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Abstract 

Background  Differentiating between solitary spinal metastasis (SSM) and solitary primary spinal tumor (SPST) is 
essential for treatment decisions and prognosis. The aim of this study was to develop and validate an MRI-based radi-
omics nomogram for discriminating SSM from SPST.

Methods  One hundred and thirty-five patients with solitary spinal tumors were retrospectively studied and the data 
set was divided into two groups: a training set (n = 98) and a validation set (n = 37). Demographics and MRI char-
acteristic features were evaluated to build a clinical factors model. Radiomics features were extracted from sagittal 
T1-weighted and fat-saturated T2-weighted images, and a radiomics signature model was constructed. A radiomics 
nomogram was established by combining radiomics features and significant clinical factors. The diagnostic perfor-
mance of the three models was evaluated using receiver operator characteristic (ROC) curves on the training and vali-
dation sets. The Hosmer–Lemeshow test was performed to assess the calibration capability of radiomics nomogram, 
and we used decision curve analysis (DCA) to estimate the clinical usefulness.

Results  The age, signal, and boundaries were used to construct the clinical factors model. Twenty-six features from 
MR images were used to build the radiomics signature. The radiomics nomogram achieved good performance for 
differentiating SSM from SPST with an area under the curve (AUC) of 0.980 in the training set and an AUC of 0.924 in 
the validation set. The Hosmer–Lemeshow test and decision curve analysis demonstrated the radiomics nomogram 
outperformed the clinical factors model.

Conclusions  A radiomics nomogram as a noninvasive diagnostic method, which combines radiomics features and 
clinical factors, is helpful in distinguishing between SSM and SPST.
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Introduction
The spine is a common site for metastatic disease and 
primary tumors, with metastatic disease being much 
more frequent [1]. Nearly 70% of patients with can-
cers develop bone metastases, and approximately 40% 
of cancer patients occur spinal metastases during the 
course of their disease [2]. Typically, metastases appear 
as multifocal lesions in the axial skeleton, which can 
be suggestive for diagnosis. However, when metastasis 
presents as a solitary lesion, imaging features of soli-
tary spinal metastasis (SSM) and solitary primary spi-
nal tumor (SPST) frequently overlap, making it difficult 
to distinguish by traditional imaging practice [3, 4]. In 
addition, although tumor history is suggestive for the 
diagnosis of metastasis, its help is limited [5, 6]. The 
treatment decisions and prognosis are noticeably dif-
ferent depending on the diagnosis of spinal disease [7, 
8]. Therefore, differentiating SSM from SPST is essen-
tial for the prognostic evaluation of the patients and the 
selection of appropriate treatment.

Several studies [9, 10] presented that positron emis-
sion tomography/computed tomography (PET/CT) 
could provide both functional and anatomic informa-
tion, and is an excellent functional imaging method to 
identify spinal metastasis. However, this examination 
may not be widely available  for clinical  use due to its 
expensive price [11]. In addition, most investigators 
showed that percutaneous biopsy is a precise diagnos-
tic method for spinal disease, however, it could result in 
complications such as hematoma, infection, and organ 
damage, so not all patients can undergo biopsy [5, 12]. 
Therefore, an efficient and non-invasive approach to 
discriminate SSM from SPST is urgent.

Recently, radiomics, as an emerging method of medi-
cal image analysis, can extract and analyze quantitative 
features from radiographic images [13, 14]. And radi-
omics has been shown to be helpful in tumor detection, 
diagnosis, prognostic assessment, prediction of treat-
ment response, and monitoring of disease status [15]. 
Sun et al. [16] demonstrated that radiomics can differ-
entiate between benign and malignant spinal tumors. In 
addition, previous studies have also assessed the ability 
of radiomics to differentiate between spinal metastases 
and other pathological spinal lesions [17–19]. However, 
to the best of our knowledge, there have been few stud-
ies that established MRI-based radiomics nomograms 
to differentiate SSM and SPST.

The aim of this study was to develop and validate a 
radiomics nomogram incorporating radiomics signa-
ture and clinical factors for discriminating between 
SSM and SPST.

Materials and methods
Patients
Our hospital’s Institutional Review Board approved this 
retrospective study and the requirement for the patients’ 
informed consent was waived.

From January 2013 to September 2021, this study 
enrolled patients with solitary spinal tumors from our 
hospital. The primary cancers of SSM included lung can-
cer (n = 29), renal cancer (n = 14), breast cancer (n = 7), 
rectal cancer (n = 5), prostate cancer (n = 2), stomach 
cancer (n = 2), thyroid cancer (n = 2), liver cancer (n = 1), 
esophageal cancer (n = 1), colon cancer (n = 1), pancre-
atic cancer (n = 1), cervical cancer (n = 1), bladder cancer 
(n = 1), ovarian cancer (n = 1), submandibular gland cys-
tadenocarcinoma (n = 1). The SPST included plasmacy-
toma of bone (n = 12), giant cell tumor of bone (n = 11), 
chordoma (n = 10), lymphoma (n = 6), hemangioma 
(n = 5), osteoblastoma (n = 4), langerhans cell histiocy-
tosis (n = 4), chondrosarcoma (n = 4), ewing sarcoma 
(n = 2), chondromyxoid fibroma (n = 2), liposarcoma 
(n = 2), aneurysmal bone cyst (n = 1), osteosarcoma 
(n = 1), epithelioid haemangioendothelioma (n = 1), 
fibrosarcoma (n = 1). The inclusion criteria for SSM were 
as follows: (1) Patients retrieved from Picture Archiv-
ing and Communication System (PACS) using the key-
words "spinal metastasis"; (2) Presence of solitary spinal 
lesion on MRI, including T1-weighted imaging (T1WI) 
and fat-suppressed T2-weighted imaging (FS-T2WI) 
sequences; (3) Patients confirmed by pathological exami-
nation and/or PET/CT and clinically diagnosed. The 
inclusion criteria for SPST were as follows: (1) Patients 
retrieved from PACS using the keywords "spinal tumor" 
or "spinal lesion"; (2) Presence of solitary spinal lesion on 
MRI, including T1-weighted imaging (T1WI) and fat-
suppressed T2-weighted imaging (FS-T2WI) sequences; 
(3) Patients diagnosed by pathological examination. The 
common exclusion criteria were as follows: (1) Patients 
with neoadjuvant radiotherapy, chemotherapy, or chem-
oradiotherapy before MRI; (2) Images with poor quality, 
such as motion artifacts, cardiac and large vessel pulsa-
tion artifacts. All patients were randomized (a 7:3 ratio) 
into training and validation cohorts. The flowchart of 
inclusion and exclusion criteria for this study is shown in 
Fig. 1.

MRI protocols
The MRI was performed on 3.0 Tesla MR scanner 
(Prisma, Siemens Healthineers) using fast spin echo 
(FSE) sequences and followed a consistent protocol. 
The scanning sequence parameters for T1WI were as 
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follows: repetition time (TR), 400–800  ms; echo time 
(TE), 10–30  ms; field of view, 320 × 320  mm; matrix, 
384 × 384; flip angle, 160°; number of excitations, 2; 
echo train length, 5; slice thickness, 3.0  mm; slice spac-
ing, 1.0  mm. The chemical shift-selective fat saturation 
technique was used to accomplish fat suppression on 
FS-T2WI sequence. Settings for FS-T2WI were as fol-
lows: TR, 2000–4200  ms; TE, 70–110  ms; field of view, 
320 × 320  mm; matrix, 320 × 320; flip angle, 150°; num-
ber of excitation, 1; echo train length, 19; slice thickness, 
3.0 mm; slice spacing, 1.0 mm.

Development of the clinical factor model
The following MRI features were collected: the maximum 
diameter of the tumor; shape (regular or irregular); signal 
(uniform or uneven); boundaries (clear or unclear); loca-
tion (cervical, thoracic, lumbar, or sacrum spine).

Univariate analysis was used to compare the differences 
in clinical data and MRI characteristics of SSM and SPST 
in the training set. The significant variables in the uni-
variate analysis were included in multiple logistic regres-
sion analysis to establish the clinical factors model. Odds 
ratios (ORs) as estimates of relative risk and 95% confi-
dence intervals (CIs) were calculated for each individual 
factor.

Image segmentation of tumors and radiomics feature 
extraction
The detailed radiomics workflow is shown in Fig. 2. The 
three-dimensional (3-D) manual segmentation of the 

region of interest (ROI) was performed on the RadCloud 
Platform (Huiying Medical Technology Co., Ltd., China). 
On the sagittal T1WI and FS-T2WI images, contour-
ing was cautiously delineated within the borders of the 
tumors, but the adjacent normal vertebral body was not 
covered.. The MRI image segmentation was performed 
by two radiologists (reader 1, S. L.; reader 2, S. Z.) with 
4 and 9 years of experience in musculoskeletal imaging, 
respectively.

The inter-observer and intra-observer reproducibility 
of feature extraction were assessed by using inter- and 
intra-class correlation coefficients (ICCs). Twenty MRI 
images (10 for SSM and 10 for SPST) were randomly 
selected for ROI segmentation performed by reader 1 
and reader 2. Reader 1 repeated the segmentation after 
two weeks to evaluate the reproducibility of feature 
extraction. An ICC greater than 0.75 indicates good con-
sistency of the feature extraction. Then the remaining 
images were segmented by reader 1.

Construction of the radiomics signature
In order to eliminate the influence of dimension between 
features and make the signal intensities information 
consistent, the image was preprocessed before analysis 
in our study, which can be used to correct the intensity 
nonuniformity caused by the scanner’s magnetic field 
nonuniformity during image acquisition and ensure the 
scale and direction were maintained when deriving the 
3D features [20, 21]. Firstly, only the features with the 
criteria of having inter- and intra-observer ICCs greater 

Fig. 1  The flowchart of inclusion and exclusion criteria. SSM solitary spinal metastasis, SPST solitary primary spinal tumor
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than 0.75 were tested by one-way analysis of variance 
(ANOVA). Then, the Select K Best algorithm was used to 
obtain fit features as invariant values. And we used the 
least absolute shrinkage and selection operator (LASSO) 
regression model to identify the optimal features in the 
training set. Finally, the selected features were applied to 
build a radiomics signature. Radiomics score (Rad-score) 
for each patient was weighted according to their respec-
tive LASSO coefficients through a linear combination of 
selected features.

Development of a radiomics nomogram model 
and evaluation of the performance of different models
A radiomics nomogram model was established by inte-
grating the significant variables of clinical factors and 
radiomics features. The areas under the receiver operator 
characteristic (ROC) curve for the training and validation 
sets were used to quantify the diagnostic performance of 
the clinical factors model, the radiomics signature, and 
the radiomics nomogram. The Hosmer–Lemeshow test 
was performed to assess the goodness-of-fit of the nom-
ogram. And we used decision curve analysis (DCA) to 
describe and estimate the clinical usefulness of the mod-
els by calculating the net benefits at different threshold 
probabilities in the whole cohort.

Statistical analysis
All statistical analyses were conducted using SPSS soft-
ware (version 25.0, IBM) and R statistical software (ver-
sion 3.3.3, https://​www.r-​proje​ct.​org). A univariate 
analysis was performed to test for statistically clinical 
and imaging differences between SSM and SPST. For cat-
egorical variables, the chi-square test or Fisher exact test 
was used, and the independent-samples t-test for quan-
titative data. One-way ANOVA was applied to compare 

the value of each radiomics feature for the differentiation 
between the two groups. the Select K Best algorithm was 
analyzed using the “FSinR” package [22]. The LASSO 
regression model was analyzed using the “glmnet” pack-
age software package [23]. The ROC curves were drawn 
using the “pROC” package [24]. Meanwhile, nomograms 
and calibration plots were generated using the “rms” 
package (http://​CRAN.R-​proje​ct.​org/​packa​ge=​rms). The 
“generalhoslem” (http://​CRAN.R-​proje​ct.​org/​packa​ge=​
gener​alhos​lem) and “dca.R.” (http://​CRAN.R-​proje​ct.​org/​
packa​ge=​DCA) packages were used to compute the Hos-
mer–Lemeshow test and DCA, respectively. Finally, we 
adopted the Delong test to estimate the AUC differences 
between the three models. Statistical significance was set 
at p < 0.05.

Development of the clinical factors model
Relevant clinical factors of the patients in the train-
ing and the validation sets are shown in Table  1. There 
were significant differences in age and two MRI features 
between SSM and SPST (Fig.  3). Multivariate logistic 
regression analysis revealed that age (p = 0.003), signal 
(p = 0.044), and boundaries (p = 0.002) remained as inde-
pendent predictors in the clinical factors model. Tumors 
with older age (OR 1.060; 95% CI 1.020–1.101), a uniform 
signal (OR 2.582; 95% CI 1.026–6.499), or poorly defined 
boundaries (OR 0.209; 95% CI 0.078–0.559) were likely to 
be SSM.

Feature extraction, selection, and construction 
of radiomics features
Of the 2818 radiomics features extracted from sagittal 
T1WI and FS-T2WI, 2732 showed a good inter-observer 
and intra-observer agreement with ICCs > 0.75. And 
2352 radiomics features showed significant differences 

Fig. 2  The overall workflow of the radiomics model development

https://www.r-project.org
http://CRAN.R-project.org/package=rms
http://CRAN.R-project.org/package=generalhoslem
http://CRAN.R-project.org/package=generalhoslem
http://CRAN.R-project.org/package=DCA
http://CRAN.R-project.org/package=DCA
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between SSM and SPST by one-way ANOVA. Then, 679 
features obtained by the Select K Best algorithm were 
enrolled into the LASSO logistic regression model to 
select the most valuable features (Fig. 4). Finally, the radi-
omics signature model was built by using 26 features.

R​adi​omi​cs-​score = −  0.03619102 × A  −  0.008243862 
× B  −  0.066046414 × C  −  0.009470729 × D  −  0.01143
484 × E + 0.0071842 × F + 0.022352733 × G  −  0.02738
9885 × H + 0.022492058 × I + 0.047207099 × J + 0.009

669126 × K  −  0.093820903 × L  −  0.002162415 × M + 0
.012730966 × N + 0.022513546 × O  −  0.042216278 × P 
+ 0.008942049 × Q + 0.024651154 × R  −  0.034121703 
× S  −  0.070302674 × T  −  0.077206832 × U + 0.064455
605 × V  −  0.002917858 × W + 0.011232737 × X  −  0.02
3865389 × Y + 0.07784670 × Z.

The variables A to Z represent the selected radiomics 
features, which are provided in Additional file 1: Table S1. 
The Rad-score showed statistically significant differences 

Table 1  Clinical factors of the training and validation sets

Continuous variables are described as mean ± standard deviation, and categorical variables are presented as numbers (%)

SSM solitary spinal metastasis, SPST solitary primary spinal tumor

Clinical factors Training set (n = 98) Validation set (n = 37)

SSM group
(n = 49)

SPST group
(n = 49)

p SSM group
(n = 20)

SPST group
(n = 17)

p

Gender (male/female) 25/24 23/26 0.840 13/7 8/9 0.331

Age, mean ± SD, years 59.73 ± 8.41 49.16 ± 18.99 0.001 58.15 ± 11.39 51.35 ± 20.94 0.243

Maximum diameter (cm) 3.06 ± 1.38 4.87 ± 10.53 0.234 3.39 ± 1.26 4.71 ± 2.94 0.101

Shape (regular or irregular) 14/35 13/36 1.000 6/14 4/13 0.725

Signal (uniform or uneven) 30/19 18/31 0.026 12/8 7/10 0.330

Boundaries (clear or unclear) 10/39 26/23 0.001 8/12 13/4 0.045

Fig. 3  Two case examples. a, b. MR images in a 66-year-old woman with lung cancer. Sagittal T1-weighted (a) and sagittal FS-T2WI (b) show a 
solitary lesion at the L1 vertebral body. c Photomicrograph (hematoxylin and eosin staining, ×100) confirming lumbar metastatic tumor. d, e MR 
images in a 65-year-old woman. Sagittal T1-weighted (e) and sagittal FS-T2WI show a solitary lesion at the T11 vertebral body. f Photomicrograph 
(hematoxylin and eosin staining, ×400) confirming chondrosarcoma
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between SSM and SPST (OR 6.025; 95% CI 2.522–14.523, 
p < 0.05).

The radiomics nomogram construction and evaluation 
of different models
The radiomics nomogram (Fig.  5a) was generated by 
integrating age, signal, boundaries, and radiomics sig-
nature. Figure  5b, c shows the calibration curve of the 
nomogram. The calibration curve demonstrated excellent 
calibration when applied to the validation set, accompa-
nied by a nonsignificant Hosmer–Lemeshow test result 
(p = 0.650).

Table 2 summarizes the performance of the three mod-
els on the training and validation sets. ROC curves of the 
three models for both the training and validation sets are 
shown in Fig. 6. The radiomics nomogram model mark-
edly outperformed the clinical factors model in both the 
training set (AUC 0.980 vs. 0.807, p < 0.01) and validation 
set (AUC 0.924 vs. 0.679, p = 0.020). However, there was 
no statistically significant difference between the diag-
nostic performance of the radiomics nomogram and that 
of the radiomics signature model.

The decision curve analysis (Fig.  7) further indicated 
that the radiomics nomogram provided a higher net ben-
efit and predictive ability in differentiating SSM from 
SPST than the clinical factors model.

Discussion
Distinguishing SSM from SPST preoperatively is chal-
lenging and clinically important for treatment decisions 
and prognosis. Several reports have described radiomics 
as another key technique for comprehensive detection of 
tumor heterogeneity. It can also make up for the short-
comings of traditional imaging diagnosis [13, 14]. In situ-
ations where SSM and SPST imaging features overlap, 
radiomics can be a valuable additional tool. In the current 
study, we proposed and validated a conventional MRI-
based radiomics nomogram to distinguish SSM from 
SPST. The nomogram model, combined with the radiom-
ics signature, age, signal, and boundaries, achieved good 
performance for differentiating SSM from SPST, with 
AUCs of 0.980 and 0.924 in the training and validation 
cohorts, respectively. Compared with the clinical factors 
alone (training-AUC = 0.807, validation-AUC = 0.679), 
the nomogram model was significantly improved. It sug-
gested that the combined nomogram model could be 
used as a reliable and effective method to formulate the 
correct treatment plan for patients with spinal tumors.

Magnetic resonance imaging with superior soft-tissue 
contrast and high spatial resolution plays an important 
role in diagnosing spinal tumor [25]. In our study, age was 
considered to be an independent predictor of solitary spi-
nal metastasis. We also found that SSM usually exhibited 

Fig. 4  Radiomic feature selection using the least absolute shrinkage and selection operator (Lasso) cox regression model. a Tuning parameter (λ) 
selection in the Lasso logistic model was chosen using tenfold cross-validation based on the minimum criteria. The optimal values of the LASSO 
tuning parameter (λ) are indicated by the vertical dashed lines, and a value λ of 0.028 with log (λ) = 1.545 was chosen. b LASSO coefficient profiles 
of the 679 radiomics features. A coefficient profile plot was generated versus the selected log (λ) value using tenfold cross-validation, and 26 
radiomics features were selected with non-zero coefficients
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Fig. 5  Radiomics nomogram and calibration curves. a Radiomics nomogram integrated with age, signal, boundaries, and radiomics signature, 
developed in the training set. Calibration curves of the radiomics nomogram in the training (b) and validation (c) sets. Calibration curves indicate 
the goodness-of-fit of the nomogram. The 45° gray line represents the ideal prediction. The apparent line is the calibration accuracy of the original 
date. The bias-corrected line is derived via 1000 repetitions of bootstrapping, which corrects the overfitting. A closer distance between the two 
curves indicates better prediction accuracy of the radiomics nomogram

Table 2  Diagnostic performance of the clinical factors model, the radiomics signature, and the radiomics nomogram

CI confidence interval, AUC​ area under the curve

Set Model AUC (95% CI) Sensitivity % Specificity % Accuracy %

Training set (n = 98) Clinical model 0.807 (0.733–0.868) 67 (33/49) 71 (35/49) 69 (68/98)

Radiomics signature 0.975 (0.950–0.993) 96 (47/49) 90 (44/49) 93 (91/98)

Radiomics nomogram 0.980 (0.959–0.995) 96 (47/49) 90 (44/49) 93 (91/98)

Validation set (n = 37) Clinical model 0.679 (0.533–0.791) 71 (12/17) 60 (12/20) 65 (24/37)

Radiomics signature 0.900 (0.702–0.914) 88 (15/17) 75 (15/20) 81 (30/37)

Radiomics nomogram 0.924 (0.693–0.916) 82 (14/17) 80 (16/20) 81 (30/37)
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poorly defined boundaries. The metastatic tumor shared 
most of the same characteristics as the primary tumor 
[26], and the primary tumor of metastasis in this paper 
had a higher degree of malignancy, which explained why 
the boundaries of SSM were unclear in our study. How-
ever, the clinical factors model based on age, signal, and 
boundaries did not achieve a high AUC (0.679 in the vali-
dation set) for differentiating SSM and SPST.

Radiomic Machine Learning and radiomics have been 
proposed for multiple uses in the diagnosis of spinal 
tumors [8, 17, 19, 27]. Sun et  al. [16] developed a CT-
based nomogram that combined the clinical risk fac-
tors and the radiomics signature to distinguish between 
benign and malignant bone tumors. And Vito Chianca 
et  al. [8] proposed differential diagnosis of primary, 
malignant or metastatic tumors of the spine by radi-
omic machine learning. The study of Filograna et al. [28] 
aimed to isolate the most significant features to pre-
dict spinal metastases for oncological patients based on 
radiomics features, and they were more focused on the 
distinction between metastases and normal vertebral 
bodies. Another study [11] tried to identify whether the 
primary tumor of the metastasis was derived from the 
lung by radiomics and deep learning. Their findings sup-
ported the usefulness of radiomics in the diagnosis of spi-
nal tumors. However, unlike them, we used a radiomics 
approach to distinguish SSM from SPST. And we con-
sidered solitary spinal metastasis harder to identify and 
more meaningful in the clinic.

Tumor history is important for the diagnosis of spi-
nal metastasis [3]. But in the actual clinic, doctors are 
frequently unaware of the specific tumor history, so 
this information was not included in the clinical factors 
model. Even when blinded to tumor history, the radiom-
ics signature (AUC, 0.900) and nomogram (AUC, 0.924) 
presented good diagnostic efficacy in this paper. Addi-
tionally, we drew the outline of lesions by 3D ROI, which 
covered more available sites and better reflected tumor 
heterogeneity than the largest cross-sectional areas [29].

However, this study had some limitations. First, this 
was a retrospective study, so potential selection bias was 
unavoidable. Second, all patients were from a single med-
ical center, which could lead to skewed results and a lack 
of an external test set. A prospective multicenter study is 
warranted in further study. Third, another limitation was 
the inclusion of different types of spinal tumors in the 
study, which led to increased clinical heterogeneity and 
inevitably affected the outcome. Fourth, each ROI was 
manually drawn on the original image of the T1WI and 
FS-T2WI sequences. Thus, there is an urgent need for an 
automated or semiautomated ROI to reduce variability 
between observers.

Conclusion
In conclusion, our study developed and validated a radi-
omics nomogram that combined radiomics features and 
clinical factors to help distinguish between SSM and SPST.

Fig. 6  Receiver operating characteristic curves of the clinical factors model, radiomics signature, and radiomics nomogram in the training (a) and 
validation (b) sets, respectively
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than the clinical factors model
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