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Abstract 

Background To evaluate the image quality of lower extremity computed tomography angiography (CTA) with deep 
learning–based reconstruction (DLR) compared to model-based iterative reconstruction (MBIR), hybrid-iterative 
reconstruction (HIR), and filtered back projection (FBP).

Methods Fifty patients (38 males, average age 59.8 ± 19.2 years) who underwent lower extremity CTA between 
January and May 2021 were included. Images were reconstructed with DLR, MBIR, HIR, and FBP. The standard devia-
tion (SD), contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), noise power spectrum (NPS) curves, and the blur 
effect, were calculated. The subjective image quality was independently evaluated by two radiologists. The diagnostic 
accuracy of DLR, MBIR, HIR, and FBP reconstruction algorithms was calculated.

Results The CNR and SNR were significantly higher in DLR images than in the other three reconstruction algorithms, 
and the SD was significantly lower in DLR images of the soft tissues. The noise magnitude was the lowest with DLR. 
The NPS average spatial frequency  (fav) values were higher using DLR than HIR. For blur effect evaluation, DLR and FBP 
were similar for soft tissues and the popliteal artery, which was better than HIR and worse than MBIR. In the aorta and 
femoral arteries, the blur effect of DLR was worse than MBIR and FBP and better than HIR. The subjective image qual-
ity score of DLR was the highest. The sensitivity and specificity of the lower extremity CTA with DLR were the highest 
in the four reconstruction algorithms with 98.4% and 97.2%, respectively.

Conclusions Compared to the other three reconstruction algorithms, DLR showed better objective and subjective 
image quality. The blur effect of the DLR was better than that of the HIR. The diagnostic accuracy of lower extremity 
CTA with DLR was the best among the four reconstruction algorithms.
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Background
As one of the most common modalities for evaluating 
lower extremity PAD, runoff computed tomography 
angiography (CTA) has become a robust noninvasive 
imaging routine due to its short acquisition time, high 
spatial resolution, and increased anatomical coverage 
of the whole vascular tree [1, 2]. CTA truly revolution-
ized the diagnostic approach to vascular disorders of 
the lower extremities thanks to the high temporal res-
olution with fast execution time, the coverage of long 
vascular territories in a few seconds, the acquisition 
of isotropic datasets with the possibility of different 
reconstruction approaches, and accurate visualization 
of the anatomy and pathological abnormalities to allow 
appropriate treatment planning [3]. As an imaging 
modality based on X-rays, the balance between image 
quality and radiation dose is an important considera-
tion [4]. Another problem in lower extremity CTA is 
the influence of image quality on small vessel visuali-
zation [5]. Thus, the CT reconstruction algorithm used 
can be an important factor for image quality.

The CT reconstruction algorithm was developed from 
filtered back projection (FBP)  to hybrid iterative recon-
struction (HIR) and model-based iterative reconstruction 
(MBIR); although it improved the image quality, diagnos-
tic performance, and reduction of radiation dose in many 
clinical applications of CTA [6, 7], there are still some 
remaining unsatisfactory aspects in image texture, spa-
tial resolution, and lesion detectability. Recently, a new 
deep learning-based CT reconstruction (DLR) algorithm 
(Advanced Intelligent Clear-IQ Engine [AiCE], Canon 
Medical Systems Corporation) has become commercially 
available. It was trained to differentiate noise from signals 
with the deep convolutional neural network (DCNN) 
by using MBIR patient datasets acquired with high tube 
current as golden standard clinical reference images [8]. 
The DLR reconstruction process begins in the raw data 
domain which is modified based on the detailed scanner 
model information, this raw data is then reconstructed to 
form a seed image for the DCNN. After that, the input 
image is analyzed by several network layers. The neurons 
in the network layer learn what features to look for based 
on the training data. DLR improves image quality with 
lower image noise, better sharpness, and more accurate 
diagnostic performance on the phantom study, cerebral 
CT, chest CT, coronary CTA, and abdominal CT [8–13]. 
AiCE is not the only available deep learning-based recon-
struction algorithm, as there is also True Fidelity (GE 
Healthcare System), which has been applied in the lower 
extremity vessels study with better quantitative image 
quality for DLR in comparison with HIR [14]. Based on 
the promising results of previous studies, we speculate 

that its application to runoff CTA can improve image 
quality and diagnostic performance.

The purpose of this study was to evaluate the image 
quality of vessels and soft tissue in lower extremity run-
off CTA of DLR compared to HIR, MBIR, and FBP, and 
to assess the diagnostic performance of runoff CTA using 
the DLR reconstruction algorithm.

Methods
Patient population
This was a retrospective study. The review board of our 
institution approved the study (HS-2427) and waived the 
requirement for informed consent due to its retrospec-
tive status.

Fifty-five consecutive patients who underwent run-
off CTA with the indication given by the vascular sur-
geon were recorded, and 5 patients were excluded for 
metal implants. Fifty patients who had undergone runoff 
CTA between January 22, 2021, and May 27, 2021, were 
included.

CT acquisition parameters
All scans were performed on a 320-row-detector CT 
scanner (Aquilion One GENESIS Edition, Canon Medi-
cal Systems Corporation, Japan). The scan was performed 
from the distal abdominal aorta to the toes in a cranio-
caudal direction.

Ninety milliliters of iodinated contrast agent (370 mgI/
mL, Iopromide, Ultravist, Bayer Health care, Germany) 
at a flow rate of 4 mL/second was administered intrave-
nously. A region of interest (ROI) was placed on the distal 
abdominal aorta. When the predefined threshold of 150 
HU was reached, 6 s later the scan automatically initiated.

The scanning parameters included slice collimation: 
80 × 0.5 mm, rotation time: 0.75 s, pitch: 0.637, automatic 
modulation tube current: 40–200 mA (with noise index 
SD = 10), and tube voltage: 100 kVp.

The volumetric CT dose index (CTDIvol) and dose-
length product (DLP) were automatically saved for each 
examination. The effective radiation dose was estimated 
using the DLP multiplied by the conversion factor of 
0.0058 at 100 kV reported by Saltybaeva et al. [15].

Image reconstruction
All acquisitions were reconstructed using four recon-
struction techniques: DLR (AiCE Body Sharp), HIR 
(AIDR 3D, kernel FC08), MBIR (FIRST Body Sharp), and 
FBP (kernel FC08). All reconstructions had a slice thick-
ness of 1 mm and an interval of 0.8 mm. The field of view 
was set to 400.4 mm with a pixel matrix of 512 × 512.
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Digital subtraction angiography (DSA)
Twenty-one patients received the DSA procedure within 
30  days after CTA. DSA was performed on an angio-
graphic system (Axiom Artis, Siemens Healthcare). The 
pelvic, thigh, and lower leg arteries of the symptomatic 
leg were examined with 5 ml iodinated contrast medium 
(320  mg I/ml iodixanol; Visipaque; GE Healthcare) per 
segment (aorta-iliac, femoral-popliteal and below the 
knees) using the stepping DSA. The posteroanterior pro-
jections were captured first and the left and right anterior 
oblique projections were added if the stenosis could not 
be assessed from the posteroanterior projection. Lesions 
were considered significant with visual luminal narrow-
ing of ≥ 50%.

CT image analysis
Quantitative analysis
One senior radiologist (with 10  years of experience) 
drew the vessels’ region of interest (ROI) (aorta, com-
mon femoral artery, and popliteal artery), liver, and psoas 
muscle based on DLR images. One medical physicist 
retrieved the CT attenuation and standard deviation (SD) 
of the ROIs using ImageJ (V1.53a, National Institutes 
of Health, Bethesda, Maryland) and MATLAB (R2014) 
from the same locations of HIR, MBIR, and FBP images 
(Fig.  1). Then, the contrast-to-noise ratio (CNR) and 
signal-to-noise ratio (SNR) were calculated as follows: 
CNR =  (HUtarget −  HUfat)/SDfat and SNR =  HUtarget/SDtar-

get, respectively.
Noise power spectrum (NPS) curves [16–18] of three 

different anatomical structures (liver, the aorta, and 
the psoas muscle) were derived from each patient’s CT 
images by using imQuest software (Version 7.1, Duke 
University, Durham NC). Measurements were per-
formed on 10 consecutive slices to reduce the influences 
of noise and artifacts, and ROIs were carefully placed in 
the homogeneous region to guarantee the accuracy of the 
measured data. The normalized NPS curves were calcu-
lated by dividing the NPS value by the maximum value of 
the corresponding NPS.

In addition, the blur effect which represents objec-
tive sharpness was also calculated using MATLAB. 
The method was introduced in a study conducted by 
Chankue Park et al. The “blur metric” program (Do Quoc 
Bao (2022). Image Blur Metric (https:// www. mathw orks. 
com/ matla bcent ral/ filee xchan ge/ 24676- image- blur- met-
ric)) was used to evaluate the level of image sharpness 
as a non-reference quantitative value [19]. Before the 
blur metric value calculation, one radiologist drew eight 
rectangular ROIs including five anatomic structures and 
three whole-slice sections using ImageJ (Fig. 1). The five 
anatomic structures included the aorta, femoral artery, 

popliteal artery, liver, and muscle; the three whole-slice 
sections included the aorta, femoral artery, and pop-
liteal artery. A scientist retrieved the blur metric data of 
the ROI area for each image (DLR, MBIR, Hybrid-IR, 
and FBP). The blur metric program quantifies sharpness 
by blurring the input image, and the variation between 
adjacent pixels is analyzed. First, intensity variations of 
CT attenuation between neighboring pixels are analyzed. 
Second, the low-pass-filtered image is used to measure 
the intensity variations between pixels. Third, a compari-
son between original and filtered images is made to eval-
uate the degree of blurring. The original image is believed 
to be sharp when there is a large difference in intensity 
variation. In the end, the blur metric value ranges from 
0 to 1, with lower scores denoting sharper images and 
higher scores representing blurrier images.

Qualitative analysis
The subjective image quality based on image noise, sub-
jective sharpness, and natural appearance was indepen-
dently evaluated by two radiologists with 10  years and 
3 years of experience, respectively, (Fig. 2) with the win-
dow setting of bone (width 2000 HU; level 350 HU) and 
soft tissue (width 350 HU; level 40 HU). A 5-point Likert 
scale was used, as detailed in Table 1.

Statistical analysis
R software (version 3.6.1; http:// www.R- proje ct. org) 
was used to perform the statistical analysis. The Shap-
iro–Wilk test was used to determine the normality of 
the data distribution. For continuous variables with a 
normal distribution, one-way repeated analysis of vari-
ance (ANOVA) was used, and paired samples t-tests with 
Bonferroni correction were used for subsequent multiple 
comparisons. For data with nonnormal distribution, the 
Friedman test was applied, and the Wilcoxon signed rank 
test with Bonferroni correction was applied for multiple 
comparisons. p < 0.05 was considered statistically signifi-
cant. Interreader reliability was assessed using a Kend-
all rank correlation coefficient. The diagnostic accuracy, 
such as sensitivity, specificity, and positive and negative 
predictive values, for the detection of significant steno-
sis, was calculated with DSA serving as a reference stand-
ard. The comparison of sensitivity and specificity of four 
reconstruction algorithms was calculated using McNe-
mar’s test. p < 0.05 was considered statistically significant.

Results
Fifty patients were enrolled in the study (38 males, mean 
age 59.8 ± 19.2 years, range 19–91 years; mean body mass 
index (BMI) 24.1 ± 3.0 kg/m2, range 18.4–31.2 kg/m2). 60 
slices of CT images were used for analysis in one patient, 
and 3000 slices of CT images in total were analyzed in 

https://www.mathworks.com/matlabcentral/fileexchange/24676-image-blur-metric
https://www.mathworks.com/matlabcentral/fileexchange/24676-image-blur-metric
https://www.mathworks.com/matlabcentral/fileexchange/24676-image-blur-metric
http://www.R-project.org
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Fig. 1 Flow chart of quantitative analysis



Page 5 of 14Zhang et al. BMC Medical Imaging           (2023) 23:33  

this study. Among them, 21 patients (18 males, mean 
age 69.2 ± 9.6  years, range 49–91  years; mean BMI 
24.1 ± 2.3 kg/m2, range 20.1–27.0 kg/m2) underwent clin-
ically indicated DSA. The CTDIvol was 3.7 ± 0.8  mGy, 
and the DLP was 500.0 ± 119.5 mGycm. The radiation 
dose was 2.9 ± 0.7 mSv.

Quantitative analysis
The results of the quantitative assessment of the image 
qualities (CT, SD, SNR, and CNR) are summarized in 
Table 2.

Compared to MBIR and HIR, DLR showed higher CT 
attenuations of the aorta (all p < 0.001). DLR images of 
the femoral artery and popliteal artery showed the high-
est CT attenuation compared with other images (all 
p < 0.001). For the liver and psoas muscle, FBP showed 
significantly different CT attenuation with other recon-
structions (all p < 0.001), while DLR showed similar CT 
attenuations with HIR and MBIR (all p > 0.001).

For image noise, DLR showed the lowest noise of arter-
ies imaged (aorta, femoral artery, and popliteal artery), 
followed by MBIR, HIR, and FBP (all p < 0.001). There 
was no significant difference between the HIR and 
MBIR in the femoral and popliteal arteries (p = 0.27 and 
p = 0.42, respectively). No significant differences were 
observed between DLR and HIR, DLR and MBIR, or HIR 
and MBIR (p = 1, p = 0.22, p = 0.42, respectively). For 
the liver and psoas muscle, DLR also showed the lowest 
noise, and FBP had the highest noise (all p < 0.001).

The SNR of the DLR in all structures was significantly 
higher than those of the other three types of images (all 
p < 0.001), except in the popliteal artery, where there was 
no significant difference between the DLR and MBIR in 

the popliteal artery (p = 1). In the aorta, the trend of SNR 
from low to high was FBP, MBIR, and HIR and was signif-
icantly different with pairwise comparison (all p < 0.001). 
In the femoral artery and popliteal artery, FBP showed 
the lowest SNR, while there was no significant difference 
between MBIR and HIR (p = 1, p = 0.55, respectively). In 
addition, there was no significant difference between the 
DLR and MBIR in the popliteal artery (p = 1).

Similar to the SNR, the CNR of the DLR in all struc-
tures was significantly higher than those of the other 
three types of images (all p < 0.001). The trend of CNR in 
all structures from low to high was FBP, MBIR, and HIR 
in all structures and was significantly different from each 
other with pairwise comparison (all p < 0.001).

For all anatomical structures, the noise magnitude was 
the lowest with DLR, followed by HIR, MBIR, and FBP. 
The detailed results were shown in Table 3 and Fig. 3. The 
NPS average spatial frequency  (fav) values were higher 
using DLR than HIR, while FBP demonstrated the high-
est  fav values. The normalized NPS showed that for the 
aorta and psoas muscle, the noise on DLR and MBIR 
images consisted of more high-frequency components 
than HIR.

The results of the detailed blur effect are listed in 
Table  4. The blur effect of DLR images was signifi-
cantly lower on the edges, textured areas, or homoge-
neous areas than that of HIR (all p < 0.016). In the liver 
and psoas muscle, DLR had a blur effect value similar 
to that of FBP (p = 1, p = 0.9696, respectively), which 
means that both had similar sharpness. For larger arter-
ies (aorta and femoral artery), the trend of blur effect 
from low to high was FBP, MBIR, DLR, and HIR, while 
the blur effect value of FBP and MBIR images were 

Fig. 2 Example slice demonstrating the impact of the different reconstruction algorithms for the runoff CTA of the liver with a window setting of 
the soft tissue and popliteal artery with a window setting of the bone
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significantly lower than those of DLR and HIR (all 
p < 0.001). For the popliteal artery, the blur effect of the 
DLR was almost the same as that of the FBP (p = 1). The 
trend of blur effect from low to high for the whole sec-
tion image (aorta level, femoral artery level, and pop-
liteal artery level) was FBP, MBIR, DLR, and HIR, all 
significantly different from each other with pairwise 
comparison (all p < 0.001). Except at the femoral artery 

level, the blur effect of the MBIR image was consistent 
with that of FBP (p = 0.17).

Qualitative analysis
The higher the score is given by the radiologists, the bet-
ter the image quality. The results of the qualitative evalu-
ation are summarized in Table  5. Interreader reliability 
was good (coefficient: 0.872, p < 0.001). The image noise, 

Table 2 Quantitative analysis

DLR deep learning–based reconstruction, MBIR model-based iterative reconstruction, HIR hybrid-iterative reconstruction, FBP filtered back projection

Pairwise comparisons showed significant differences from DLR (*), MBIR (°), and HIR (˜) (p < 0.05)

Parameter DLR MBIR HIR FBP p*

Aorta

HU 488.70 ± 105.57 462.89 ± 95.56* 481.51 ± 103.93*° 488.44 ± 104.49°˜ 0.55

SD 17.42 ± 12.89 32.08 ± 9.89* 25.63 ± 13.42*° 53.06 ± 10.86*°˜  < 0.001

SNR 35.65 ± 13.94 15.24 ± 4.28* 21.50 ± 7.57*° 9.56 ± 2.95*°˜  < 0.001

CNR 48.28 ± 11.12 25.07 ± 5.60* 33.42 ± 8.62*° 15.84 ± 4.41*°˜  < 0.001

Femoral artery

HU 491.40 ± 142.18 446.60 ± 167.26* 451.23 ± 172.31*° 460.10 ± 178.17*°˜  < 0.001

SD 32.42 ± 26.44 35.73 ± 23.36* 38.17 ± 25 ± 25* 51.98 ± 22.27*°˜  < 0.001

SNR 23.10 ± 14.79 15.60 ± 8.69* 15.49 ± 11.30* 9.91 ± 5.00*°˜  < 0.001

CNR 47.24 ± 15.04 24.03 ± 8.66* 31.12 ± 11.85*° 15.00 ± 6.38*°˜  < 0.001

Popliteal artery

HU 402.64 ± 170.65 377.33 ± 160.73* 367.05 ± 154.54*° 374.93 ± 159.45* ˜  < 0.001

SD 43.90 ± 40.21 41.15 ± 37.73 41.58 ± 31.86 47.64 ± 33.59*°˜  < 0.001

SNR 15.80 ± 12.33 14.86 ± 14.86 12.89 ± 8.87* 10.99 ± 8.60*°˜  < 0.001

CNR 39.64 ± 15.47 20.47 ± 8.1* 25.87 ± 10.53*° 12.44 ± 5.58*°˜  < 0.001

Liver

HU 66.55 ± 9.12 66.94 ± 9.03 66.22 ± 9.59 67.91 ± 9.65*°˜  < 0.001

SD 11.32 ± 2.59 28.41 ± 3.52* 18.90 ± 2.39*° 49.46 ± 10.20*°˜  < 0.001

SNR 6.11 ± 1.41 2.40 ± 0.52* 3.56 ± 0.78*° 1.40 ± 0.27*°˜  < 0.001

CNR 13.95 ± 2.53 7.58 ± 1.50* 9.72 ± 1.99*° 4.54 ± 0.88*°  < 0.001

Psoas muscle

HU 57.79 ± 8.05 58.24 ± 8.06 57.61 ± 7.98° 59.58 ± 8.01*°˜  < 0.001

SD 10.46 ± 1.34 24.88 ± 3.36* 17.52 ± 2.29*° 43.91 ± 6.02*°˜  < 0.001

SNR 5.67 ± 1.36 2.40 ± 0.54* 3.37 ± 0.83*° 1.38 ± 0.29*°˜  < 0.001

CNR 13.22 ± 2.32 7.18 ± 1.40* 9.21 ± 1.81*° 4.32 ± 0.87*°˜  < 0.001

Table 3 Noise magnitude and average noise power spectrum (NPS) spatial frequency obtained for images reconstructed with FBP, 
HIR, MBIR, and DLR

Parameter Anatomical structure DLR MBIR HIR FBP

Noise magnitude (HU) Aorta 9.70 (1.14) 27.78 (4.61) 17.06 (2.64) 53.36 (8.13)

Liver 10.32 (0.74) 27.11 (3.32) 18.12 (1.54) 49.02 (9.39)

Psoas muscle 10.25 (1.16) 23.86 (2.86) 16.80 (2.06) 42.71 (6.32)

Average NPS spatial frequency 
 (mm−1)

Aorta 0.27 (0.03) 0.29 (0.03) 0.24 (0.02) 0.33 (0.02)

Liver 0.19 (0.02) 0.22 (0.02) 0.18 (0.01) 0.29 (0.01)

Psoas muscle 0.25 (0.04) 0.28 (0.04) 0.24 (0.03) 0.33 (0.03)
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subjective sharpness, and natural appearance at different 
levels of lower extremity arteries as well as soft tissues 
were evaluated. The noise of the lower extremity arter-
ies from low to moderate with the four reconstruction 

algorithms is DLR, HIR, MBIR, and FBP. There were 
significant differences between the pairwise compari-
sons except for the comparison between HIR and MBIR 
(p = 1.00). Regarding subjective sharpness, the trend from 

Fig. 3 Axial images with ROIs in red are placed over different anatomical structures (a, b, c). NPS curves (d, e, f) and normalized NPS curves (g, h, 
i) were obtained for all reconstruction algorithms. a, d, g demonstrate the liver, b, e, h demonstrate the psoas muscle, and c, f, i demonstrate the 
aorta

Table 4 Objective sharpness analysis

DLR deep learning–based reconstruction, MBIR model-based iterative reconstruction, HIR hybrid-iterative reconstruction, FBP filtered back projection

Pairwise comparisons showed significant differences from DLR (*), MBIR (°), and HIR (˜) (p < 0.05)

Parameter DLR MBIR HIR FBP p*

Structures

Aorta 0.47 ± 0.05 0.39 ± 0.04* 0.50 ± 0.04*° 0.37 ± 0.04*˜  < 0.001

Femoral artery 0.39 ± 0.06 0.35 ± 0.06* 0.42 ± 0.06*° 0.35 ± 0.06*˜  < 0.001

Popliteal artery 0.29 ± 0.10 0.28 ± 0.09* 0.32 ± 0.10*° 0.29 ± 0.09°˜  < 0.001

Liver 0.30 ± 0.05 0.26 ± 0.02* 0.33 ± 0.03*° 0.30 ± 0.03°˜  < 0.001

Psoas muscle 0.33 ± 0.03 0.28 ± 0.03* 0.35 ± 0.03*° 0.32 ± 0.03°˜  < 0.001

Whole section image

Aorta level 0.35 ± 0.03 0.29 ± 0.02* 0.36 ± 0.02*° 0.26 ± 0.02*°˜  < 0.001

Femoral artery level 0.31 ± 0.01 0.26 ± 0.01* 0.33 ± 0.01*° 0.26 ± 0.01* ˜  < 0.001

Popliteal artery level 0.31 ± 0.01 0.28 ± 0.01* 0.35 ± 0.01*° 0.33 ± 0.01*°˜  < 0.001
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better to moderate image quality is DLR, MBIR, HIR, and 
FBP. There were no significant differences between the 
pairwise comparison of DLR and MBIR (p = 0.049) or 
MBIR and HIR (p = 0.13). For a natural appearance, DLR 
received the highest score, and FBP received the lowest 
score. There was no significant difference in the pairwise 
comparison between DLR, MBIR, HIR, and FBP except 
for DLR and FBP at the popliteal artery (p = 0.011). For 
soft tissues, including liver and psoas muscle, the trend 
from high to low image quality was DLR, HIR, MBIR, and 
FBP for noise with a significant difference; DLR, MBIR, 
HIR and FBP for subjective sharpness, there was no sig-
nificant difference between MBIR and HIR (p = 1.00); 
and DLR, HIR. For a natural appearance, there was no 
significant difference between MBIR and FBP (p = 0.32, 
p = 0.89, respectively), HIR and FBP (p = 0.19, p = 0.36, 
respectively) for liver and psoas muscle, nor was DLR and 
HIR for psoas muscle (p = 0.058).

Diagnostic accuracy
Using DSA as a reference (Figs.  4, 5, 6), the sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) for the detection of stenosis by 
run-off CTA using the DLR, MBIR, HIR, and FBP recon-
struction algorithm are shown in Table 6. The sensitivity 

from high to low was DLR, MBIR, HIR, and FBP (98.4%, 
96.7%, 95.1%, and 93.4%, all p > 0.05), and the specificity 
from high to low was DLR, HIR, MBIR, and FBP (97.2%, 
96.5%, 95.7%, and 93.7%, all p > 0.05).

Discussion
This study evaluated the image quality and diagnostic 
accuracy in lower extremity CTA reconstructed by DLR. 
For conventional quantitative image quality, the noise 
magnitude was lowest in DLR images and resulted in the 
highest SNR and CNR. There were more high-frequency 
components in the noise of DLR and MBIR images than 
that of HIR. As a complement to conventional objective 
image quality evaluation, the blur metric which evaluates 
the absolute quantitative value of the blur effect, showed 
that DLR preserves image sharpness compared to HIR. 
For subjective assessment, DLR received the highest 
score based on image noise, subjective sharpness, and 
natural appearance. The diagnostic performance of DLR 
was the best among the four reconstruction algorithms.

This is the first study on the application of the DLR 
algorithm “AiCE” in lower extremity CTA. There are sev-
eral studies on other anatomic parts and the phantom. 
The results of this study are consistent with those of pre-
vious studies on cerebral non-contrast CT [12], coronary 

Table 5 Qualitative analysis

Estimated marginal means for every quality parameter, reconstruction algorithm and pairwise comparison significance are given, with 95% confidence intervals in 
brackets

DLR deep learning–based reconstruction, MBIR model-based iterative reconstruction, HIR hybrid-iterative reconstruction, FBP filtered back projection

Pairwise comparisons showed significant differences from DLR (*), MBIR (°), and HIR (˜) (p < 0.05)

Parameter DLR MBIR HIR FBP p

Aorta

Noise 4.98 [4.91–5.05] 3.94 [3.84–4.03]* 4.08 [4.00–4.16]* 3.19 [3.07–3.30]*°˜  < 0.001

Subjective sharpness 4.94 [4.87–5.01] 4.56 [4.41–4.71]* 4.23 [4.11–4.35]* 3.69 [3.55–3.82]*°˜  < 0.001

Natural appearance 4.23 [4.09–4.37] 3.95 [3.88–4.02] 4.00 [3.89–4.10] 3.85 [3.73–3.96]  < 0.001

Femoral artery

Noise 4.90 [4.81–4.99] 3.92 [3.80–4.03]* 4.06 [3.97–4.16]* 3.00 [2.94–3.06]*°˜  < 0.001

Subjective sharpness 4.94 [4.87–5.00] 4.52 [4.37–4.67]* 4.14 [4.04–4.25]* 3.50 [3.35–3.65]*°˜  < 0.001

Natural appearance 4.28 [4.13–4.43] 4.00 [3.93–4.07] 3.97 [3.88–4.07] 3.77 [3.63–3.91]*  < 0.001

Popliteal artery

Noise 4.85 [4.75–4.96] 3.90 [3.76–4.03]* 4.06 [3.97–4.16]* 3.10 [3.00–3.21]*°˜  < 0.001

Subjective sharpness 4.79 [4.67–4.91] 4.56 [4.42–4.71] 4.08 [3.98–4.18]*° 3.73 [3.60–3.86]*°  < 0.001

Natural appearance 4.08 [3.99–4.16] 3.97 [3.92–4.03] 3.95 [3.84–4.05] 3.87 [3.76–3.98] 0.031

Liver

Noise 4.81 [4.70–4.93] 3.02 [2.97–3.06]* 3.98 [3.94–4.02]*° 3.02 [2.98–3.06]*  < 0.001

Subjective sharpness 4.60 [4.46–4.74] 3.98 [3.85–4.11]* 4.08 [4.00–4.16]* 3.15 [3.04–3.25]*°˜  < 0.001

Natural appearance 4.67 [4.51–4.82] 3.28 [3.13–3.43]* 4.00 [3.93–4.07]*° 3.62 [3.45–3.78]*  < 0.001

Psoas muscle

Noise 4.90 [4.81–4.99] 3.1 [3.00–3.21]* 4.00 [3.92–4.08]*° 2.94 [2.87–3.01]*  < 0.001

Subjective sharpness 4.92 [4.84–5.00] 4.15 [4.03–4.27]* 4.08 [4.00–4.16]* 3.1 [3.01–3.19]*°˜  < 0.001

Natural appearance 4.46 [4.30–4.62] 3.46 [3.30–3.63]* 3.97 [3.88–4.07]° 3.67 [3.51–3.82]*  < 0.001
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CTA [20], pulmonary CTA [21] abdominal CT [11, 22], 
and phantom [8]. The image noise, CNR, and/or SNR of 
DLR were improved compared with those of HIR and/
or MBIR, while none of the previous studies compared 
DLR with FBP in  vivo or discussed the blur metrics of 
sharpness.

Another DLR named “TrueFidelity” was explored by 
Park et  al. on the application of lower extremity CTA 
with the discussion of blur metrics [14]. The CNR and 
SNR were higher in the DLR than in the low blending 
factor HIR, and the blur metrics increased as the strength 
of the DLR was improved. However, they did not evaluate 
MBIR and FBP at the same time.

In our study, DLR was compared with all three kinds of 
other reconstruction methods, MBIR, HIR, and FBP. In 
general, the objective image quality, including SD, CNR, 
and SNR, was best in DLR for both vascular lumen and 
soft tissues. Based on the subjective performance of the 
four reconstruction algorithms, radiologists ranked the 
highest score for DLR for both image noise, subjective 
sharpness, and natural appearance. This is consistent 
with other previous studies in which DLR achieved a bet-
ter subjective score than the MBIR and/or HIR [11, 12, 
20, 22]. The diagnostic performance of lower extremity 
runoff CTA with routine image reconstruction was excel-
lent [1, 23], as was DLR in this study.

No-reference blur assessment in this study showed that 
DLR was better than Hybrid-IR with less blur effect and 
closer to MBIR. The possible reason might be that the 
training set of DLR was high-quality MBIR, which might 
preserve a similar sharpness property. MBIR had higher 
sharpness in this study, possibly due to the sharp kernel 
that we applied, which improved the image sharpness. 
FBP showed the best sharpness, which might be due to 
the highest image noise. Since the blur effect metric in 
this study was not focused on dedicated anatomical parts 
or edges, the location of the rectangular parts of the 
image was approximately selected to evaluate the general 
blur effect with a multiple-filtering process and compari-
son. This is not consistent with the subjective perception 
of image sharpness and is directly related to diagnos-
tic performance. Even so, DLR showed better sharpness 
than HIR.

The application of lower extremity runoff CTA is 
increasingly popular; however, at the same time, the 
radiation dose related to the scan protocol and large scan 
range for the lower extremities is underexplored. In pre-
vious studies, the image quality of DLR was even better 
despite a dose reduction of 20%-30% compared to HIR 
images with a reference dose [20–22] in cardiac CTA, 
abdominal CT, and pulmonary CTA, and the reduction 
can even reach 50% in pediatric CT [24]. Although the 
radiation dose was not reduced in this study, the excellent 

Fig. 4 A 67-year-old male with intermittent claudication of the right 
lower limb for 1 month. There was occlusion and significant stenosis 
in the proximal and middle superficial femoral arteries, respectively. 
An aneurysmal dilatation was found immediately after significant 
stenosis. DSA was performed within twenty-nine days. Panel a shows 
the DSA image and Panel b shows the maximum intensity projection 
CTA image
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image quality performance of DLR provides the potential 
application of DLR in low-dose lower extremity CTA.

Compared to HIR, the CNR of MBIR was lower in all 
locations, and SNR was lower in the aorta and soft tis-
sues. The results were different from the phantom study 
[25] and cardiac CT [26]. The subjective score of MBIR 
was worse for noise and better for the structure’s natural 
appearance compared with HIR. For MBIR, the objective 
score of noise was similar to the subjective noise result 
of this study, in which noise of MBIR was higher in the 
aorta, liver, and psoas muscle, and was consistent with 
Akagi et  al. [22] and Bornet et  al.’s study [11]. In previ-
ous studies, the natural appearance of cerebral [12] and 
abdominal [11] CT was slightly worse in MBIR, and the 
result was different from that in this study, which may be 
caused by different study anatomic areas and reconstruc-
tion parameters, such as kernel selection. To keep the 
parameters of the DLR in line with the MBIR, we used 
the body sharp kernel in this study. Although the so-
called “sharp” kernels usually maintain high spatial reso-
lution, they also elevate the image noise [27, 28].

There are several limitations to this study. First, we 
only compared DLR with MBIR, HIR, and FBP in rou-
tine radiation doses. According to previous studies, the 

image quality of DLR at a low radiation dose was compa-
rable to that of HIR [21, 24, 29]. While there was no study 
on a low radiation dose of DLR in lower extremity run-
off CTA, further study needs to be done. Second, “body 
sharp” was selected as the kernel of DLR and MBIR in 
this study, which might increase the noise magnitude 
of MBIR and lower its CNR in all locations, and SNR in 
the aorta and soft tissues. The influence of kernels in the 
comparison of DLR with other reconstruction algorithms 
should be discussed in further studies. Third, findings in 
this study may be valid no longer when the CTA is per-
formed by newly proposed sparse-view CT imaging com-
bined with a novel deep learning method [30–32], and 
further investigations are needed. Fourth, our study is 
limited by the small number of patients who underwent 
DSA, DLR diagnostic performance analysis sub-grouped 
by the location of the lesion was not performed.

Conclusions
In conclusion, compared to other routine reconstruc-
tion methods, DLR showed better objective image quality 
in terms of CNR, SNR, and image noise for both ves-
sels and soft tissues, as did the subjective image quality 
score in terms of noise, subjective sharpness, and natural 

Fig. 5 A 70-year-old female with left gangrenous toe for 3 weeks. There was an occlusion in the left proximal superficial femoral artery. The 
collateral artery in the distal patent superficial femoral artery was found. Panel a shows the volume rendering CTA image, panel b shows the 
maximum intensity projection CTA image, and panel c shows the DSA image
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appearance. The diagnostic accuracy of lower extremity 
CTA with DLR was the best among four reconstruction 
algorithms.
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