations in our study. Firstly, the 
number of images used in our experiment is small. 
Although a lightweight dataset may be adequate to train 

Fig.9 Bland–Altman Plots analyze the agreement between manual and automatic measurements. The three pictures on the left are the results 
of Test1. A Agreement between manual Length and automated Length. B Agreement between manual Diameter and automated Diameter. C 
Agreement between manual Depth and automated Depth. The three pictures on the right are the results of Test2. (D). Agreement between manual 
Length and automated Length. E Agreement between manual Diameter and automated Diameter. F Agreement between manual Depth and 
automated Depth
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the U-net to segment ST with satisfactory segmentation 
performance, for deep learning algorithms, the addition 
of training samples can theoretically improve the seg-
mentation performance of the model. Secondly, because 
most of the studies on ST morphology are carried out on 
two-dimensional images, and the quantitative measure-
ment standards on two-dimensional images are relatively 
uniform, this study has taken two-dimensional images 
as the research object. But with the clinical applica-
tion of CBCT technology, some researchers have begun 
to pay attention to the ST on three-dimensional images 
[1, 32]. The morphological parameters reflected in the 
3D images may be more realistic. Thirdly, although the 
linear parameters of the ST were taken into considera-
tion in our study, some non-quantitative parameters are 
needed to be integrated into the automatic system in the 
further studies, such as the bridging and shape of the ST. 
Fourthly, the preprocessing operation of ROI extraction 
needs to be completed based on coordinate parameters. 
Therefore, when processing different datasets, coordinate 
parameters may need to be changed according to the 
characteristics of the images. Automatic ROI extraction 
based on deep learning network may be more ideal. In 
future work, we will try to realize automatic ROI extrac-
tion without setting coordinate parameters.

This preliminary study was explored the possibility of 
realizing automatic segmentation of ST based on deep 
learning, and the classical U-net was selected as the seg-
mentation network. Although the method proposed by 
us has effectively completed the automatic segmenta-
tion of the ST, we believe that this study can be further 
improved in the future work. If more images are used 
to train the deep learning network, or the algorithm is 
improved, such as adding the attention mechanism or 
residual structure, better experimental results may be 
obtained. We learned that there are many improved 
algorithms of U-net, such as nnU-Net, U-Net +  + and 
UNET3 + , and so on [24]. These improved algorithms 
have better segmentation performance on some datasets 
than U-net. In future work, we will try to improve the 
algorithm to obtain better results. Besides, the method 
of automatic measurement of ST morphology needs 
to be further explored and extended. More specifically, 
although the proposed method enables accurate quan-
titative measurements, the measurement procedure 
requires a workstation to run and cannot be directly 
applied to the clinic. Our team will strive to build more 
complete automated measurement programs to be easy 
to embed into the digital image analysis software. At the 
same time, we consider integrating more parameters into 
automated analysis systems, which may require more 
deep learning algorithms and computer vision-related 
technologies.

Conclusions
This study developed and validated a method based on 
deep learning algorithm and OpenCV library for auto-
matic segmentation and measurement of ST. The proposed 
method can predict the length, diameter, and depth of ST 
quickly, and the automatic measurement results are in 
excellent agreement with the manual measurement results. 
The efficient and reliable automatic measurement method 
can facilitate the study of ST morphology.
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